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Frequency combs induced by phase 
turbulence

Marco Piccardo1,2,8 ✉, Benedikt Schwarz1,3,8, Dmitry Kazakov1, Maximilian Beiser3,  
Nikola Opačak3, Yongrui Wang4, Shantanu Jha1,5, Johannes Hillbrand1,3, Michele Tamagnone1, 
Wei Ting Chen1, Alexander Y. Zhu1, Lorenzo L. Columbo6,7, Alexey Belyanin4 &  
Federico Capasso1 ✉

Wave instability—the process that gives rise to turbulence in hydrodynamics1—
represents the mechanism by which a small disturbance in a wave grows in amplitude 
owing to nonlinear interactions. In photonics, wave instabilities result in modulated 
light waveforms that can become periodic in the presence of coherent locking 
mechanisms. These periodic optical waveforms are known as optical frequency 
combs2–4. In ring microresonator combs5,6, an injected monochromatic wave becomes 
destabilized by the interplay between the resonator dispersion and the Kerr 
nonlinearity of the constituent crystal. By contrast, in ring lasers instabilities are 
considered to occur only under extreme pumping conditions7,8. Here we show that, 
despite this notion, semiconductor ring lasers with ultrafast gain recovery9,10 can enter 
frequency comb regimes at low pumping levels owing to phase turbulence11—an 
instability known to occur in hydrodynamics, superconductors and Bose–Einstein 
condensates. This instability arises from the phase–amplitude coupling of the laser field 
provided by linewidth enhancement12, which produces the needed interplay of 
dispersive and nonlinear effects. We formulate the instability condition in the 
framework of the Ginzburg–Landau formalism11. The localized structures that we 
observe share several properties with dissipative Kerr solitons, providing a first step 
towards connecting semiconductor ring lasers and microresonator frequency combs13.

Following decades of studies, the development of optical  fre-
quency combs continues at a rapid pace4,6,14. Research on frequency 
combs started from tabletop optical systems—such as Ti:sapphire 
mode-locked lasers, which revolutionized optical metrology2—the 
subsequent advances in the processing of semiconductor and dielec-
tric materials led to much more compact frequency comb generators. 
Technological progress went hand in hand with many new applications, 
such as in spectroscopy and chemical sensing, arbitrary radiofrequency 
waveform generation, optical communications and quantum informa-
tion. Within the realm of integrated optics, of particular interest are 
two classes of generators: semiconductor lasers and passive micro-
resonators6,15; in the latter, the pump is an external continuous-wave 
laser and the gain stems from the Kerr nonlinearity. In both cases, 
the device starts from single-frequency operation, corresponding to 
the first lasing mode or the external pump. To generate a frequency 
comb, mechanisms capable of creating modes at different frequen-
cies, coupling them and locking their phases need to be present in the 
cavity. In microresonators, above the parametric instability threshold, 
the external pump induces the appearance of sidebands, which grow 
and proliferate16 through cascaded parametric processes. This coher-
ent nonlinear process gives rise to phase-locked frequency combs. 
In Fabry–Pérot semiconductor lasers, multimode operation results 

from inhomogeneous gain saturation. A standing wave created by 
the first lasing mode (Fig. 1a) leads to a spatially varying distribution 
of the gain—a phenomenon known as spatial hole burning (SHB). In a 
dispersive cavity, SHB leads to the proliferation of modes with nonequi-
distant frequencies, where phase locking can be achieved through the 
nonlinearity of the gain medium itself17–20.

SHB is not expected to form in a ring cavity, as the clockwise and 
counterclockwise modes of a ring resonator are not naturally coupled 
in the absence of a well defined reflection point that breaks the circular 
symmetry. We show that semiconductor ring lasers21–23 can nevertheless 
undergo a single-mode instability owing to a phenomenon known in the 
realm of the Ginzburg–Landau theory as phase turbulence11 and form 
frequency combs even in the absence of spatial or spectral hole burn-
ing. Multimode emission and comb formation occur at a pumping level 
fractionally higher than the lasing threshold. This is in contrast to the 
Risken–Nummedal–Graham–Haken instability, which also promotes 
multimode operation of a ring laser but at a non-practical pumping 
level of at least nine times above the threshold7,8.

