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Resonators with tailored optical path by
cascaded-mode conversions

Vincent Ginis 1,2,5 , Ileana-Cristina Benea-Chelmus1,3,5, Jinsheng Lu 1,
Marco Piccardo1,4 & Federico Capasso 1

Optical resonators enable the generation, manipulation, and storage of elec-
tromagnetic waves. The physics underlying their operation is determined by
the interference of electromagnetic waves, giving rise to the resonance spec-
trum. This mechanism causes the limitations and trade-offs of resonator
design, such as the fixed relationship between free spectral range, modal
linewidth, and the resonator’s refractive index and size. Here, we introduce a
new class of optical resonators, generating resonances by designing the
optical path through transverse mode coupling in a cascaded process created
by mode-converting mirrors. The generalized round-trip phase condition
leads to resonator characteristics that aremarkedly different from Fabry-Perot
resonators and can be tailored over a wide range. We confirm the existence of
these modes experimentally in an integrated waveguide cavity with mode
converters coupling transverse modes into one supermode. We also demon-
strate a transverse mode-independent transmission and show that its engi-
neered spectral properties agree with theoretical predictions.

Optical resonators are a cornerstone of modern physics and
technology1–3. These optical devices have two essential functions: they
provide spectral selectivity to incident light and enhance its intensity
in a small volume of space4–6. A prime example of a device that exploits
both spectral selectivity and field amplification within a resonator is
the laser, in essence, an optical cavity in which an activemedium and a
pumping mechanism are present7. In addition, resonators with an
embedded crystalline nonlinearity enable efficient frequency dou-
bling, sum and difference frequency generation, optical parametric
amplification, and optical isolation5,8–11. The spectral sensitivity of
resonators is also widely used in chemical, biological, and thermal
spectroscopy, and in optical communication networks in filters,
switches, and optical delay lines12–14. Furthermore, the transfer of
momentum between light and matter15 can be enhanced inside a cav-
ity, a feature widely used in cavity optomechanics. Optical resonators
also provide an ideal platform to study and control quantum
mechanical interactions16–19 and have played a key role in the

development of quantum systems with ultrastrong coupling20. Several
analogs of nonlinear-optics phenomena have been demonstrated by
coupling two-level atoms with resonator modes21. Finally, collective
phenomena arise in an array of coupled optical resonators, including
an effective magnetic field for photons22, non-reciprocal phase shifts,
and topologically protected edge states23, useful for unidirectional and
robust guiding of light 24–26. Recent examples are the demonstrations
of the mirror-symmetric non-reciprocal circulators27,28 and the time-
multiplexed photonic resonators with isolated dissipation rates and
dissipation spectra with non-trivial topological invariants29.

Motivated by this multitude of applications, various innovations
have been devised to design the properties of resonators. One
approach uses photonic crystals to modify the propagation constants
inside the medium30. By exploiting the unusual properties of epsilon-
near-zero media, geometry-invariant resonant cavities have been
demonstrated31. Nonlinear processes, such as second- and third-
harmonic generation, have beenoptimized inside carefully engineered
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ring resonators based on silicon nitride (Si3N4) and silicon dioxide
(SiO2)

32 and a SiN-2D hybrid platform has been introduced to over-
come the amplitude-phase trade-off in ring resonators33. Most
recently, various novel cavity implementations have been realized
where nanostructured mirrors are engineered to manipulate the cav-
ity’s phase shift. This approach allows the cavity length tobe reduced34.
This same technique can be used to construct stable plano-planar
cavities35 and cavities with engineered transmitted beam profiles36,37.
Finally, there is a strong research interest in the design and application
of resonant bound states in the continuum38, localized modes, coex-
isting with a continuous spectrum of radiating waves, because of their
potential to realize high-Q dynamic resonances39, miniaturize nano
resonators40, and create vector beams41.

In this work, we introduce cascaded-mode resonators. The func-
tionality of these resonators is based on cascaded-mode coupling
between different transverse modes42.

Results
Theory of cascaded-mode resonances
The functionality of electromagnetic resonators can be understood
from the constructive interference of waves—creating resonant

modes. A crucial parameter that determines thesemodes is the round-
trip phase Δϕ, accumulated by the field after completing one round
trip in the resonator2. Waves that pick up a round-trip phase equal to a
multiple of 2π constructively interfere with themselves and become
resonant modes of the resonator (Fig. 1a). In the case of a Fabry-Perot
geometry, the resonance condition is then given by

2Ln
2πν
c

+ 2ϕr = 2πm, ð1Þ

where ν is the frequency of light,m is an integer number representing
the index of the resonantmodes of frequency νm, c is the speed of light
in vacuum, L is the length of the resonator, n is the refractive index of
the material inside the resonator, and ϕr is the reflection phase at the
mirrors. This simple equation explains two essential properties of
resonators: the existenceof the fundamentalmode and the appearance
of a spectrum with only a discrete number of modes. The resulting
frequency spectrum fromEq. (1) is then given by νm = c(m −ϕr/π)/(2nL).

Above, we ignore the properties of the mode in the transversal
plane. Typically, a discrete number of orthogonal transverse modes

