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Polarization refers to the vibration of light, which is conven-
tionally described by the trajectory of the electric field vec-
tor1. As a fundamental property of light, polarization has been 

exploited in various domains, from quantum optics and imaging to 
optical displays, light–matter interaction, and sensing2–5. Versatile 
manipulation of polarization and its exact characterization are 
therefore two crucial sought-after goals. Conventional tools for 
polarization control such as polarizers and wave plates consider 
light’s polarization as a homogeneous characteristic that is man-
aged globally. This point of view of polarization has recently been 
disrupted with the evolution of advanced wavefront-shaping plat-
forms based on subwavelength-spaced arrays of optical elements 
(known as metasurfaces) that can manipulate light’s polarization 
point by point across the transverse plane6–12. Such manipulation is 
commonly achieved using schemes with locally varying anisotropy, 
which can modify the two orthogonal polarizations of an incident 
waveform independently, thus converting the incident polarization 
state locally to any desired output13. These schemes have been widely 
exploited in versatile polarization management12, polarization grat-
ings6,14,15, holography9,16, polarization imaging17 and in creating opti-
cal beams with structured polarization18 (often dubbed cylindrical 
vector beams19,20), thus expanding the scope of polarization optics 
and its applications21–25.

However, these new schemes and existing polarization optics 
share a common limitation: they consider the polarization behav-
iour only in a single plane transverse to the longitudinal direction, 
lacking the ability to control polarization over multiple planes along 
the propagation direction, independently, despite the advances this 
may bring. This elusive capability would open new paths in light’s 
interaction with matter and biological samples, especially in vivo 
practices where installing multiple polarizing elements to manipu-
late light inside of a living tissue cannot be afforded26. Aside from 
light–matter interaction, this degree of freedom in polarization con-
trol has a direct impact on polarization characterization (known as 
polarimetry), which relies on projecting light onto analysers with 
different orientations. Reducing these into a single optical element 
that can project incident light onto different polarization states—to 

be detected along the optical path—may reveal new techniques for 
light’s characterization. Polarizing elements of this nature are not 
only powerful because they combine several functionalities in a 
compact footprint but also due to the tunability they offer; changing 
the incident polarization allows the device to respond with different 
yet completely determined light structures that may vary in inten-
sity and/or polarization along the optical path. Such tunability, in a 
sense, challenges the view of static metasurfaces and renders polar-
ization as a powerful knob for tuning structured light longitudinally, 
thus enabling new technologies such as optically tunable devices 
and varifocal lenses. However, proposing devices of this kind imme-
diately raises a question: light’s polarization is intricately related to 
the photon’s spin, how can such a conserved quantity change with 
propagation in space?

The closest answer to the question above has been provided by 
the digital holography community. Using spatial light modulators 
(SLMs), several demonstrations of optical beams with longitudi-
nally varying states of polarization (SOP) have been reported27–33. 
The common strategy is to spatially structure the two orthogonal 
polarization components of an incident waveform using multiple 
computer-generated holograms, thereby introducing an axial (lon-
gitudinal) modulation in the SOP of the combined beam (only 
locally) while conserving its global energy and spin angular momen-
tum; however, these techniques crucially assume that the incident 
polarization is known in advance. Notably, if the incident polariza-
tion were to change, the function of the optical set-up would be lost 
(see Supplementary Section 4 and ref. 34 for technical limitations). 
In short, a compact optical component that can impart a polarizer 
or wave-plate-like response along the beam’s axis, regardless of the 
incident polarization, has remained elusive.

In this work we present a unified design strategy that enables a 
new class of polarizing elements which can perform an arbitrarily 
chosen polarization function that varies along the optical path of 
the beam. The underlying principle is based on spatial polarization 
beating, which allows an incident plane wave—after a single inter-
action with a nanostructured metasurface—to encounter different 
polarizer-like operations and/or wave-plate-like transformations  
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(only locally) at each propagation plane in space thereafter. 
Notably, this versatile polarization response is attained without 
a priori knowledge of the incident polarization and can be chosen 
to traverse any trajectory in polarization space, visualized on the 
Poincaré sphere. We envision this work to inspire new directions in 
polarization-switchable devices, light–matter interaction and laser 
micromachining in three dimensions23,35–37.

Design concept
Our objective is to realize a polarizing element that performs differ-
ent user-defined polarization operations on incident light by pro-
jecting the outcome of each function to a different output plane. The 
Jones matrix formalism provides a compact way to express polariza-
tion operations38. The transverse components of the electric field 
are expressed as a 2D Jones vector whereas the polarizing element is 
expressed as a 2 × 2 Jones matrix that modifies incident Jones vec-
tors via multiplication. Hence, a longitudinally variable polarizing 
element (one that changes its polarization response as a function 
of distance) translates to a 2 × 2 Jones matrix that varies along the 
optical axis. But how can a 2 × 2 matrix implemented in the plane 
of a polarizing element modify the values of its four entries at each 
consecutive plane thereafter?

To answer this question, we revisit the idea of spatial harmonic 
beating. Figure 1a illustrates this picture: two plane waves with the 
same frequency and polarization, but slightly different axial propa-
gation constants, kz (which were realized by changing their tilt angle 
relative to the z-axis), undergo intensity beating in their envelope 
along the optical axis. If, however, we expand on this scalar picture 
and allow the polarization of each harmonic wave to differ, the over-
all polarization state of the ensemble will be modulated along the 
propagation direction. This is further depicted in Fig. 1b, where the 
same two interfering waves—now circularly polarized with oppo-
site handedness—yield a waveform that rotates its linear polar-
ization as it propagates. This simple picture, detailed more fully 
in Supplementary Section 1, is the cornerstone of a wide range of 
longitudinally variable polarization controls based on digital holog-
raphy; however, these approaches assume that the polarization of 
incident light (its Jones vector) is predetermined, that is, other inci-
dent polarizations cannot be handled using the same set-up. To sur-
mount this obstacle, we pose the following question: what if we allow 
these waveforms to be weighted by 2 × 2 Jones matrices rather than 
Jones vectors?17 Mathematically, this translates to a matrix-valued 
ensemble in which all four matrix elements (and its two eigen vec-
tors) undergo beating with propagation, thus creating a polariza-
tion response that changes as a function of distance. Inspired by this 
thought, our devices implement the following superposition