Ring frequency combs
To study phase turbulence in lasers, we use ring quantum cascade 
lasers (QCLs)9. These are monolithic frequency comb generators that 
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combine nonlinearity and gain10 and have applications in dual-comb 
spectroscopy24, metrology25 and microwave photonics26. QCL fre-
quency combs typically have the Fabry–Pérot geometry (Fig. 1a) and 
serve the mid-infrared and terahertz regions of the electromagnetic 
spectrum, which are strategic for chemical sensing. They have the 
advantages of broad tunability, through band-structure engineer-
ing, and high portability because they are electrically pumped and 
compact. Here we fabricate ring QCLs in a ridge waveguide geometry 
(Fig. 1c). These ring QLCs emit in the mid-infrared and operate at room 
temperature under constant electrical injection (Methods). A small 
fraction of light can escape from the ring cavity owing to scattering, 
allowing us to perform a spectral characterization.

We find that at an injection level only fractionally higher than the 
lasing threshold Jth (typically 1.1Jth–1.5Jth), the ring lasers undergo a tran-
sition to a multimode regime (Fig. 1d) that is distinctly different from 
those observed in Fabry–Pérot QCLs (Fig. 1b). The optical spectrum 
of the ring has fewer modes and exhibits a bell-shaped envelope. As 
in Fabry–Pérot resonators, the modes are separated by the round-trip 
frequency of the cavity frt = c/(2πrn), where r is the ring radius, n = 3.4 
is the effective refractive index of the waveguide and c is the speed of 
light in vacuum. The coherence of the state is manifested by its nar-
row beat note (Supplementary Fig. 2), which indicates its frequency 
comb nature, further confirmed by a coherent beat note detection 
technique (Extended Data Fig. 1). A notable feature of the instability 
is that as the current in the device is increased, the laser can revert 
back to single-mode operation (Extended Data Fig. 2)—a feature not 

observed in regular Fabry–Pérot lasers. A multimode instability close to 
the threshold has been reported also for a ring dye laser27 but with dif-
ferent features, namely, suppression of the resonant mode and a para-
metric gain of two side modes separated by about the Rabi frequency.

Ginzburg–Landau theory
To support the experimental evidence of multimode operation, we 
reexamine the theory of lasers with fast gain media. We show that ring 
frequency combs can be explained on the basis of a phase instability 
that affects the single-mode solution of the complex Ginzburg–Landau 
equation (CGLE)11,28. The CGLE is a nonlinear differential equation that 
describes spatially extended systems of coupled nonlinear oscillators. 
It appears in many branches of physics, such as superconductivity, 
Bose–Einstein condensation and quantum field theory. In semiconduc-
tor laser theory, it can be shown that the field dynamics is described 
by a CGLE assuming fast gain relaxation29. Although fast relaxation is 
not applicable to a conventional bipolar semiconductor laser (diode 
laser), it is a well known property of QCLs. From the master equation 
of lasers with fast gain media20 we derive the CGLE for the laser field E:

E E c E c E E∂ = + (1 + i )∂ − (1 + i ) (1)t zD
2

NL
2

where t is the time and z is the spatial coordinate running along the ring 
cavity (see Supplementary Information for the analytical derivation). 
The only two parameters of the equation are cD and cNL, which control 
the stability of the system and relate to dispersive and nonlinear effects, 
respectively. In the case of QCLs, cD depends on the group velocity dis-
persion (GVD), and cNL depends on the Kerr coefficient. Although the 
bulk Kerr nonlinearity of a semiconductor crystal is small, its contribu-
tion is compensated by a term of the same order given by the linewidth 
enhancement factor (LEF)12,20. Despite its different nature from the Kerr 
nonlinearity, the LEF enters both the cD and cNL terms and provides the 
phase-amplitude coupling needed for the phase instability.

