Imaging Performance of Polarization-Insensitive Metalenses

Citation:

Manuel Decker, Wei Ting Chen, Thomas Nobis, Alexander Y. Zhu, Mohammadreza Khorasaninejad, Zameer Bharwani, Federico Capasso, and Joerg Petschulat. 2019. “Imaging Performance of Polarization-Insensitive Metalenses.” ACS PHOTONICS, 6, 6, Pp. 1493-1499.
acsphotonics.9b00221.pdf6.31 MB

Abstract:

Metasurfaces have recently emerged as a promising technology to realize flat optical components with customized functionalities. In particular, their application to lenses in various imaging systems is of significant interest. However, a systematic and complete study of the focusing and imaging behavior of metalenses has not yet been conducted. In this work we analyze not only the on-axis focusing performance, but also the field-dependent wavefront aberrations via a phase-retrieval optimization method. We find that, particularly for high-NA metalenses, the field-dependent geometrical aberrations like coma are dominant at the design wavelength, while for longer and shorter operation wave- lengths, the effective numerical aperture is decreased and mainly spherical aberrations are dominant. Additionally, we investigate the spectral and angular bandwidth of a polarization-insensitive metalens by analyzing the metalens efficiencies as a function of numerical aperture, field angle, and wavelength. We then compare the metalens performance to its refractive and diffractive counterparts and show how the respective metalens properties affect the imaging performance. For this purpose, we perform an imaging simulation for these three cases based on their field- and wavelength-dependent absolute deflection efficiencies and analyze the imaging properties of an extended test object. Our calculations show that metalenses can outperform diffractive lenses in terms of their angle-dependent efficiency for large deflection angles.
Last updated on 05/24/2020