Fig. 1 | The operating principle underlying cascaded-mode resonances. a From
left to right: First, a visualization of traditional resonator of length L. Second, the
phase shift as a function of distance x for a resonator of length L for different
longitudinalmodes of indexm: after a round trip 2L the accumulated phase ism2π.
Third, the resonance spectrum,which corresponds to the frequencies forwhich the
round-trip phase Δϕ equals a multiple of 2π. b In many resonators, different
transverse modes contribute to different spectra because their effective refractive
indices inside the resonator differ. The different effective indices determine the
different slopes of the lines in the second column, which results in spectra with
different fundamental modes (fa, fb) and mode spacings in the third column. c A
cascaded-mode resonator (the blue regions aremode-convertingmirrors) inwhich
the two transverse modes, labeled 1 and 2, couple into one supermode, with fun-
damental frequency fh. The round-trip phase and the free spectral range are partly

determined by the effective indices of mode 1 (red slope) and of mode 2 (blue
slope). d A cascaded-mode resonator in which a supermode is created where both
mode 1 and mode 2 circulate twice through the resonator before completing the
round trip. There is one spectrum, with fundamental mode and free spectral range
halved compared to c. The labels in the resonators in the first column refer to the
mode conversions that take place in the blue regions: Δ12 implies that mode 1 is
reflected intomode 2, and vice versa. Blue regions without label refer to traditional
mirrors where each mode is reflected into itself. The fourth column illustrates the
directed graph description of each resonator. In this representation, the vertices
correspond to the modes and the lines between the nodes correspond to the
different mode converters. The loops in these graphs identify the different
resonances.
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exist for each frequency, e.g., TEi and TMi waves, where each trans-
verse mode experiences a different effective index (neff,i). As a result,
the resonantmodes of a resonator generally consist of a superposition
of spectra, corresponding to the various families of transverse modes
(Fig. 1b). The spectra are given by

νi,m =
cðm� ϕr,i=πÞ

2neff,iL
: ð2Þ

We now introduce a new type of resonator based on cascaded-
mode coupling. This coupling is implemented by mode-converting
mirrors that not only reflect incident waves, but also simultaneously
convert them to another transverse mode profile42. We illustrate this
principle in Fig. 1c, d: upon reflection on the rightmost mode-
converting mirror, an incident wave with a particular transverse
mode profile is converted into another transverse mode. When this
mode returns to the leftmostmirror, anothermode conversion occurs
upon reflection. This cascade ofmode conversions can be repeated as
many times as the number of transverse modes supported by the
waveguide. Finally, a “supermode” emerges when the wave is con-
verted back to the original configuration of the incident mode. For
resonators with N different transverse modes, the round-trip phase is
given by (Supplementary Materials):

Δϕ= k0Lξ
XN
i= 1

neff,i +ϕr,tot: ð3Þ

Here k0 equals 2π/λ0 with λ0 the vacuum wavelength, ϕr,tot is the sum
of all reflection phases, and ξ is the parameter that encodes whether
the contributing transversemodes appear once (ξ = 1) or twice (ξ = 2) in
the chain. The round-trip phase is thus no longer merely determined
by the length of the resonator and the refractive index but also by the
number of coupled transverse modes. The corresponding resonance
condition is

νm =
c m� ϕr,tot=ð2πÞ
� �
Lξ
PN

i= 1 neff,i

: ð4Þ

The free spectral range is thus set by the sum of the round-trip
optical paths of the different cascadedmodes Lξ

PN
i = 1 neff,i rather than

by 2neff,iL as in a conventional resonator. Next, whereas traditional
resonators feature an incoherent superposition of different spectra,
each corresponding to a different transverse mode, cascaded-mode
resonators exhibit just one superspectrum (Fig. 1c, d).

This analysis is independent of how the mode conversions are
realized. For instance, in the context of transverse modes in wave-
guides, a mode converter can be implemented using a specific
refractive index variation (blue regions in Fig. 1a–d). The last columnof
Fig. 1 presents a useful abstraction to visualize and study cascaded-
mode resonances using directed graphs. In this picture, cascade-mode
resonances appear as cyclic graphs, which allows for studying the
resonators using the properties of their associated adjacency matrix.
(Supplementary Materials).

Above, we only consider the round-trip phase resonance condi-
tion to get insights into the spectrumof cascaded-mode resonators. To
obtain a more accurate picture of this spectrum, we need to account
for both the phase and the amplitude of the different waves. The
transmission spectrum Eout of a cascaded-mode resonator, where N
different forward-propagating modes are coupled with each other, is
given by (Supplemental Material):

Eout =
XN
i = 1

tptie
iϕi

1� rrteiΔϕ
E inuf i

: ð5Þ

Here rrt, tpti , ϕi, and uf i
are respectively the round-trip reflection

coefficient, the pass-through transmission amplitude, the transmission
phase, and the unit vector of the forward propagating mode i
(Supplemental Materials).

An interesting feature of cascaded-mode resonances, in agree-
ment with the geometrical model described above, is themodification
of the free spectral range Δν, given by

Δν =
c

ξ
PN

i = 1 ng,iL
, ð6Þ

where ng,i is the group index of transverse mode i at frequency ν. Two
other crucial spectral parameters can be engineered in a cascaded-
mode resonator by controlling the round-trip phase: the linewidth γ
and the quality factor Q (Fig. 2). Unlike the free spectral range, the
linewidth and the quality factor depend on the round-trip losses
(Supplementary Materials).

Not only the spectral properties but also the temporal and spatial
properties of thesemodes can be engineered by using cascaded-mode
coupling. The intracavity power build-up and the intracavity power
build-up time both scale proportionally to the number of coupled
modes. While the intensity of longitudinal modes in traditional reso-
nators exhibits a simple standing-wave profile, the intensity profile in a
cascaded-mode resonator will have a more irregular profile, poten-
tially with many different local minima and maxima.

A unique spatial property of cascaded-mode resonators is that the
propagation constant of a supermode depends on the propagation
direction. This phenomenon is shown in its most straightforward
implementation in Fig. 1c. When a field with transverse profile ofmode
1 is incident on the left side of this resonator, a cascaded mode will
exist with wave vector k = k0neff,1 propagating from left to right, and a
wave vector k = k0neff,2 propagating from right to left. Due to the dis-
tinct propagation constants in opposite directions, directional non-
linear optical effects can occur in the resonator since the phase-
matching conditions may only be satisfied in one direction43. The
directionality could also give additional control over chiral, opto-
mechanical, or quantummechanical interactions inside the resonator.