~Uðr; zÞ ¼ e�iωt
XN

m¼�N

~A
ðmÞ

J0ðkðmÞ
r rÞeik

ðmÞ
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where J0(krr) is the zeroth-order Bessel function of the first kind39 
with the time-harmonic dependence e–iωt, kðmÞ

r
I

 and kðmÞ
z
I

 denoting 
its transverse and longitudinal wavenumbers (spatial frequencies), 
respectively, and r is the radial distance, whereas ~AðmÞ

I
 are 2 × 2 

matrix-valued coefficients for each of the 2N + 1 Bessel functions in 
the superposition (the full derivation of equation (1) can be found in 
Supplementary Section 2). Our choice to set the Bessel functions as 
the co-propagating spatial harmonics is not fundamental, but rather 
advantageous for two reasons: first, the Bessel function is an exact 
solution to the wave equation, therefore enabling a fully analytical 
description of our devices. Second, Bessel beams—traditionally 
generated from axicons—are favoured for their diffraction-resistant 
and self-healing nature40, which serve our aim for constructing a 
longitudinally variable response over a long range. Our devices 
thus implement a superposition of co-propagating Bessel func-

tions, with equal separation in kz-space, each weighted by a differ-
ent 2 × 2 matrix, as shown in Fig. 1c. The next task is to find the 
matrix-valued coefficients ~AðmÞ

I
, which can be obtained from
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The 2 × 2 matrix on the right side of equation (2)—which we will 
denote as ~FðzÞ

I
—is the target z-dependent polarization function 

chosen by design, while L is the desired range over which ~FðzÞ
I

 will 
be implemented. In essence, this equation exhibits similarity with a 
Fourier integral41 (albeit matrix valued) to obtain the coefficients ~AðmÞ

I
 

that are then substituted into the Fourier-like series of equation (1)  
to obtain ~Uðr; zÞ

I
. The matrix-valued Fourier series of equation (1)  

can be viewed as multidimensional generalization of the scalar 
method introduced in ref. 42. By construction, ~Uðr; z ¼ z0Þ

I
 repre-

sents a transverse distribution of 2 × 2 Jones matrices which, when 
multiplied by an incident plane wave with Jones vector Ej iinc

I
 such 

that EoutðrÞj i ¼ ~UðrÞ Ej iinc
I

, yields a valid propagating solution for 

the wave equation in free space— ∇2 � 1
c2

∂2
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, k0 = ω/c. Importantly, 

the polarization behaviour of Eoutj i
I

 varies as a function of distance, 
following the arbitrarily chosen polarization response defined by 
~FðzÞ
I

. Thus, by solving for ~Uðr; zÞ
I

 at the plane z = 0, we obtain a 
device that performs variable polarization operations simultane-
ously at different z-planes thereafter, assuming operation in the  
paraxial regime, as illustrated in Fig. 1d.

To show the versatility of our approach, we will demonstrate 
cases in which the function ~FðzÞ

I
 mimics the behaviour of longitu-

dinally tunable polarizers and wave plates located along the propa-
gation direction, such that an observer—at a given point along the 
z-axis—would observe light that had been modified from polar-
ization incident on the device in a way that corresponds with the 
desired Jones matrix ~FðzÞ

I
. We choose polarizers and wave plates 

here as any complex polarization operation can be decomposed into 
a polarizer-like operation and a wave-plate-like transformation by 
the matrix polar decomposition1. However, the 2 × 2 Jones matrix 
distribution, ~U

I
, which defines our polarizing devices is thus far only 

a mathematical description. In what follows, we discuss how it can 
be physically implemented using metasurface optics.

Results
Metasurfaces. To impart the desired polarization response ~FðzÞ

I
 

on an incident plane wave, we require an optical element that 
can, point by point, implement the desired Jones matrix function 
~Uðr; z ¼ 0Þ
I

. Metasurfaces are a particularly convenient platform for 
this purpose43. Composed of dielectric nanopillars with structured 
birefringence, metasurfaces can be locally represented by a spa-
tial arrangement of linearly birefringent wave-plate-like elements, 
described in Cartesian coordinates by the Jones matrix1

~Jðx; yÞ ¼ Rð�ϕðx; yÞÞ eiθxðx;yÞ 0

0 eiθyðx;yÞ

" #
Rðϕðx; yÞÞ: ð3Þ

Here, x ¼ r cosðϕÞ
I

 and y ¼ r sinðϕÞ
I

, as defined in Fig. 1, and R(ϕ) is 
the 2 × 2 rotation matrix.

We employ metasurfaces with rectangular dielectric nanofins 
(pillars) of titanium dioxide on glass, which have a higher refractive 
index than air44, as exhibited in Fig. 2b. Unit cells of this topology 
support two propagating modes that experience different effective 
refractive indices (phase delays) due to anisotropy. Notably, the 
phase retardation values θx and θy in equation (3) are readily tuned 
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by varying the dimensions of the nanopillars in the transverse (that 
is, xy) plane, whereas the physical rotational angle ϕ—which defines 
the anisotropy axis—can be adjusted by changing the pillar’s angu-
lar orientation (about the longitudinal axis), as is now standard in 
a wide range of metasurfaces9,10. Combining linear structural bire-
fringence with the angular rotation of the nanopillars enables the 
conversion of any incident vector state to another, locally, while 
achieving full 2π phase coverage9. The acquired phase shift consists 
of a dynamic factor due to propagation along the nanopillars and a 
geometric (Berry) phase factor45 that accompanies the polarization 
transformation introduced by the nanopillar wave-plate-like retar-
dance. The output phase profile and transmission response intro-
duced by each nanopillar, as a function of its dimensions, can be 
found in Supplementary Section 3. For each unit cell in the designed 
metasurface, the nanopillar that yields the closest rendition of 
~Uðr; z ¼ 0Þ
I

, while ensuring uniform transmission, is selected.

