Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces

Citation:

Nanfang Yu, Patrice Genevet, Francesco Aieta, Mikhail A. Kats, Romain Blanchard, Guillaume Aoust, Jean-Philippe Tetienne, Zeno Gaburro, and Federico Capasso. 2013. “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces.” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 19, 3.

Abstract:

Conventional optical components rely on the propagation effect to control the phase and polarization of light beams. One can instead exploit abrupt phase and polarization changes associated with scattered light from optical resonators to control light propagation. In this paper, we discuss the optical responses of anisotropic plasmonic antennas and a new class of planar optical components (''metasurfaces'') based on arrays of these antennas. To demonstrate the versatility of metasurfaces, we show the design and experimental realization of a number of flat optical components: 1) metasurfaces with a constant interfacial phase gradient that deflect light into arbitrary directions; 2) metasurfaces with anisotropic optical responses that create light beams of arbitrary polarization over a wide wavelength range; 3) planar lenses and axicons that generate spherical wavefronts and nondiffracting Bessel beams, respectively; and 4) metasurfaces with spiral phase distributions that create optical vortex beams of well-defined orbital angular momentum.