A final property of cascaded-mode resonances that deserves
special attention is the existence of mode-independent spectra.
Indeed, different transverse modes at the input may excite the same
resonance, i.e., a mode-independent resonance. As an example, in the
resonators of Fig. 1c–d the transmission spectrum (third column) is the
same for the two incident transverse modes (1 and 2). We show
in Supplementary Materials that the different modes that excite the
same resonance in a cascaded-mode resonator can be extracted from
the adjacency matrix of the graph that encodes the different mode
conversions in the resonator. The mode-independent behavior of
cascaded-mode resonators is a unique transmission characteristic, a

Fig. 2 | The spectral properties of cascaded-mode resonances. The spectra of a
traditional resonator compared with the spectra of a cascaded-mode resonator
versus frequency (left) or wavelength (right). The blue and red spectra respectively
correspond to conventional resonators and cascaded-mode resonators with
neff,c=neff,max = 2:3,ϕr,tot = 1:5π. The solid and dashed lines correspond to a reso-
nator’s finesse equal to 3 and 6, respectively. Note the reductionof the free spectral
range Δν and linewidth γ when several transverse modes are coupled.
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feature verified experimentally in Fig. 4. This is in contrast to tradi-
tional resonators, where different transverse modes exhibit different
transmission spectra. Based on this property, it becomes possible to
manipulate modes with different spatial profiles in an identical way
using only one resonator.

Experiments
We experimentally realize the proposed cascaded-mode reso-
nators using the silicon-on-insulator (SOI) platform at telecom
wavelengths (1550 nm). In our on-chip implementation, the
cascaded modes have distinct transverse profiles TEi, an in-
plane polarization, and propagate along waveguides rather than
in free space. The SOI platform offers design flexibility in
engineering the properties of the mode converters (reflection
phase and magnitude), as well as the propagation properties of

all modes participating in the cascade, such as their effective
indices neff,i.

The device geometry is shown in Fig. 3a, b together with scanning
electron microscope (SEM) pictures of the fabricated structures. Fur-
ther details are provided in the Supplementary Materials. In general,
each device consists of three main optical components: input/output
waveguides that couple and guide light of chosen transversemodes to
and away from the mode-converting resonators; a multi-mode wave-
guide section of length Lwg in which the cascadedmodes are confined;
specialized corrugated Bragg reflectors located on either side of the
multi-mode waveguide that reflect one transverse mode into another.
While, as described theoretically above, the number of conversions
in a cascaded mode is only limited by the number of available
transverse modes, we restrict our experimental demonstration to
cascaded-mode resonators of the type shown in Fig. 1c that couple

Fig. 3 | The experimental realization of cascaded-mode resonators in inte-
gratedphotonics. a SEMpictures of the cascaded-mode resonator show twomode
converters connected via a multimode waveguide of width wwg and length Lwg.
Multimode waveguides located before and after the resonator guide telecom light
into and outside the resonator. The mode converters are realized by corrugating
the silicon waveguide laterally into the shape of a rectangular grating of periodicity
Λ and width wg. Scalebar = 5 μm and 2 μm (inset). The periodicity Λ is chosen such
that the phase-matching condition is satisfied for contra-directional coupling. The
entire photonic circuit ridge is buried into a silica layer. b Schematic of the device
shows threedifferent sections: 1. two inputwaveguides (left) that allow toprobe the
resonator with either TE0 (upper) or TE2 (lower), 2. the resonator region consisting
of the multimode waveguide enclosed by the two mode converters, and 3. two
analyzer waveguides which transmit the output of the resonator into two spatially
separated locations, depending on its transverse profile TE0 (upper) or TE2 (lower).

Probe 1 excites the TE0 mode in the top waveguide. Probe 2 excites the TE0 in the
lower waveguide. This mode is converted into the TE2 mode in the top multimode
waveguide prior to the resonator via the forward-mode coupler, which operates on
the principle that the effective index of the TE0 mode in the nano-waveguide cor-
responds to the effective index of the TE2 mode in the multimode waveguide.
Similarly analyzer 1 and analyzer 2 measure TE0 and TE2 modes, respectively.
Spatially, the coupling occurs at the location where the nanowaveguide is in the
immediate vicinity of the multimode waveguide. c Full-wave simulations of the
telecom fields inside the cascaded-mode resonator demonstrate that self-
consistent solutions of the round-trip condition occur at the same input wave-
length for two distinct transverse modes TE0 (upper) and TE2 (lower). d Zoom into
markedwhite region inside the resonator reveals the hybrid nature of the cascaded
modes that arise as a superposition of counter-propagating TE0 or TE2 modes with
a characteristic beating length that does not depend on the input probe field.
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the two distinct transverse modes TE0 and TE2. Their transverse
mode profiles are shown in the inset of Fig. 3b. Consequently, the
width of the waveguide in the cavity region (wwg = 1.07 μm) was
chosen such that it cuts off all transverse modes of a higher order
than TE2. (See Supplementary Materials for details on the design of
the individual photonic structures and their transmission/filter per-
formance.) In addition, the grating period Λ of the mode converters
is chosen as to satisfy the phase-matching condition and provide the
necessary momentum for the mode conversion to occur on the
reflected wave: 2π/Λ =Δβ12 = β1 + β2, with β1 =βTE0

=neff,TE0
ω0=c and

β2 =βTE2
=neff,TE2

ω0=c the propagation constants of the two coupled
modes. This type of coupling is typically referred to as contra-
directional coupling. In the Methods, we outline in more detail the
strategy for designing the cascaded-mode resonators in the SOI
platform.

We now demonstrate in experiments and simulations the
most evident signatures of cascaded-mode resonanators: the
mode-independent spectrum with modified spectral parameters.
The symmetric cascaded-mode resonator of Fig. 1c provides
resonant confinement to input modes that correspond to either
TE0 or TE2 transverse modes and has the same transmission
spectrum for either input. We confirm this computationally in
Fig. 3c, where we report the simulated field profile of the same

cascaded-mode resonator for the two possible inputs and find a
locally enhanced field inside the resonator in both cases. More-
over, the hybrid nature of the near-infrared cascaded mode inside
the resonator becomes apparent in the zoom-in of the spatial
profile shown in Fig. 3d. The field profile can be decomposed into
a superposition of counter-propagating TE0 and TE2 waveguide
modes that exhibit, as expected, the same beating length for both
inputs (marked by the white arrow). We demonstrate this prop-
erty experimentally by transmission spectroscopy and contrast it
with two test Fabry-Perot resonators that employ standard mir-
rors and provide cavity confinement to only one of TE0 or TE2
modes. The experimental results are shown for the three cases in
Fig. 4a–c and Supplemental Fig. S9: We find that cavity modes
appear, as expected, for both TE0 and TE2 modes in the case of
the cascaded-mode resonator only. Moreover, the experimental
results are well-reproduced by our simulations. Cavity modes
appear only for one of the two modes for the conventional Fabry-
Perot resonators, while light is simply transmitted for the other
modes. In the Methods, we describe the spectroscopic technique
used in these measurements.