Constraints of metasurface platform. The Jones matrix so realized 
by our metasurface platform is everywhere subject to two important 

constraints. First, as suggested by equation (3), ~Jðx; yÞ
I

 locally takes 
the form of unitary matrices, preserving inner products, such that 
~J
y~J ¼ I
I

 (where † denotes the conjugate transpose and I is the 2 × 2 
identity matrix). This is a direct consequence of the lossless nature 
of wave plates (the unit cells comprising the metasurface), which 
merely modify the relative phases of an incident waveform with no 
diattenuation (that is, the difference between absorption of light 
polarized parallel and perpendicular to an orientation axis; a diatten-
uating material will absorb linear polarization along one axis pref-
erentially). Second, ~Jðx; yÞ

I
 must be symmetric, ~Jðx; yÞ ¼ ~Jðx; yÞT

I
, 

where T denotes a matrix transpose—a direct manifestation of its 
linear structural birefringence. These constraints limit the possible 
polarization behaviours that can be realized; for instance, unitar-
ity prohibits realizing a device that introduces diattenuation to an 
incident waveform (such as, for example, a polarizer), whereas 
matrix symmetry implies that, even were a polarizer-like element 
to be realized, it could only analyse the complex conjugate of its 
intended Jones vector9. These constraints can be mitigated using 
complex configurations such as cascaded and chiral metasurfaces46, 
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Fig. 1 | The concept of longitudinally variable polarization elements. a, Intensity beating between two scalar monochromatic plane waves (green) with the 
same frequency but slightly different propagation constants kð1Þz

I
 and kð2Þz

I
 produces amplitude modulation in the resulting waveform (dashed black curve) 

and its envelope (solid black curve); we denote this as the scalar case. b, The polarization beating (vector case) produced by two interfering vector waves 
with the same frequency, but different kz and polarization. Here the two interfering waveforms are circularly polarized with opposite handedness, leading to 
a linearly polarized waveform (black) that rotates its polarization with propagation. The green curves are the orthogonal components of the black waveform 
projected on the vertical and horizontal planes. c, The design principle (matrix approach): the polarizing device implements a superposition of 2N + 1 
Bessel functions with equal separation of 2π/L in kz-space. The inset depicts a Bessel beam generated by an axicon and its decomposition into plane waves 
whose wavevectors lie on the surface of a cone. Each Bessel function in the sum has a slightly different cone angle and is weighted by a 2 × 2 Jones matrix, 
~A
ðmÞ

I
. d, A schematic of a z-dependent polarizing device (polarizer or retarder), given by ~Uðr; z ¼ 0Þ

I
, which enables variable polarization operations ~FðzÞ

I
 

to be performed at different z-planes along the optical path, simultaneously. The black arrows depict the virtual principal axis orientation of the polarizing 
element at each z-plane.
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which usually suffer from further implementation challenges. We 
will instead introduce a unit cell multiplexing technique, inspired by 
holography, that enables the realization of arbitrary Jones matrices 
using a single unitary (lossless) metasurface, thus surmounting the 
first constraint. This solution is still bound to matrix symmetry, but 
as our aim here is to demonstrate polarizers and wave plates, with 
strictly linear eigen-polarizations whose Jones matrices are symmet-
ric by construction, the second condition will always be satisfied.

Dual matrix holography. The use of lossless, phase-only platforms 
to holographically encode both amplitude and phase information 
has been considered for decades, with phase retrieval algorithms47 
and dual-phase holography48,49 being two examples of techniques 
proposed for this task. The latter expresses a normalized complex 
scalar field as the sum of two phase-only distributions. By spatially 
interlacing these two phase distributions in the same plane while 
fulfilling the Nyquist sampling criterion, the Fourier spectrum of 
a complex field can be fully reconstructed if it is a band-limited  

signal49. Here we generalize this concept to apply to Jones matrix 
quantities by introducing a multidimensional matrix reconstruction 
technique termed dual matrix holography, in which a distribution 
of 2 × 2 arbitrary (unitary and/or Hermitian) matrices can be imple-
mented using a strictly unitary platform (a Hermitian matrix is one 
that does not preserve inner products, its eigenvalues are real and 
hence it can modify the amplitude of a complex vector; more details 
can be found in Supplementary Section 7). This enables the realiza-
tion of polarizing elements that not only enact retardance but diat-
tenuation as well. In particular, we follow the method from ref. 49,  
generalizing its result to the case of matrix-valued quantities.

The above technique permits us to express an arbitrary matrix, 
whose eigenvalues are of mixed amplitude and phase, as a sum of 
two unitary matrices, whose eigenvalues are phase-only quanti-
ties. This can be repeated at every point across the spatial extent 
of ~U

I
, forming the target metasurface profile. Figure 2a summarizes 

this procedure (which is fully detailed in the Methods) by which 
the original matrix distribution ~Uðr; z ¼ 0Þ

I
 is normalized and 
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Fig. 2 | Device implementation and characterization. a, Dual matrix holography: an arbitrary symmetric matrix ~Uðr; z ¼ 0Þ
I

 may be decomposed into ~u1ðrÞ
I

 
and ~u2ðrÞ

I
, which are then sampled and interlaced on a single metasurface. The desired Fourier spectrum of the metasurface is reconstructed via Fourier 

transform and filtering. The desired matrix ~U is then retrieved via an inverse Fourier operation. b, Optical microscope and SEM images of the fabricated 
z-dependent polarizer, enabled by a metasurface consisting of TiO2 on glass substrate. c, The experimental set-up, in which a 532 nm linearly polarized 
and collimated beam, whose polarization can be rotated with a half-wave plate (HWP), is incident on the metasurface (MS) element. A 4f imaging system 
(f being the focal distance of each lens) is used to reconstruct the desired Fourier spectrum, filter it and retrieve it back to real space. The full spectrum is 
reconstructed in the focal plane of lens 1 (as shown in the inset). Only the desired on-axis spectrum (circled in red) is transformed back to real space via 
lens 2, whereas the higher diffraction orders are naturally filtered away due to their large angle. The transverse beam’s profile is measured along z using 
a CCD mounted on a translation stage. At each z-plane, the polarization is measured by performing Stokes polarimetry using a polarizer (pol.) and QWP 
(quarter-wave plate).
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decomposed into two spatially varying unitary matrices ~u1
I

 and ~u2
I

. 
These two new matrix distributions are then periodically sampled 
via complementary draughts board patterns, M1 and M2, following 
Nyquist’s criterion, and then interlaced onto a single mask, denoted 
as ~I . Sampling above the Nyquist criterion permits the complex 
Fourier spectrum of the original matrix ~U

I
 to be fully reconstructed 

in the far field via a Fourier operation, implemented by a lens (lens 
1 in Fig. 2c). Here the Fourier spectra of ~u1

I
 and ~u2

I
 are denoted by 

~Ψ
I
 and ~Ω

I
, respectively. Note that multiple copies of these spectra are 

generated at the Fourier plane, as shown in inset of Fig. 2c; these 
higher diffraction orders—the principal tradeoff for the freedom 
afforded by this method—can be spatially filtered. Finally, through 
an inverse Fourier operation performed by a second lens (lens 
2 in Fig. 2c), the complex (amplitude and phase) distribution of 
~Uðr; z ¼ 0Þ
I

 in real space can be fully retrieved.