In CGLE theory, the parameter space spun by cD and cNL is divided 
into different stability regions by the Benjamin–Feir lines11,30, which 
are defined by 1 + cDcNL = 0. The inner region confined by the lines has 
stable, purely single-mode solutions, whereas the solutions lying in 
the two outer regions exhibit a phase instability29, which makes them 
multimode. We investigate the spectral content of the laser field solu-
tions according to their location in the CGLE parameter space. In Fig. 2a 
we show the result of space–time domain simulations of a ring QCL for 
different points in the (cD, cNL) parameter space determined by typical 
laser parameters (Extended Data Table 1). In these numerical simula-
tions we use the full laser model without approximations20, and the 
CGLE is used only to guide the choice of laser parameters, allowing 
us to probe solutions in various points of the parameter space. The 
computed optical spectra confirm that in the stable region (white) 
only single-mode solutions are supported, whereas in the instability 
regions (red) the laser attains a multimode regime despite the absence 
of SHB, as already suggested by a recent theory of ring QCLs based 
on the effective Maxwell–Bloch equations31. The (cD, cNL) coordinates 
corresponding to our laser parameters, as obtained from the GVD and 
LEF measurements (Fig. 2c, d), are marked in Fig. 2a and show that the 
experimentally observed multimode instability is compatible with the 
phase turbulence mechanism.

Emergence of order from turbulence
Space–time simulations allow us to resolve the full temporal evolution 
of the laser (Fig. 2b, Supplementary Video). Starting from spontane-
ous emission, discontinuous changes of the laser field are produced. 
Amplitude fluctuations of the first lasing mode are coupled to phase 
fluctuations via the LEF or α parameter α = (∂n′/∂N)/(∂n″/∂N), where n′ 
and n″ are the real and imaginary parts of the refractive index, respec-
tively, and N is the carrier density12. Physically, fluctuations of n′ in the 
QCL active region lead to fluctuations in the spacing between the lasing 
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Fig. 1 | Fabry–Pérot and ring frequency combs. a, Schematic of a Fabry–Pérot 
cavity with rightward (Er) and leftward (El) propagating waves coupled through 
facets of reflectivity R. As a result of the counterpropagating waves, optical 
standing waves of intensity I and a static grating of population inversion ΔN are 
formed in the cavity of length L. b, Experimental optical spectrum of a Fabry–
Pérot frequency comb generated from a QCL (L = 3.7 mm). The round-trip 
frequency ( frt) defines the comb spacing (11.5 GHz), which is shown in the inset. 
c, Schematic of a monolithic semiconductor ring laser of radius r. d, 
Experimental optical spectrum of a ring QCL frequency comb (r = 500 μm). The 
envelope of the spectrum is fitted to a sech2 function for the discussion on 
solitonic structures. Also shown is the narrow electrical beat note of the laser 
(central frequency 27.8 GHz). The two lasers are fabricated from the same 
material. The resolution of the optical spectrum analyser is 3 GHz in b and 
6 GHz in d, and the resolution bandwidth of the radiofrequency (RF) spectrum 
analyser is 9.1 kHz in b and 5.6 kHz in d.
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mode and the side modes. The shifts of the latter with respect to the 
gain peak eventually lead to multimode lasing, despite the absence 
of SHB. In CGLE theory, the resulting dynamical behaviour shown in 
Fig. 2b is described as ‘phase turbulence’. This regime is characterized 
by the presence of chaotic intensity fluctuations with small amplitude 
that never reach zero and by the absence of phase dislocations32 (for 
a detailed discussion of the role of turbulence, see Supplementary 
Information). After a relatively long time interval (about 400,000 round 
trips) the laser reaches a frequency comb regime, where the intensity 
becomes periodic, with the waveform repeating itself at every round 
trip. Whereas phase turbulence provides a coupling mechanism among 
the modes via the LEF, which is alternative to SHB in Fabry–Pérot lasers, 
it is the semiconductor saturation nonlinearity via four-wave mixing 
that, for a sufficiently high intracavity field, becomes efficient at com-
pensating dispersion through a self-injection mechanism10. Besides the 
conventional description in terms of LEF and GVD20, the formation of 
the frequency comb can be described from the point of view of Ginz-
burg–Landau theory as the morphogenesis of a regular spatiotemporal 
pattern. Here the locking process manifests itself as the interaction 
of confined intensity structures that shift with respect to each other, 
eventually conforming into a single stable structure (Fig. 2b).