Next, we analyze the resonator properties of the cavity modes
associated with the cascaded-mode resonators compared to the con-
ventional Fabry-Perot modes in Fig. 4d–f. Firstly, we show in Fig. 4d

Fig. 4 | Transmission spectroscopy of cascaded-mode resonators. a A cascaded-
mode resonator, where a reflection at both the left and the right Bragg mirror
results into a conversion of the transverse mode from TE0 to TE2 and vice-versa.
b The measured transmission spectra of the cascaded-mode resonator exhibit
resonances regardless of whether TE0 or TE2 is incident onto the resonator.
c Simulated transmission spectra reproduce well the measurements. More mea-
surement and simulation results are provided in the Supplementary Material.
d–f Characteristic parameters of the cascaded-mode resonator extracted from the
experimental transmission spectra. d The mode-independent character of
cascaded-mode resonators is demonstrated by the fact that the resonant wave-
lengths of the cavity modes coincide in frequency (and wavelength), regardless of
whether the resonator is probed by a TE0 or TE2 mode. The relative experimental
mismatch between their resonant wavelengths is below 4 × 10−5, for all 13

considered modes, which is comparable to the experimental noise (upper panel).
e Also the quality factors of the cascaded-mode resonator are mode-independent,
as they coincide within the experimental error, regardless of whether the cascaded
modes are excited by TE0 or TE2 inputs. The experimental error is calculated from
the error of the fit of the resonance peaks. f In cascaded-mode resonators, the
propagation constants change magnitude at each reflection off a mode-converting
Bragg mirror, and the group indices of cascaded-mode (CM) resonances are equal
to the arithmetic mean of conventional Fabry-Perot (FP) resonances in the same
multimodewaveguide. This property is confirmed experimentally, with TE0modes
having a group index of 3.75, TE2modes having a group index of 4.85 and cascaded
modes having a group index of 4.3. Full lines represent calculated group indices
from full-wave simulations. Vertical bars represent error bars.
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that the intra-cavity modes of the cascaded-mode resonators excited
by the two inputs (TE0 or TE2) coincide in frequency. We experimen-
tally find a negligible relative deviation between the two sets of reso-
nant wavelengths of ðλTE0 � λTE,2Þ=λTE0 ≈4 x 10�5. Furthermore, the
quality factors of the two sets are approximately equal, as shown in
Fig. 4e. Finally, the group index of the cascaded modes is approxi-
mately equal to ng = 4.3, regardless of whether they are excited by TE0
or TE2. In contrast, the group index of the Fabry-Perotmodes are equal
to ng,TE0

= 3:75 and ng,TE2
= 4:85 (Fig. 4f). This result confirms once

more the cascaded-mode character of the measured spectra, particu-
larly because the group index is approximately the arithmetic mean of
the group indices of the participating transverse modes, in agreement
with Eq. (7).

Discussion
This work shows how electromagnetic resonators can be generalized
to cascaded-mode resonators, where the spectrum of supermodes
reflects the generalized round-trip phase condition of a cascade of
different transverse modes propagating in different directions. The
theory is generally valid for any cascade of orthogonal modes inside
cavities of arbitrary shape and is thus not only applicable to a cascade
of transverse mode profiles of an integrated waveguide44. Indeed, for
the round trip to occur after N conversions, the N + 1-th mode in the
chain needs to be indistinguishable from the first, i.e., with identical
frequency, temporal shape, k-vector, polarization, and phase
profile45–47. As such, the mechanism can also be applied in the context
of ring resonators. In that case, interestingly, only onemode converter
needs to be materialized. There are also opportunities to apply the
concept in free-space setups. Here, the OAM dimension provides a
natural basis of different modes that can be coupled with each other.

Key design parameters of traditional optical resonators are
the length of the resonator and the refractive index of the
material with the traditional resonance condition determined by
the product of both parameters. For a given transmission or
reflection spectrum, there is thus a trade-off between length and
refractive index: one cannot reduce the length of the resonator
without increasing the effective refractive index. Previous litera-
ture addresses this trade-off by either cleverly designing the
effective index and group index of the medium (e.g., using pho-
tonic crystals) or by affecting the effective length of the cavity
(e.g., using metasurface reflectors). We offer a different solution,
which involves modifying the formula of the resonance condition
itself. We circumvent the trade-off not by modifying the design
parameters but by decoupling them at the level of the resonance
condition itself. The spectral, temporal, and spatial properties are
no longer solely determined by the length and refractive index of
the medium, but also by the number of coupled modes. In addi-
tion, these resonators exhibit completely new properties not
found in their traditional counterparts, e.g., mode-independent
resonances and directionally dependent propagation properties.
Moreover, we believe it is also interesting to investigate how the
concept of this paper can be transposed to other electromagnetic
resonances, e.g., singular plasmons48. Although the resonant

spectrum of singular plasmon surfaces, which can be designed
using transformation optics49 and implemented using periodically
doped graphene sheets50, is quite different, here as well, different
modes couple together, eventually collapsing the spectrum into a
continuum. We anticipate that the concept of cascaded-mode
resonators will be further exploited in a broad class of techno-
logical devices and scientific experiments since the underlying
principles of cascaded-mode resonances can be extended even
beyond optics.