Metasurface design, fabrication and testing. The matrix ~Iðr; ϕÞ
I

, 
obtained by performing this dual-phase holography technique on 
the matrix ~U

I
, is of the correct form for implementation by a meta-

surface (see equation (3)). A library of metasurface unit cells, com-
prising rectangular dielectric nanopillars of high refractive index 
(TiO2), is constructed by varying the pillar dimensions (dx and dy) 
and their angular orientation (see Methods). For each transverse 
location on the metasurface, ~Iðr; ϕÞ

I
 is realized by selecting its clos-

est pillar geometry from a library, as detailed in Supplementary 
Section 3. The devices were fabricated via e-beam lithography and 
atomic layer deposition following the now-standard procedure44 
outlined in the Methods. A micrograph, as well as SEM images of 
a device implementing z-dependent linear polarizer, are shown in 
Fig. 2b, where the draughts board signature of our interlaced dual 
matrix implementation is observed. Here, each draughts board cell 
comprises four nanopillars; a closer view of the device verifies the 
smooth sidewall profile of these nanopillars.

All devices have been tested using the 4f system depicted in Fig. 
2c, in which a 532 nm collimated polarized Gaussian beam illumi-
nates the metasurface, generating the desired spectrum at its Fourier 
plane, which is then filtered and transformed back to real space via 
a second lens before being recorded by a charge-coupled device 
(CCD) camera on a translation stage (see Methods). To character-
ize the polarization behaviour of the output beam at each z-plane, 
we performed polarization measurements based on Stokes polarim-
etry1. This enabled the determination of the full, four-component 
polarization Stokes vector, S!¼ ðS0; S1; S2; S3ÞT

I
, which quantifies 

the shape and orientation of the polarization ellipse at each point as 
well as the beam’s intensity and degree of polarization.

Experimental results. Several devices have been fabricated and 
tested; these include a polarizer, a HWP and a QWP, all with an ori-
entation that rotates as a function of the propagation distance z. All 
devices have a diameter of 462 μm. Design considerations related to 
the device dimensions, number of Bessel beams in the superposi-
tion of equation (1), and their spatial frequencies are discussed in 
the Methods and fully detailed in Supplementary Section 6. In what 
follows, we characterize the performance of the polarizing devices. 
Furthermore, in Supplementary Section 5 we provide more physical 
insight on how these devices work in terms of energy and momen-
tum exchange between the outer and inner parts of the beam.

Linear polarizer. We start by demonstrating a longitudinally vari-
able linear analyser whose transmission axis is designed to virtually 
rotate by an angle ϕ (with respect to the x-axis) as a function of z, 
following the relation ϕz ¼ ½ðz � 2:5Þ=3 π2

I
 over the space interval 

(2 mm ≤ z ≤ 6 mm). This polarizing metasurface modifies its diat-
tenuation response spatially, serving as an analyser for different 
polarization states in parallel at each z-plane thereafter. The states of 
polarization being analysed vary continuously from x̂ (0°) to ŷ (90°) 

within the region z = 2.5 mm to z = 5.5 mm. Figure 3a illustrates the 
analyser’s response. Under x-polarized incident illumination, the 
on-axis intensity decays gradually while propagating away from the 
device until it is nearly quenched at z = 5.2 mm. This is in accor-
dance with the z-analyser’s virtual transmission axis, as depicted 
by the red arrows, and Malus’s law. By contrast, under ŷ illumina-
tion, the on-axis intensity increases over the same space region. The 
extinction ratio between the two is on the order of −20 dB. Note 
that as the polarizing metasurface is comprised of unitary (lossless) 
wave-plate-like unit cells, the loss mechanism here relies on the 
judicious interference among the propagating modes. The polariz-
ing effect is enacted here only locally on the non-diffracting centre 
spot of the beam through a deliberate exchange of energy between 
the beam’s central spot and its outer rings. The energy of the beam 
is globally conserved at each z-plane. Detailed calculations for the 
evolution of local and global energy can be found in Supplementary 
Section 5.

To confirm the variable analyser action, the intensity profile has 
been recorded at each plane along z under different incident linear 
polarizations and circular polarization (see Fig. 3b–j; error bar char-
acterization of the device can be found in Supplementary Section 8). 
It is observed that the (local) centroid of the beam is gradually shifted 
along z (away from the reference) in response to rotating the incident 
polarization, following the projection of the incident polarization 
(black arrow) onto the variable analyser axis (red arrows). The spa-
tially non-uniform intensity along z in the case of circular polarization 
(Fig. 3j) is due to the finite number of Bessel terms in the superposi-
tion of equation (1) and agrees with the theoretical calculation. A 
more flat response could be achieved by readjusting the number of 
terms in the Fourier superposition. Notably, the beams generated 
from our device are characterized by a Bessel-like transverse profile, 
as depicted in Fig. 3k. The side lobes play a critical role ensuring 
that the polarization-tunable behaviour occurs over long propa-
gation distances, while maintaining the finite energy of the beam, 
and experiencing minimal diffraction effects, as shown in Fig. 3l.  
In addition to tailoring diattenuation along the z-direction, our 
approach can be applied to engineer retardance, as discussed next.

HWP. We demonstrate a HWP with a longitudinally variable 
response by designing the principal axis (that is, fast axis) to locally 
rotate by an angle ϕ with respect to the x-axis as a function of z, 
following the relation ϕz ¼ ½ðz � 2:5Þ=3 π2

I
 over the space interval 

(2 mm ≤ z ≤ 6 mm). In essence, this retarder rotates the polariza-
tion state of an incident linear polarization, continuously, by a total 
amount of 180° over the region z = 2.5–5.5 mm, preserving the lin-
ear polarization without introducing any chirality. An optical image 
of the fabricated device is shown in Fig. 4a where the underlying 
dual matrix holography implementation is signified by the draughts 
board pattern. Figure 4b shows the simulated longitudinal intensity 
profile of the output beam, assuming x̂ incident polarization.