Role of intracavity defects
In demonstrating that phase turbulence lies at the heart of the mul-
timode instability of ring lasers, it is essential to distinguish it from 
another mechanism that normally drives the instability, SHB. Here 
we show that in a ring cavity that supports SHB, the multimode 
instability leads to a completely different comb state. SHB arises in a 
cavity in the presence of a well defined reflection point that couples 

counterpropagating waves. Whereas in a Fabry–Pérot cavity the waves 
are naturally coupled owing to reflections off the cleaved facets, in a ring 
cavity an analogous reflection point—a defect—must be intentionally 
introduced. This is because unintentional defects, which may result 
from imperfections in fabrication, are insufficient to trigger the SHB 
instability (Supplementary Fig. 5). We embed a defect in a ring laser 
waveguide by means of focused ion beam lithography (Fig. 3a). A sim-
ple, yet effective, way of controlling the defect reflectivity is to etch a 
narrow slit across the waveguide to create an air gap in the active region 
of the laser (Fig. 3b). We choose a slit width of 0.5 μm that gives a reflec-
tivity of R ≈ 22%, which is close to the facet reflectivity of an uncoated 
Fabry–Pérot QCL (R = 29%). The defect-engineered laser generates a 
frequency comb with a spectrum that is drastically different from that 
of a ring without an intentional defect (Fig. 3c, Supplementary Fig. 6). 
The spectrum has an irregular envelope—the result of complex laser 
mode competition—similar to that of Fabry–Pérot devices, in which 
multimode operation is also dominated by SHB. The presence of optical 
standing waves enabling SHB is demonstrated by the beat note pattern 
measured along the cavity, with a maximum located, as expected, at 
the engineered defect (Fig. 3d, Extended Data Fig. 3, Supplementary 
Fig. 3). Space–time simulations of this laser confirm a different dynam-
ics from that of non-defect-engineered rings. The instability shows large 
intensity fluctuations and a fragmented temporal evolution (Fig. 3e). 
Locking occurs over a shorter time interval (about 10,000 round trips) 
and results in a nearly flat intensity waveform, as in Fabry–Pérot QCL 
combs20. These results show that high reflectivity values, comparable 
to those of uncoated Fabry–Pérot resonators, are needed to mask the 
effects of phase turbulence in a ring and enable multimode emission 
due to SHB.
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Fig. 2 | Conditions for the phase instability in a monolithic ring laser.  
a, Theoretical spectra obtained by solving the laser master equation are shown 
for different points in parameter space, confirming the behaviour expected 
from Ginzburg–Landau theory. In the simulations, SHB is turned off, so the 
obtained multimode regimes are due to the Ginzburg–Landau phase 
instability. In all plots the x axis spans 50 longitudinal modes of the ring  
and the y axis shows intensity (10 dB per division). Also shown is the region 
corresponding to the experimental devices, as obtained from the laser 
parameters, with the related uncertainties corresponding to the standard 
deviation (square marker; Supplementary Table 1). In the simulated spectrum 
corresponding to this point, a sech2 envelope was fitted to the envelope for the 
purposes of the discussion on solitonic structures (dashed line). The formulas 
shown in the inset are an approximation in the limit of small linewidth- 