Methods
Design of the cascaded-mode resonators
The design of a mode-converting mirror can be understood by visua-
lizing the longitudinal k-components (βi) of the different guided
modes in the waveguide (Fig. 5). A mode-converting mirror is a com-
ponent that reflects one mode and simultaneously converts it into
another mode. Therefore, they need to bridge a momentum equal to
the difference between the propagation constants of both modes. A
grating with periodicity Λ exhibits a principal spatial frequency com-
ponent of 2π/Λ. In first order, the periodicity of the mode-converting
mirrors is thus determined by ensuring that 2π/Λ = βi + βj for a grating
that reflectsmode i intomode − j. In theprevious formula, we also used
the identity β−j = − βj. The phase-matching condition above is sym-
metric upon a permutation of β1 and β2, and the mode-converting
grating is reciprocal under reflection of incident light with a transverse
mode profile TE0 into TE2, and vice-versa. The selectivity of the mode
converters also needs to be ensured: they need to reflect only the
desired mode and not into any other modes. We note that the grating
periodicity that satisfies the contra-directional coupling condition
(Λ = 2π/(βi + βj)) is much shorter than the one that meets the co-
directional coupling condition (Λ = 2π/(βi − βj)), in which case the
convertedmodewouldpropagate in the samedirection as the incident
mode. Moreover, a reflection of the incident field into the same
transverse mode (mode i into − i or j into − j) occurs if the grating
periodicity Λ satisfies 2π/Λ = 2βi or 2π/Λ = 2βj. The selectivity of the
grating is determined by two elements: (1) the width of the principal
spatial frequency of the grating, which is typically determined by the
grating length, and (2) the difference between the propagation con-
stants between of the different waveguide modes. Indeed, to selec-
tively satisfy only one of these phase-matching conditions and
selectively convert only the desiredmodes, these periodicities need to
be sufficiently different from each other. As a result, if possible, a
second design target is to engineer the effective indices of the two
coupled modes to be as different as possible. This property is directly
linked to the transverse dimensions of the waveguide. The design
principles described above are based on a simple Fourier transform
picture useful in the initial design of a mode-converting mirror. How-
ever, in any practical design, it remains important to supplement these
principles with optimization based on numerical simulations, e.g.,
because the argument above is ignoring wave leakage as it propagates
through the grating. The full-wave numerical simulations are shown
in Supplemental Materials. We adopt a rectangular grating geometry
that is symmetric with respect to the center of the ridge of the

Fig. 5 | The different visualizations and design considerations of cascaded-
mode resonators. a The visualization of a mode-converting mirror, reflecting
mode 1 inmode -2, and vice-versa, used in the schematic in Fig. 1. b The equivalent
graph representation of thismode-convertingmirror, also used in Fig. 1. c In spatial
frequency domain, the mode-converting mirror bridges the distance between the

longitudinal k-components of the involved modes. A mode-converting mirror that
converts mode i into −j (blue arrow) will also convert mode j to −i. (blue dashed
arrow). d A potential, physical implementation of the mode-converting mirror in
real space is a rectangular gratingwhoseperiodicityΛ is determinedby thedistance
between the modes in k-space.
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waveguide, has a periodicity Λ and a duty cycle of 40 % as shown in
Fig. 3a. The waveguide width in the corrugated area wg is larger than
the waveguide width in between the reflectors wwg. At the same time,
we need to satisfy low propagation loss and good confinement of the
TE2mode to thewaveguide core. As shown in Fig. S4a, and in themode
profile of Fig. 3, a waveguide width ofwwg = 1.07μmprovides an index
difference of neff,TE0

� neff,TE2
= 2:751� 1:944=0:807. In Fig. S8a–c we

show the simulated mode conversion efficiency of the Bragg gratings
used in the cascaded-mode resonator, in comparison with two test
resonators which do not employ mode conversion but instead use
standard Bragg mirrors that either reflect TE0 into TE0 or TE2 into TE2.

Spectroscopic technique
The spectral response of each resonator is investigated under
incident light that is either prepared to be in the TE0 or TE2
transverse mode. At first, the light is directed from an optical
fiber placed above the chip into low-loss single-mode waveguides
via grating couplers and adiabatic tapers. The single-mode
waveguides filter any undesired higher-order transverse modes
that may be excited by the grating couplers. Finally, an adiabatic
taper ensures a low-loss transmission of the TE0 mode in the top
arm (Fig. 3b, dark blue) from the single-mode waveguide to the
multimode waveguide that precedes the cascaded-mode reso-
nator. Importantly, we pattern around the resonator two distinct
input/output ports (Fig. 3b, dark and light blue), which allow for
the preparation of the input states entering the resonators and
analyzed states exiting the resonator to be either in the TE0 or TE2
transverse mode. To this end, if the light is incident in the bottom
arm (Fig. 3b, light blue), we generate the TE2 mode from TE0
before the resonator using a co-directional evanescent coupler
based on a nano-waveguide located next to the multimode
waveguide51. This coupling is visualized in the inset of Fig. 3b. The
TE2 mode is coherently excited by the TE0 mode. From Fig. S4a,
we find that this condition is satisfied if the nano-waveguide

width equals 336 nm. The full-wave simulated field in Fig. S5
demonstrates an efficient forward coupling with 70% transmis-
sion at an interaction length of Lint = 60 μm, as used in the
experiment.

Numerical simulations
Lumerical FDTD Solutions (v8.21) is used to simulate and design the
mode-converting gratings and the resonant cavity composed of them.
In the simulations, the thickness of the device layer of the silicon is
220 nm. The substrate is silicon oxide. A layer of silicon oxide on top
with a thicknessof 700nm is applied toprotect the silicondevices. The
refractive index of the silicon and silicon oxide are 3.46 and 1.46,
respectively. The waveguide has a width of 1100 nm, allowing for the
existence of guided modes of TE0 and TE2 around a wavelength of
1550nm. The mesh size is 25 nm.