To characterize the polarization behaviour, full Stokes polarime-
try is performed by inserting a polarizer and a QWP before the CCD 
to measure the polarization of light at each pixel. Figure 4c depicts 
the state of polarization plotted on top of the transverse intensity of 
the output beam, measured at different z-planes. Here, the incident 
plane wave is x-polarized. The polarization state evolves (locally) at 
the non-diffracting central spot of the beam in accordance with the 
spatially rotating virtual axis of the retarder along z. The detected 
spatial resolution of the polarization state is limited by the CCD. 
The on-axis intensity of our Stokes measurements is shown in Fig. 
4d–f when the output analyser was oriented at 0°, 45° and 90°, and 
is plotted in Fig. 4g for when the analyser and QWP were oriented at 
45° and 0°, respectively, to analyse for RCP. We denote these on-axis 
intensities as I0�

I
, I45�
I

, I90�
I

 and IRCP (where RCP is right-hand circu-
lar polarization). At z = 2.5 mm, I0�

I
 is a maximum, I90�

I
 is a mini-

mum and both I45�
I

 and IRCP are at a midpoint—a signature of an 
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x-polarized beam. This behaviour is repeated at z = 5.5 mm, sug-
gesting a return to the same polarization. However, at a propagation 
distance in-between (z = 4 mm, for instance), I0�

I
 is a minimum, I90�

I
 

is a maximum and I45�
I

 and IRCP settle at a midpoint—a signature of 
the orthogonal (ŷ) polarization.

To track the evolution of the output polarization state, we obtained the 
Stokes parameters based on these four intensity measurements at each 
z-plane: S0 ¼ I0 þ I90

I
, S1 ¼ I0 � I90
I

, S2 ¼ 2ðI45 Þ � ðI0 þ I90 Þ
I

 
and S3 ¼ 2ðIRCPÞ � ðI0 þ I90 Þ

I
 (ref. 1; error bar plots of our Stokes 

measurements can be found in Supplementary Section 8). The 
Stokes trajectory on the Poincaré sphere, which visualizes all states 

of polarization expressed in terms of the Stokes vectors (S1,S2,S3)T, is 
depicted in Fig. 4h–j as a function of z. The trajectory has been mea-
sured under three different incident polarizations: 0°, 45° and 135°. 
From Fig. 4h–j, it is confirmed that the polarization state follows 
one complete revolution around the equator of the Poincaré sphere, 
which plays host to all linear polarizations. The start and end points 
of the closed path (marked by the red stars) are defined by the inci-
dent polarization, implying that the polarization response is main-
tained regardless of the incident polarization. In each scenario, the 
energy associated with the x and y components of the field is inde-
pendently conserved, as discussed in Supplementary Section 5.
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(b), 22.5° (c), 45° (d), 67.5° (e), 90° (f), 112.5° (g), 135° (h), 157.5° (i), with respect to the x-axis, and circular polarization (j). The red arrows depict the 
virtually varying orientations of the transmission axis of the metasurface polarizing element at five different z-planes, the black arrows represent the input 
polarization, and the vertical black dashed lines serve as a reference. k, Transverse intensity cross-sections for the output beam at the five z-planes in a.  
l, Longitudinal profiles of the generated pencil-like beam for each incident polarization depicted in the inset. The centroid of the on-axis intensity distribution 
continuously shifts away from the source in response to rotating the input polarization from 0° to 90°.

Nature Photonics | www.nature.com/naturephotonics

http://www.nature.com/naturephotonics


ArticlesNaTuRE PHOTOnics

0 1 2 3 4 5 6 7 8

1

0.8

0.6

0.4

0.2

0

Exp
Sim

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

60 µm
7 µm

5 µm

5 µm

1 2 3 4 5 6

1

Intensity (a.u.)
Intensity (a.u.)

Intensity (a.u.)

0
1

0

7

40

20

0

−20

−40

45¡
0¡

90¡135¡

45¡

135¡

0¡ 45¡

90¡

0¡

90¡135¡

LCP LCP LCP

RCP RCP RCP

Si
m

ul
at

io
n

M
ea

su
re

d

In
pu

t p
ol

ar
iz

at
io

n 
Ð 

x̂

Input polarization: 0¡ Input polarization: 45¡ Input polarization: 135¡

1

0.8

0.6

0.4

0.2

0

a

c

d e f g

jih

b

x 
(µ

m
)

z = 2.5 mm z = 3.25 mm z = 4 mm z = 4.75 mm z = 5.5 mm

y

x

y

x

HWP axis

|Eout|
2

y

x

I0¡ I90¡ I45¡ IRCP

S3

S1

Z-direction
Z-direction

Z-direction

S2
S2 S2

S1 S1

S3 S3

In
te

ns
ity

 (a
.u

.)

1

0.8

0.6

0.4

0.2

0

In
te

ns
ity

 (a
.u

.)

1

0.8

0.6

0.4

0.2

0

In
te

ns
ity

 (a
.u

.)

1

0.8

0.6

0.4

0.2

0

In
te

ns
ity

 (a
.u

.)