enhancement factors (Supplementary Information). GVD is the group velocity 
dispersion, α is the linewidth enhancement factor and β is the Kerr nonlinearity, 
which is small in QCLs. b, Space–time simulation of the laser dynamics, 
showing the intensity in the ring cavity at every round trip. Starting from 
spontaneous emission (dark stripe in the left inset), the laser destabilizes into a 
turbulent regime and eventually reaches a frequency comb regime. The 
simulation solves the laser master equation for 600 million time steps (0.05 ms 
interval). The corresponding point in parameter space is indicated by the 
square marker in a. c, d, Measurement of two physical quantities entering cD 
and cNL for a ring QCL. In d, the experimental values are shown as a function  
of current density normalized to the lasing threshold. Error bars are obtained 
as the standard deviation of multiple (20) repeated measurements. a.u., 
arbitrary units.
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Discussion
Linking the physics of ring lasers to the CGLE suggests a connection 
with Kerr-driven frequency comb generators. The latter are usually 
described by the Lugiato–Lefever equation13 (LLE) with well known 
soliton solutions33–36 derived from the CGLE with coherent forcing 
in the limit of large cD and cNL parameters. Moreover, we showed that 
the LEF, which enters both Ginzburg–Landau parameters in the case 
of a ring laser, adds up to the contributions of the Kerr nonlinear-
ity and the GVD. The interplay of dispersive and nonlinear effects 
is essential to produce a self-starting instability, as in the case of 
the modulation instability that lies at the origin of Kerr solitons in 
microresonators36.

The link with Kerr combs can be seen not only in the govern-
ing equations but also from the optical spectra. The bell-shaped 
envelope of the QCL ring comb spectra fits well to a sech2 function 
(Figs. 1d, 2a), which is characteristic of dissipative Kerr solitons. 
The observation of spectral gaps in certain devices (Extended Data 
Figs. 2, 4) is also reminiscent of the variety of Kerr soliton spectra 
measured for different pump detuning conditions33,34. These obser-
vations indicate that the necessary conditions for the formation 
of solitonic structures31 exist in ring QCLs, although proving their 
occurrence is a considerable experimental and theoretical under-
taking that requires further investigation. It is known from Ginz-
burg–Landau theory that the CGLE can have localized structures, 
such as ‘modulation amplitude waves’37, as solutions, similarly to the 
LLE. These appear in the phase turbulence regime and exhibit weak 
amplitude modulations on a homogeneous background—features 
also observed in our numerical simulations of ring QCLs (Fig. 2b, 
Supplementary Fig. 1) and supported by the experimental charac-
terization of the spectral phases of these lasers (Supplementary 
Information). In the simulations we find that the number of struc-
tures in states such as that shown in Fig. 2b vary stochastically with 
the initial conditions of the laser; by changing only the seed of the 
spontaneous emission noise and repeating the same simulation, we 
obtained a laser state with four structures instead of three (Extended 
Data Fig. 1). This is a clear indication of a multistability phenomenon, 
which is typical of dissipative solitons in extended systems such as 
Kerr microcombs.

We also highlight a historical analogy with the progress in the field 
of passive microresonators: prior theoretical studies by Lugiato and 

co-workers on transverse patterns in lasers38,39, temporally contiguous 
with the well known work with Lefever on transverse patterns in passive 
optical systems13, derived an equation with a mathematical form very 
similar to our CGLE, which however describes longitudinal patterns 
in ring lasers. This is reminiscent of the history of microresonators, 
in which the LLE anticipated the first experimental demonstration of 
Kerr combs40, which also have longitudinal patterns and were later 
traced back to the LLE.