The period, depth, and duty cycle of the gratings used for con-
verting a forward TE0mode to a backward propagating TE2mode (and
vice versa) is 316.5 nm, 500 nm, and 40%, respectively. In this case, the
mode conversion efficiency reaches a maximum near 1550nm wave-
length. The sweeping range of wavelength and the number of unit cells
in the grating is 1350–1750 nm and 1–50, respectively. We use the
Mode Source Module in the Lumerical software to solve the eigen-
modes in the waveguide and select the TE0 or TE2 mode as the input
light source into the mode converter gratings. The transmitted and
reflected electromagnetic (EM) fields are recorded after the 3D full-
wave simulations. The mode expansions of the recorded EM fields are
performed to obtain the transmitted and reflected power of the TE0
and TE2 modes.

The resonant cavity is formed by two sets of above mentioned
mode converter gratingswith a cavity length of 150μm.Thenumber of
unit cells of the mode-converting mirror is chosen to be Nper = 36
considering both a high mode-conversion efficiency and good band-
width. The simulation time is set to be 72 ps which is long enough to
get an accurate result.

Fig. 6 | The directed graph representation of a general cascaded-mode reso-
nator. aA schematic of themodeconversions in a cascaded-mode resonator.bThe
adjacency matrix of this cascaded mode resonator contains two symmetric sub-
matrices that correspond to the left and rightmode converters. cAnexample of the

graph in a four-mode system where the left and right converter implement
Δ23 +Δ14 and Δ12 +Δ34, respectively. d The adjacencymatrix of the system shown
in c.
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The directed graph representation of cascaded-mode
resonators
We now discuss the relationship between the resonators, the
mode converters, and the directed graphs in more detail. As
shown in Fig. 6a, cascaded-mode resonators consist of two sets of
converters that convert forward-propagating modes into
backward-propagating modes and vice-versa. One can construct
the directed graph of a cascaded-mode resonator by associating
each mode with a node and each mode converter with an edge
between the nodes. In doing so, it is essential to disambiguate the
forward and backward propagating modes. Indeed, since there
are no conversions between forward propagating modes or
backward propagating modes, this procedure results in con-
structing a bipartite graph. The graph is directed since the mode
conversions occur at one end of the resonator, and both ends of
the resonator are not necessarily identical.

The general form of the adjacencymatrix is shown in Fig. 6b. The
action of the converters at both ends of the resonator is visible as
separate submatrices in this matrix. Here, the color of the submatrices
corresponds to the color of the converters. It is nowworthmentioning
a subtlety about the internal symmetry of the adjacency matrix. Since
both mode converters can be significantly different for one another,
the adjacencymatrix is not symmetric. However, the mode converters
themselves are generally symmetric. For example, if a converter con-
verts mode i to mode −j, it generally also converts mode j to mode −i.
Therefore, the submatrices that implement the two converters are, in
turn, symmetric matrices.

In Fig. 6c–d, we show, by way of illustration, the graph of a
specific cascaded-mode resonator where the right-hand converter
consists of Δ12 + Δ34 and the left-hand converter consists of
Δ23 + Δ14. The graph is shown in Fig. 6c, where each mode con-
version has a different color. In Fig. 6d, we show the

corresponding adjacency matrix where each element is circled by
the color of the corresponding edge in the graph.

Graph representation of mode-independent resonances
There are generally two ways in which mode-independent resonances
can appear in a cascaded-mode resonator. These two alternatives can
be most easily understood by looking at the graph representation of
the resonator, as shown in Fig. 7. As described earlier, we can recognize
the resonances as the loops in the directed graph. To identify the
mode-independent resonances, we canwrite out the different loops as
a sequence of the vertices.

Mode-independent resonances can then occur within one
loop or between two different loops. First, within one loop, the
different nodes of the sequence all contribute to the same
supermode. The resonator will thus experience mode-
independent resonances for each of these modes as inputs. In
addition, also two different loops can give rise to the same
resonance. This is the case if the sequence of one loop can be
turned into the sequence of the other by inversion of the nodes
and reversing the direction of the sequence. The two alternatives
are shown in Fig. 7. In Fig. 7b, e.g., there are mode-independent
resonances for input 1, input 2, and input 3: indeed, {1, −2, 3, −3, 2,
−1} is equivalent to {2, −1, 1, −2, 3, −3} and {3, −3, 2, −1, 1, −2}. In the
case of Fig. 7a there are two loops in the graph: {1, −2, 3, −4} (solid
lines) and {4, −3, 2, −1} (dashed lines). These loops are identical
after inverting the nodes and reversing the sequence of one the
loops. Incidentally, the two alternatives correspond to the para-
meter ξ being 1, in Fig. 7a, or 2, in Fig. 7b.

The different modes that activate the same supermode can also
be retrieved from the graph’s adjacencymatrix. For example, when the
adjacency matrix raised to a power k has non-zero diagonal elements
for some rows, then all the rows with the same diagonal element

Fig. 7 | The directed graph representation to analyze mode-independent
resonances in cascaded-mode resonators. a Top: a cascaded-mode resonator
that couples four modes, where each mode appears only once in the resonance
(N = 4, ξ = 1). Middle: the corresponding graphof the resonator contains two cycles.
The two cycles (solid lines, dashed lines) exist becauseof the symmetryof themode
converters: if the edge i→ −j exists, then the edge j→ −i also exists. Bottom: The
adjacencymatrix of the graph (G1) and the adjacency matrix raised to the power 4,
ðG1Þ4. The adjacency matrix raised to the power N is a diagonal matrix, illustrating

that a node ismapped back onto itself after a path of lengthN, or a cycle of lengthN
exists in the graph. Each row with a non-zero element on the diagonal corresponds
to a transversal mode that excites a mode-independent resonance. If several
cascade-mode resonances of length N exist in one resonator, these modes can be
separated in the adjacency matrix by weighting the edges by the propagation
constants of the connecting nodes. b A cascaded-mode resonator with three cou-
pled modes, each appearing twice in the resonance (N = 3, ξ = 2). The adjacency
matrix (G2) is diagonalized after raising the matrix to the power 6 (=ξN).
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correspond to transversal modes that excite the same mode-
independent resonance, as shown in Fig. 7.