(mm) (mm) (mm)

(mm)

(mm)

Fig. 4 | z-Dependent HWP. a, Optical microscope images of the fabricated device. The draughts board pattern signifies the underlying dual matrix 
holography implementation. b, A simulated longitudinal intensity profile of the output beam under x-polarized illumination. The red arrows depict the 
orientation of the fast axis at different planes along z, whereas the vertical dashed lines mark the region of space over which the metasurface retarder 
element rotates its fast axis virtually from 0° to 90°. c, Measured and simulated transverse intensity profiles at different z-planes. The state of polarization, 
obtained from Stokes polarimetry, is depicted by the arrows. d–f, Measured and simulated on-axis intensity profiles as a function of z when the output 
analyser’s axis is oriented at 0° (d), 90° (e) and 45° (f), without the QWP. g, Measured and simulated on-axis intensity profiles as a function of z when 
the axes of the output QWP and analyser (before the CCD) are oriented at 0° and 45°, respectively, to analyse for RCP. h–j, The Stokes trajectory (based 
on the measurements in d–g) evolves on the equator of the Poincare sphere as a function of z under three different incident polarizations: 0° (h), 45° (i) 
and 135° (j), confirming the continuous rotation in the state of polarization for each case. LCP, left-hand circular polarization.
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QWP. Finally, to further show the versatility of this design approach, 
we now demonstrate a z-dependent QWP (shown in the optical 
micrograph of Fig. 5a). This device was designed to rotate its princi-
pal axis virtually in space by 180° within the region z = 2.5–5.5 mm 
and should thus modify the chirality (ellipticity) of an incident 
waveform. Figure 5b shows the longitudinal intensity profile of 
the output beam, assuming x̂ incident polarization. The red arrows 
denote the orientation of the spatially rotating retarder axis over the 
region of interest bounded by the vertical lines.

We again carry out full Stokes polarimetry to test the behav-
iour of the device, the results of which are depicted in Fig. 5c–f. 
Here, the maxima of I0�

I
 (and minima of I90�

I
) correspond to cross-

ing the (S1 = 1, S2 = 0, S3 = 0) point on the Poincaré sphere (that is, 
x-polarization), whereas the minima of I0�

I
 (and maxima of I90�

I
) 

correspond to traversing the south (0,0,−1) and north (0,0,1) poles, 
respectively. In essence, the south (0,0,−1) and north (0,0,1) poles 
of the Poincaré sphere map to the minimum and maximum points 
on the IRCP curve, respectively.

The Stokes trajectory on the Poincaré sphere is shown in Fig. 5g as 
a function of z under x̂ incident polarization. To interpret this result, 
recall that the action of a wave plate is represented by a precession 
of the Stokes vector on the Poincaré Sphere. The precession axis 
and its path on the latter is determined by the angular orientation  

and the retardance of the wave plate, respectively. The action of this 
QWP can be visualized as a precession along the path intersecting 
the Poincaré sphere and a cylinder centered about (0.5,0,0) where 
the output polarization state traverses a closed-looped trajectory in 
which it evolves from linear polarization to elliptical then becomes 
LCP before it gradually loses its ellipticity, retaining its original 
linear polarization. This behaviour is analogously repeated in the 
northern hemisphere. The outer rings of the beam play a critical 
role in achieving this propagation-dependent polarization transfor-
mation and spin state conversion. Essentially, these outer rings act 
as a reservoir that account for the spin angular momentum defi-
cit ensuring that the target polarization response is enacted on the 
non-diffracting centre spot of the beam without violating any con-
servation laws. This occurs via a deliberate exchange of energy and 
momentum across different regions of the beam allowing the polar-
ization state to change only locally without disturbing the global 
spin angular momentum, as detailed in Supplementary Section 5.

Discussion and outlook
We demonstrated how metasurfaces can enact longitudinally vary-
ing polarization behaviour. Previous work of this nature using digi-
tal holography often attempted to engineer the Jones vector of the 
output waveform under the assumption (constraint) of fixed input 
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Fig. 5 | z-dependent QWP. a, Optical microscope images of the fabricated device. b, A simulated longitudinal intensity profile of the output beam under 
x-polarized illumination. The red arrows depict the virtual orientation of the fast axis of the device at different planes along z, whereas the vertical dashed 
lines mark the region of space over which the fast axis rotates from 0° to 180°. c–e, Measured and simulated on-axis intensity profiles as a function of z 
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measured Stokes trajectory on the Poincare sphere with propagation along the z-direction under x-incident polarization.
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polarization. On the contrary, our Jones matrix design approach 
decouples the target output response from the input polarization, 
allowing full control over the transfer function of the polarizing 
device and enabling its operation on all incident polarizations at 
once. This has been demonstrated in Fig. 3 where the intended 
polarizing action was enacted on each incident polarization, and 
in Fig. 4h–j where polarization rotation was observed regardless 
of the input polarization (and without introducing any modifica-
tion to the set-up). Replicating this behaviour using digital holog-
raphy would mandate the use of at least three SLMs, as illustrated 
in Supplementary Section 4. These SLM configurations, although 
appealing from the programmability point of view, rely on multi-
ple active components in separate planes, which must be precisely 
aligned and imaged onto one another; this configuration cannot be 
afforded in many applications. By contrast, our work presents versa-
tile polarization control using a single, integrated device. It also pro-
vides a previously unattained degree of polarization tunability from 
a static metasurface. In the future, methods of this nature could be 
combined with active metasurface platforms to attain even more 
versatile control.

It is noteworthy that although polarizing elements were designed 
at 532 nm, with a diameter of 462 μm, our approach applies to 
other wavelengths with adjustable scales for the transverse and 
longitudinal dimensions, as detailed in Supplementary Section 6. 
Furthermore, our design strategy permits sophisticated polarizing 
elements that can simultaneously realize diattenuation and retar-
dance. For example, the polarizing metasurface can be designed 
to act as an analyser over one region of space and a retarder  
over another. Furthermore, our approach can be extended to cre-
ate spin–orbit-mediated structured light and optical vortices with 
on-demand transverse profiles50 by allowing equation (1) to admit 
higher-order Bessel functions. One area of improvement is to extend 
the scalar formulation in equation (1) to the full vectorial case to 
account for all three field components. This will relax the paraxiality 
condition in the design and enable optical elements that operate in 
the subwavelength regime, thus offering three-dimensional polar-
ization control.