Besides the several analogies between the two classes of local-
ized structures/combs in Kerr microresonators and ring QCLs 
highlighted so far, we believe that there exist a few fundamental 
differences that could imply different solitonic properties (for 
example, response to external addressing, mutual interaction), 
but the exhaustive study of which would require a dedicated future 
work. These mainly originate from the different kinds of nonlinear-
ity providing the phase locking between competing modes and the 
absence of a forcing field in ring QCLs, which might give an advan-
tage to these devices in terms of compactness. In fact, whereas the 
pumping of passive microresonators requires energy incoming 
through optical injection, which is responsible for the appearance 
of a strong central mode in the comb spectrum that is undesirable 
in many applications, QCL combs operate without an injected field. 
In this regard, QCLs are more similar to the recently demonstrated 
laser cavity–soliton microcombs41—Kerr microcavities nested in an 
amplifying fibre loop providing gain—but are more compact. A ring 
QCL acting as an electrically pumped microresonator would hold a 
substantial technological potential, in particular considering the 
strategic spectral ranges covered by QCLs. Further improvements 
in this direction should concentrate on the design of efficient light 
outcouplers—with the precaution of not perturbing the physics of 
the phase turbulence instability—and on the extension of the comb 
bandwidth that, unlike the case of Fabry–Pérot QCLs, is not limited 
by SHB, but only by the LEF and GVD.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2386-6.
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Fig. 3 | Defect-engineered ring frequency comb. a, Scanning electron 
microscope image of the defect-engineered ring laser, showing the aperture in 
the metal (blue region in false colour) with a slit width of ω = 0.5 μm fabricated 
by focused ion beam lithography. b, Reflectivity induced by the slit as a 
function of its width, as calculated from numerical wave simulations (solid 
line). The reflectivity of the studied device is R ≈ 22% (dot). c, Experimental 
optical spectrum of a defect-engineered ring QCL (r = 500 μm) fabricated from 
the same material as the other devices studied in this work. Also shown is the 
microwave beat note extracted from the laser (central frequency 27.8 GHz, 

resolution bandwidth 9.1 kHz). d, Schematic of a ring laser with an embedded 
engineered defect of reflectivity R. The defect induces clockwise (ECW) and 
counterclockwise (ECCW) waves, resulting in an optical standing wave of 
intensity I and a static population grating of population inversion ΔN. The 
right panel shows the experimental beat note power pattern (RF power) 
measured along the perimeter of the ring at the round-trip frequency 
indicating a bidirectional regime. e, Space–time simulation of a ring laser with 
a defect (R = 25%).
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Methods

QCLs
The lasers emit at around 8 μm and have a structure consisting of 
GaInAs/AlInAs layers on an InP substrate. The waveguide width is 10 μm 
and the inner radius r is 500 μm or 600 μm (Supplementary Fig. 11). 
The active region consists of AlInAs/GaInAs/InP layers and the band 
structure design is based on a single-phonon continuum depopulation 
scheme42. The lasers are operated under constant electrical injection 
with a low-noise current driver (Wavelength Electronics QCL LAB 1500), 
and their temperature is stabilized at 16 °C using a low-thermal-drift 
temperature controller (Wavelength Electronics TC5). The thresh-
old current density of a symmetric ring is observed to be as low as 
1.1 kA cm−2, and that of the defect-engineered ring is 1.3 kA cm−2. The 
increase in threshold current density in the defect-engineered ring is 
attributed to the losses induced by the defect. For comparison, the 
threshold current density of a Fabry–Pérot device fabricated from the 
same material, with the same waveguide width and cleaved to have 
a symmetric ring of approximately the same length (L = 3.7 mm) is 
1.4 kA cm−2. Only a small amount of light (≱1 mW) scatters out of the 
ring waveguide, minimizing the perturbations caused by outcou-
pling on the intrinsic states of the lasers. The laser spectral output 
is measured using a Fourier transform infrared spectrometer and a 
sensitive photodetector (HgCdTe detector cooled at 77 K). Beat notes 
produced during the operation of the frequency comb are electrically 
extracted from the laser chip using a radiofrequency probe connected 
to a spectrum analyser and exhibit a narrow (sub-kilohertz) linewidth. 
The symmetry of the optical spectra of the ring combs is a further indi-
cation of the coherence of these states. The suppression of the central 
optical mode, which can be observed in certain devices (Extended 
Data Fig. 5), is a signature of a parametric process and resembles the 
spectra of frequency-modulated combs. Because the GVD and LEF 
characterizations rely on techniques43–46 for which the output power 
from a ring would be insufficient, we measure these quantities using 
Fabry–Pérot devices fabricated from the same material and having 
the same waveguide width as the rings (10 μm). More details on the 
LEF characterization are given in Supplementary Information (Sup-
plementary Figs. 7–10). Other works investigating QCL cavities with 
a circular geometry are described in refs. 9,47–54.