The transmission spectrum of cascaded-mode resonators with
residual back-reflection
It is also possible to analyze the properties of cascaded-mode reso-
nators in the case where the reflectors also reflect part of the modes
back into themselves. The transfermatrix formalismallows to describe
this situation most elegantly. We illustrate the formalism below for a
two-mode resonator, defining the transmission and reflectionmatrices
of the first and second reflector, respectively with subscriptsm, 1 and
m, 2, as follows:

Tm,1 =Tm,2 =
t 0

0 t

� �
, ð7Þ

Rm,1 =Rm,2 =
r κ

�κ* r*

� �
: ð8Þ

Here, we assumed that both mirrors are identical. Conservation of
energy imposes the following condition on r, t, and κ: ∣r∣2 + ∣t∣2 + ∣κ∣2≤ 1.
The case of perfect mode-converting mirrors is retrieved for r=0. In
addition, we also define the propagation matrix, Tprop, that tracks how
the different modes evolve upon propagation through the cavity:

Tprop =
eiβ1L 0

0 eiβ2L

 !
: ð9Þ

Using these matrices, it is possible to calculate the transmitted field
and the spectrum of the resonator for any combination of r and κ. The
rows of the input vector sin contain the amplitude of the modes inci-
dent on the resonator. The rows of the output vector sout contain the
amplitudes of the modes transmitted through the resonator. We can
then write that:

sout =
X1
k =0

Tm,2ðT resÞkTpropTm,1sin, ð10Þ

where T res =TpropRm,1TpropRm,2 is the resonator matrix. Each term in
the infinite sum is associated with fields transmitted after an extra
roundtrip through the resonator. Utilizing the fact that all eigenvalues
of T res are smaller than 1, we know that

lim
k!1

ðT resÞk =0 ð11Þ

and we can rewrite the infinite sum as:

sout =Tm,2ðI � T resÞ�1TpropTm,1sin, ð12Þ

where I is the identity matrix. This equation allows to calculate the
spectrumof a cascaded-mode resonator for different values of κ, r, and
t. In Fig. 8, we evaluate Eq. (12) to illustrate the spectrum of ∣s1,out∣

2

assuming mode 1 is incident at the input. For large values of r, mode
hybridization occurs. Even in these cases, where r > 0, the spectrum
remains independent of the incident mode.

Data availability
The data generated in this study have been deposited in the Zenodo
database under accession code 7441921. The data are available under
CC BY 4.0.

References
1. Saleh, B. E. & Teich, M. C. Fundamentals of Photonics (John Wiley &

Sons, 2019).
2. Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Com-

munications (Oxford University Press, 2007).
3. Goodman, J. W. Introduction to Fourier Optics (Englewood, CO:

Roberts & Co. Publishers, 2005).
4. Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-q

toroid microcavity on a chip. Nature 421, 925–928 (2003).
5. Koshelev, K. et al. Subwavelength dielectric resonators for non-

linear nanophotonics. Science 367, 288–292 (2020).
6. Odit, M. et al. Observation of supercavity modes in subwavelength

dielectric resonators. Adv. Mater. 33, 2003804 (2021).
7. Maiman, T. Optical and microwave-optical experiments in ruby.

Phys. Rev. Lett. 4, 564 (1960).

Fig. 8 | The transmission spectrum of cascaded-mode resonators with residual

back-reflection. Visualization of (∣s1,out∣
2) with sin =

1
0

� �
. The reflection in panels

a–f, equals r = 10(−6), r =0.001, r =0.003, r =0.01, r =0.03, r =0.1, respectively. Small
values of r translate into an amplitudemodulation of the spectrum. For large values

of r, an observable hybridization of the modes appears. In each panel, the trans-

mission of the mirrors, as defined in Eq. (7), equals t =
ffiffiffiffiffiffiffi
0:1

p
, the length of the

resonator equals L = 114.85 μm, neff,1 = 2.74, and neff,2 = 2.47. The mode-coupling

constant is calculated using κ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 � r2

p
.

Article https://doi.org/10.1038/s41467-023-35956-9

Nature Communications |          (2023) 14:495 9

https://doi.org/10.5281/zenodo.7441921


8. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Non-
linear optics and crystallinewhispering gallerymode cavities. Phys.
Rev. Lett. 92, 043903 (2004).

9. Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson,M. Ultra-lowpower
parametric frequency conversion in a silicon microring resonator.
Opt. Express 16, 4881–4887 (2008).

10. Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt
parametric oscillation threshold. Optica 4, 619–624 (2017).

11. Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based
on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).

12. Ilchenko, V. S. & Matsko, A. B. Optical resonators with whispering-
gallery modes-part ii: applications. IEEE J. Sel. Top. Quantum Elec-
tron. 12, 15–32 (2006).

13. Bogaerts, W. et al. Silicon microring resonators. Laser Photonics
Rev. 6, 47–73 (2012).

14. Gagliardi, G. & Loock, H.-P. Cavity-Enhanced Spectroscopy and
Sensing, vol. 179 (Springer, 2014).

15. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action
at the mesoscale. Science 321, 1172–1176 (2008).

16. Vučković, J., Lončar, M., Mabuchi, H. & Scherer, A. Design of pho-
tonic crystal microcavities for cavity qed. Phys. Rev. E 65,
016608 (2001).

17. Mabuchi, H. & Doherty, A. Cavity quantum electrodynamics:
coherence in context. Science 298, 1372–1377 (2002).

18. Spillane, S. et al. Ultrahigh-q toroidal microresonators for cavity
quantum electrodynamics. Phys. Rev. A 71, 013817 (2005).

19. Kockum, A. F., Macrì, V., Garziano, L., Savasta, S. & Nori, F. Fre-
quency conversion in ultrastrong cavity qed.Sci. Rep. 7, 1–13 (2017).

20. Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori,
F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1,
19–40 (2019).