Several applications can benefit from these new polariza-
tion optics. The polarization-tunable axicon depicted in Fig. 3l 
may find application in optical trapping where a microparticle 
can be pushed or pulled along the optical path by changing the 
input polarization. It can also be used to spatially tailor the excita-
tion of optically pumped media35. Moreover, if illuminated by a 
partially polarized beam, these devices can change the degree of 
polarization of output light with propagation. Furthermore, struc-
tured light with varying polarization may suggest new schemes in 
sensing as polarization rotation is a function of the optical length. 
Hence, by shining polarized light from our z-dependent HWP 
through a medium, the angle by which polarization is rotated can 
directly identify the unknown refractive index of the medium, as 
fully detailed in Supplementary Section 9. These devices can also 
be utilized to spatially modulate the spectrum of quantum emit-
ters37, to control the shape and size of laser-machined structures 
23, and to enhance optical chirality in light–matter interaction36, 
therefore opening many new paths.
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Methods
Constructing the desired z-dependent Jones matrix function. The formalism 
given by equation (2) in the main text permits any z-dependent Jones matrix 
function ~FðzÞ

I
; however, here we focus on perhaps the most fundamental polarizing 

element: a linear polarizer. As an example, we construct an ~FðzÞ
I

 describing a linear 
polarizer whose principal axis rotates with z. A linear polarizer whose principal 
axis is aligned with the x-axis is represented in the Cartesian coordinates by the 
Jones matrix ~JLP ¼ ½1 0T ½1 0

I
. More generally, a linear polarizer that is rotated by 

an angle ϕ with respect to the x-axis is described as Rð�ϕÞ~JLPRðϕÞ
I

, where R(ϕ) is 
the 2 × 2 rotational matrix. In our desired device, the polarizer’s rotation varies with 
z in accordance with a desired function ϕ(z) so that its Jones matrix is given by

~JLPðzÞ ¼
cos2ðϕzÞ cosðϕzÞ sinðϕzÞ
cosðϕzÞ sinðϕzÞ sin2ðϕzÞ

" #
: ð4Þ

Here we have denoted ϕ(z) as ϕz for clarity. Similarly, the Jones matrix of a wave 
plate with a z-dependent rotation is given by

~JWPðzÞ ¼
cosðθ=2Þ þ i sinðθ=2Þ cosð2ϕzÞ i sinðθ=2Þ sinð2ϕzÞ
i sinðθ=2Þ sinð2ϕzÞ cosðθ=2Þ � i sinðθ=2Þ cosð2ϕzÞ

� �
;

ð5Þ

where θ denotes the retardance, that is, relative phase shift between the 
eigen vectors of the wave plate (for example, θ = π, π/2 for a HWP and QWP, 
respectively). By substituting equations (4) and (5) into equation (2) to calculate 
~A
ðmÞ

I
, and then evaluating ~Uðr; z ¼ 0Þ

I
 from equation (1), one can obtain the 2 × 2 

Jones matrix distribution that forms the variable polarizer.

Dual matrix holography. We expanded on the scalar technique of dual-phase 
holography introduced in ref. 49 to perform complex modulation using phase-only 
platforms, to apply to Jones matrices. More specifically, we developed a dual matrix 
holography technique that enabled the realization of complex 2 × 2 matrices (that 
are non-unitary in general) using unitary platforms. Our approach was essentially 
to express an arbitrary matrix (with complex eigenvalues) as a summation of two 
unitary matrices whose eigenvalues are phase quantities, a matrix generalization 
of scalar dual-phase holography. To transform our target distribution of spatially 
varying 2 × 2 complex Jones matrices into a unitary only distribution, we ran the 
following procedure:

	(1)	 The desired matrix distribution ~Uðr; z ¼ 0Þ
I

 is first obtained by evaluating 
equation (1).

	(2)	 ~Uðr; z ¼ 0Þ
I

 is then normalized, locally, by dividing by the global maximum 
eigen value: ~uðr; z ¼ 0Þ ¼ ~Uðr;z¼0Þ

max f eig ð~UÞg
I

, ∀r. In practice, this normalization step 
is required as our passive metasurface may only introduce a loss-like effect in 
the Fourier plane with no gain.

	(3)	 At each location in the transverse plane, ~uðr; z ¼ 0Þ
I

 decomposes into two 
unitary matrices by means of singular value decomposition. This decomposi-
tion serves as a factorization for each 2 × 2 normalized Jones matrix such that 
~u ¼ ½WDVT 
I

, where D is now a 2 × 2 diagonal matrix with non-negative real 
singular values.

	(4)	 The singular values of ~u, D11 and D22, at each location, decompose 
into a sum of two complex values Cð1Þ

ii ¼ ðDii þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

ii

p
Þ=2

I
 and 

Cð2Þ
ii ¼ ðDii � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

ii

p
Þ=2

I
, where i denotes the index of the diagonal entry 

(ii = 11 or 22). Here the spatial dependence on r has been omitted for clarity.
	(5)	 The complex values Cð1;2Þ

ii
I

 then become the new diagonal entries of two uni-
tary matrices, with the same rotation matrices W and VT, such that

~uðr; z ¼ 0Þ ¼ ~u1 þ ~u2 ¼ W
Cð1Þ
11 ðrÞ 0

0 Cð1Þ
22 ðrÞ

" #
VT þW

Cð2Þ
11 ðrÞ 0

0 Cð2Þ
22 ðrÞ

" #
VT :

ð6Þ

By construction, Dii ¼ Cð1Þ
ii þ Cð2Þ

ii
I

 and jCð1;2Þ
ii j ¼ 1

I
, ∀r. As such, ~uðr; z ¼ 0Þ

I
 

decomposes into two unitary matrices, denoted ~u1
I

 and ~u2
I

, where each can be 
implemented using our proposed (unitary) dielectric metasurface comprised of 
wave-plate-like unit cells. Through judicious interlacing of ~u1

I
 and ~u2

I
 on the same 

metasurface, the intended polarization behaviour of the device can be achieved at 
the far field. To achieve this, ~u1

I
 and ~u2

I
 were periodically sampled by means of two 

complementary draughts board patterns, M1 and M2, expressed as

M1;2ðr; ϕÞ ¼
1
2

X1

n¼�1

X1

l¼�1
I½Λ1;2ðn; lÞei

2πr
p ðn cosϕþl sin ϕÞ; ð7Þ

Λ1;2ðn; lÞ ¼ cos
πðn± lÞ

2

� �
sinc

nπ
2

� �
sinc

lπ
2

� �
: ð8Þ

Here, p defines the periodicity of the draughts board pattern. In essence, equation 
(7) renders two complementary draughts board patterns whose transverse profile 

at each location alternates between I and the zero matrix. Multiplying ~u1;2
I

 by M1,2, 
locally, and adding becomes equivalent to interlacing ~u1

I
 and ~u2

I
 onto the same 

surface with a period of p. Notably, allowing p to fulfil the Nyquist limit enables 
the full reconstruction of the transfer function of ~uðr; z ¼ 0Þ