Numerical simulations
The theory presented in this work is backed up by numerical simulations 
that are based on the laser master equation. This was derived in ref. 20 
starting from the full Maxwell–Bloch system of equations. This enables 
a considerable increase in implementation efficiency compared to the 
full Maxwell–Bloch system while maintaining the fidelity of the model 
in the case of a fast gain medium, such as QCLs. To further improve the 
calculation speed, the code is highly parallelized and implemented in 
a CUDA platform, called from a Python C++ extension interface. The 
calculations are conducted on a graphics processing unit (GPU) within 
a PC, which allows extremely short computation times compared to a 
standard code implementation on a central processing unit (CPU). We 
used an NVIDIA GeForce GTX 1070 Ti GPU, which resulted in a speed-up 
factor of 500 compared to the CPU implementation. As an example, the 
space–time simulation shown in Fig. 2b, which consists of 600 million 
time steps, took 27 min to run.

Defect engineering
We use focused ion beam milling to engineer defects in ring QCLs. 
Focused ion beam lithography is a maskless dry-etching technique 
originally developed for the repair of photolithography masks and 
for the preparation of samples for transmission electron microscopy. 
The writing settings for the rectangular pattern are 0.6 × 10 μm2 with a 
depth setting of 1.43 μm. The actual width of the slit cut by the focused 
ion beam (FEI Helios 660) across the ring waveguide is 500 nm. The 

dwell time is 1 μs and the current is 0.43 nA. The recipe is finely tuned to 
avoid the devastating effects of Ga+ ions getting implanted in the QCL 
layers, effectively creating a current leakage path of high resistance 
that burns during laser operation55. We also toned to account for the 
systematic spatial shifts between the written patterns and the location 
of the focus of the beam. The reflectivity of the defect is calculated using 
the frequency-domain electromagnetic wave model (emw module) 
of COMSOL. We confirm the values of the defect reflectivity obtained 
from COMSOL simulations with a calculation using the transfer matrix 
formalism for a dielectric–air–dielectric interface. The reflectivity peak 
corresponds to a defect width of approximately a quarter wavelength 
in air (about 2 μm), and its value (64%) is dictated by the air–dielectric 
index contrast. If needed, higher reflectivity values could be achieved 
by defining a distributed Bragg reflector section in the waveguide using 
focused ion beam milling.

Radiofrequency gratings
For the measurement of the radiofrequency (or dynamic) gratings 
we use a coaxial radiofrequency probe (Quater A-20338) mounted on 
an XYZ micrometer positioning stage and placed in contact with the 
top electrode of the rings. The scanning probe is manually positioned 
along the perimeter of the ring laser cavity56 (Supplementary Fig. 4). 
The signal from the probe at every position is amplified with a radi-
ofrequency amplifier (CTT ALN 300–8023, bandwidth 18–26.5 GHz, 
gain 22 dB) and recorded with a spectrum analyser (Agilent E4448A). 
The specified 3-dB bandwidth of the probe (d.c. 18 GHz) is smaller than 
the typical beat note frequency of the ring lasers (23–27 GHz); however, 
the extracted radiofrequency signal is still sufficient to characterize 
the beat note power distribution along the ring cavity.

Data availability
Source data for Figs. 1–3 are provided with the paper. Additional data 
that support the findings of this study are available from the corre-
sponding authors upon reasonable request.