I
 in the far field 49. The 

interlaced pattern at the metasurface plane is given by

~Iðr; ϕÞ ¼ M1ðr; ϕÞ~u1ðrÞ þM2ðr; ϕÞ~u2ðrÞ: ð9Þ

By taking the Fourier transform of the matrix ~Iðr; ϕÞ
I

, it can be shown that 
Ff~Iðr; ϕÞg ¼ ~H1ðu; vÞ þ ~H2ðu; vÞ
I

, where

~H1ðu; vÞ ¼
X1

n¼�1

X1

l¼�1
Λ1ðn; lÞ ~Ψðu� n

p
; v � l

p
Þ; ð10Þ

and,

~H2ðu; vÞ ¼
X1

n¼�1

X1

l¼�1
Λ2ðn; lÞ~Ωðu� n

p
; v � l

p
Þ: ð11Þ

Here, ~Ψ ¼ Ff~u1ðrÞg
I

 and ~Ω ¼ Ff~u2ðrÞg
I

. In essence, Ff~Iðr; ϕÞg
I

 yields 
multiple copies of the spectra ~Ψ

I
 and ~Ω, about the points ðnp ; lpÞ

I

. As ~Uðr; z ¼ 0Þ
I

 
is band-limited, from the definition of equation (1), then its true complex 
spectrum [ ~Ψðu; vÞ þ ~Ωðu; vÞ

I
] can be fully reconstructed by filtering in the 

k-space provided that the p satisfies the Nyquist criteria (that is, 1p ≥
max ðkðmÞ

r Þ
2

I

). As 
~Uðr; z ¼ 0Þ ¼ ~u1ðrÞ þ ~u2ðrÞ
I

, it follows that Ff~Uðr; z ¼ 0Þg ¼ ~Ψðu; vÞ þ ~Ωðu; vÞ
I

 
and so the desired spectrum is fully reconstructed. The original matrix ~Uðr; z ¼ 0Þ

I
 

can then be retrieved by performing an inverse Fourier operation.

Metasurface design and fabrication. In our designs, we set N = 5 for the analyser 
and N = 7 for the wave plates, where 2N + 1 defines the number of Bessel functions 
implemented by the device as per equation (1). We also set the central spatial 
frequency kð0Þz

I
 at a value of 0.9995 ω/c with a separation of 2π/L in k-space, 

where L = 10 mm. This choice of N and the wavevectors ensures operation in the 
paraxial regime where the scalar formulation given in equation (1) holds and the 
contribution of the longitudinal field component can be neglected. All devices 
have a diameter of 462 μm, which was chosen to ensure beam propagation over 
the range defined by L, verified from Kirchhoff diffraction calculations. Note that 
longer beam control ranges can be achieved by increasing the aperture size of the 
device. The precise relationship between the aperture size and the beam’s range 
can be derived from a geometric argument that pertains to axicons, as detailed in 
Supplementary Section 6. This argument applies to our devices as they generate 
diffraction-resistant Bessel-like beams.

To create the metasurface profile, a library of unit cells comprised of 
rectangular dielectric nanopillars of high refractive index (TiO2) has been 
constructed by varying the pillar dimensions (dx and dy) and their angular 
orientation. This was performed at λ = 532 nm using a finite-difference 
time-domain simulation under plane-wave illumination, periodic boundary 
conditions, unit cell separation of 420 nm and fixed pillar height of 600 nm. As 
such, we constructed a library of structures that can realize the Jones matrix of 
equation (3) within the domain θx,y = [0, 2π] and ϕ = [0, π], with almost uniform 
transmission and high efficiency (~75%). Each transverse location on the 
metasurface is realized by selecting its closest pillar geometry from our library, as 
further detailed in Supplementary Section 3.

All devices have been fabricated using a process reliant on electron beam 
lithography and atomic layer deposition, as described in ref. 44. The procedure is as 
follows: a fused silica substrate is spin-coated with a positive tone electron beam 
resist that ultimately defines the height of the nanopillars. After baking the resist, 
the desired pillar patterns were written by exposing the resist using electron beam 
lithography (with an accelerating voltage of 125 kV), then developed in o-xylene 
for 60 s. The developed pattern now defines the geometry of the individual 
nanopillars. Afterwards, TiO2 was deposited via atomic layer deposition process 
to conformally fill the developed pattern. The excess layer of TiO2 on top of the 
device was etched away using reactive ion etching to the original height of the 
resist. Finally, the resist was chemically removed away leaving the individual TiO2 
nanopillars surrounded by air.

Experimental set-up. The polarizing metasurfaces were tested using the set-up 
of Fig. 2c. First, a λ = 532 nm laser beam was spatially filtered through a 100 μm 
pinhole and collimated using a 10 cm lens to provide a quasi-plane-wave 
illumination on the metasurface. A polarizer and HWP rotate the incident 
polarization so that the metasurface behaviour can be measured in response to 
different polarization states. A 4f system, comprising two lenses (f = 5 cm), was 
used to filter and image the response of the metasurface onto a CCD camera. Lens 
1 performs the Fourier operation required to retrieve the complex (amplitude and 
phase) spectrum of the signal in k-space, thereby achieving step 4 of Fig. 2a. The 
generated Fourier spectrum (at the focal plane of lens 1) was filtered in k-space 
from higher diffraction orders before it was transformed back to real space via an 
inverse Fourier operation performed by lens 2, as outlined in step 5 of Fig. 2a. Due 
to their large diffraction angle, these higher orders were naturally filtered away 
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by escaping the aperture of lens 2 (2.54 cm diameter). The output beam with its 
desired polarization behaviour was then recorded using a CCD camera that was 
mounted on a translational stage to sample along the z-direction, where z = 0 plane 
lies at the output focal plane of lens 2. To characterize the polarization behaviour of 
the output beam at each z-plane, we performed polarization measurements based 
on Stokes polarimetry. This enabled the determination of the full, four-component 
polarization Stokes vector, S ¼ ðS0; S1; S2; S3ÞT

I
, which quantified the shape and 

orientation of the polarization ellipse at each point as well as the beam’s intensity 
and degree of polarization. The Stokes parameters were obtained by rotating a 
polarizer and a QWP before the CCD to analyse for four different polarization 
states: 0°, 45°, 90° and RCP.
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