Code availability
The codes used to plot the Benjamin–Feir space and related datasets, 
to calculate the Ginzburg–Landau cD and cNL parameters with error 
propagation, and to simulate the dynamic microwave gratings are 
available at: https://figshare.com/articles/Codes_for_Benjamin-Feir_
space_parameters_and_dynamic_QCL_gratings/11967552/1; https://
figshare.com/articles/Plot_code_and_datasets_for_phase_turbulence_ 
space-time_plots/11967756/1; https://figshare.com/articles/Plot_
code_and_datasets_for_defect_engineered_laser_space-time_plots/ 
11967828/1. Information on the code developed to simulate the QCL 
dynamics and its results are available from the corresponding authors 
upon reasonable request.
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Extended Data Fig. 1 | Coherence and phase of the ring frequency combs.  
a, Schematic of the Shifted Wave Interference Fourier Transform Spectroscopy 
(SWIFTS) setup. The inset shows a microscope image of the QCL ring. LNA, 
low-noise amplifier; FTIR, Fourier transform infrared spectrometer; LO, local 
oscillator; QWIP, quantum well infrared photodetector. b, Comparison of the 
simulations with the experimental results obtained by SWIFTS. The displayed 
simulation results show the spectral amplitudes (top), the intermodal 

difference phases (middle) and the corresponding time-domain signals 
(bottom). Different seeds for spontaneous emission noise were used in the two 
simulations. The experimental data show the spectrum (top), the measured 
intermodal difference phases (middle) and the SWIFTS amplitudes (bottom). 
The red crosses on top of the SWIFTS amplitudes are given by |An||An−1|, that is, 
the geometric average of adjacent modes of the intensity spectrum. The red 
crosses agree well with the expected values for full phase coherence.
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Extended Data Fig. 2 | Evolution of the experimental optical spectra with injected current. a–e, Spectral series corresponding to five distinct ring lasers.  
The multimode regime can switch on and off. The current density normalized to the lasing threshold is given to the right of each spectrum. Int., intensity.



Extended Data Fig. 3 | Dynamic gratings in ring lasers. a–c, Beat patterns, 
calculated from the analytical model of a ring with a defect, that oscillate at the 
fundamental, second harmonic and third harmonic of the round-trip frequency 
frt. Patterns are shown both for the unwrapped angular coordinate (top) and as 
projected onto a two-dimensional ring (bottom). Here it is assumed that the 
counterpropagating optical beats have the same intensity. d–f, Different  
beat patterns calculated assuming various beat balance ratios rBB, that is, 
different relative intensities of the counterpropagating optical beats, as 
discussed in the text. Also shown are the electric fields of the clockwise (ECW) 

and counterclockwise (ECCW) waves (red curves). The wavenumber is small for 
visual representation. The black lines correspond to the envelope of the fields, 
from which the mean values ⟨E⟩ and modulation amplitudes ΔE are calculated. 
The three cases correspond to: unidirectional lasing, which gives a uniform 
beat power across the cavity (d); bidirectional lasing with counterpropagating 
optical beats that are not fully balanced, which gives a beat grating with limited 
fringe visibility (e); bidirectional lasing with fully balanced optical beats, which 
gives a dynamic grating with strongly suppressed nodes (f).
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Extended Data Fig. 4 | Spectral gaps. Simulations of ring QCL states, showing spectral gaps reminiscent of multisoliton spectra in microresonators. A sech2 
envelope is fitted to the dominant modes of the spectra. The simulations are carried out for slightly different initial conditions in terms of noise seed and GVD.



Extended Data Fig. 5 | Central-mode suppression in ring spectra.  
a, b, Experimental optical spectra of a ring frequency comb at two different 
pump currents, showing that the carrier (central mode) can become 

suppressed with respect to the first pair of sidebands. c, Pump-dependent 
evolution of the carrier and the first two pairs of sidebands. The colours of the 
series match the modes of the optical spectra.
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Extended Data Table 1 | Parameters used in the numerical 
simulations of QCLs
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