21. Kockum, A. F., Miranowicz, A., Macrì, V., Savasta, S. & Nori, F.
Deterministic quantum nonlinear optics with single atoms and vir-
tual photons. Phys. Rev. A 95, 063849 (2017).

22. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for
photons by controlling the phase of dynamic modulation. Nat.
Photon. 6, 782–787 (2012).

23. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics.Nat.
Photon. 8, 821 (2014).

24. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical
delay lineswith topological protection.Nat. Phys. 7, 907–912 (2011).

25. Pal, V., Tradonsky, C., Chriki, R., Friesem, A. A. & Davidson, N.
Observing dissipative topological defects with coupled lasers.
Phys. Rev. Lett. 119, 013902 (2017).

26. Peng, S. et al. Probing the band structure of topological silicon
photonic lattices in the visible spectrum. Phys. Rev. Lett. 122,
117401 (2019).

27. Wang, J., Herrmann, J. F., Witmer, J. D., Safavi-Naeini, A. H. & Fan, S.
Photonic modal circulator using temporal refractive-index mod-
ulation with spatial inversion symmetry. Phys. Rev. Lett. 126,
193901 (2021).

28. Herrmann, J. F. et al. Mirror symmetric on-chip frequency circula-
tion of light. Nat. Photon. 16, 603–608 (2022).

29. Leefmans, C. et al. Topological dissipation in a time-multiplexed
photonic resonator network. Nat. Phys. 18, 442–449 (2022).

30. Englund,D., Fushman, I. & Vuckovic, J. General recipe for designing
photonic crystal cavities. Opt. Express 13, 5961–5975 (2005).

31. Liberal, I., Mahmoud, A. M. & Engheta, N. Geometry-invariant
resonant cavities. Nat. Commun. 7, 1–7 (2016).

32. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic gen-
eration in silicon nitride ring resonators. Opt. Express 19,
11415–11421 (2011).

33. Datta, I., Gil-Molina, A., Chae, S. H., Hone, J. & Lipson,M. 2Dmaterial
platform for overcoming the amplitude-phase tradeoff in ring
modulators. Preprint at https://arxiv.org/abs/2209.08332 (2022).

34. Shaltout, A. M., Kim, J., Boltasseva, A., Shalaev, V. M. & Kildishev, A.
V. Ultrathin and multicolour optical cavities with embedded meta-
surfaces. Nat. Commun. 9, 1–7 (2018).

35. Fu, J., Jin, Y. & He, S. Metasurface for constructing a stable high-q
plano-planar open cavity. Adv. Optical Mater. 7, 1801339 (2019).

36. Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-
emitting lasers for programmable directional lasing emissions.Nat.
Nanotechnol. 15, 125–130 (2020).

37. Xie, P., Wang, G. & Wang, Y. Sequentially rotated polarization
conversion metasurface for circularly polarized fabry-perot cavity
antenna. Int. J. RF Microw. Computer-Aided Eng. 31, e22725 (2021).

38. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M.
Bound states in the continuum. Nat. Rev. Mater. 1, 1–13 (2016).

39. Fan, K., Shadrivov, I. V. & Padilla, W. J. Dynamic bound states in the
continuum. Optica 6, 169–173 (2019).

40. Kodigala, A. et al. Lasing action from photonic bound states in
continuum. Nature 541, 196–199 (2017).

41. Azzam, S. I. & Kildishev, A. V. Photonic bound states in the con-
tinuum: from basics to applications. Adv. Optical Mater. 9,
2001469 (2021).

42. Ginis, V. et al. Remote structuring of near-field landscapes. Science
369, 436–440 (2020).

43. Boyd, R. W. Nonlinear Optics (Academic press, 2020).
44. Bahari, B. et al. Nonreciprocal lasing in topological cavities of

arbitrary geometries. Science 358, 636–640 (2017).
45. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano

resonances in photonics. Nat. Photon. 11, 543–554 (2017).
46. Shiri, A., Yessenov, M., Webster, S., Schepler, K. L. & Abouraddy, A.

F. Hybrid guided space-time optical modes in unpatterned films.
Nat. Commun. 11, 1–10 (2020).

47. Piccardo, M. et al. Roadmap on multimode light shaping. J. Optics
24, 013001 (2022).

48. Pendry, J., Huidobro, P. A., Luo, Y. & Galiffi, E. Compacted dimen-
sions and singular plasmonic surfaces. Science 358, 915–917
(2017).

49. Yu, S. & Ammari, H. Hybridization of singular plasmons via trans-
formation optics. Proc. Natl Acad. Sci. USA 116, 13785–13790 (2019).

50. Galiffi, E., Huidobro, P. A., Gonçalves, P. A. D., Mortensen, N. A. &
Pendry, J. B. Probing graphene’s nonlocality with singular meta-
surfaces. Nanophotonics 9, 309–316 (2020).

51. Mohanty, A. et al. Quantum interference between transverse spatial
waveguide modes. Nat. Commun. 8, 1–7 (2017).

Acknowledgements
We acknowledge support from AFOSR grants FA550-19-1-0352. This
work was performed in part at the Center for Nanoscale Systems (CNS),
a member of the National Nanotechnology Coordinated Infrastructure
Network (NNCI), which is supported by the National Science Foundation
under NSF Award no. 1541959. V.G. acknowledges support from
Research Foundation Flanders under grant numbers G032822N and
G0K9322N. I.-C.B.-C. acknowledges support through an independent
research grant from the Hans Eggenberger Foundation.

Author contributions
V.G. initiated the project and conceived the concept of cascaded-mode
resonators. V.G. developed the theory with inputs from I.-C.B.-C., J.L.,
M.P., and F.C.; I.-C.B.-C., J.L., V.G., and M.P. designed the experiment;
I.-C.B.-C. fabricated the devices, carried out the measurements, and
analyzed the experimental data; J.L. carried out the numerical simula-
tions. All authors contributed to the analysis, discussion, and writing of
the manuscript.

Competing interests
A provisional patent application has been filed on the subject of this
work by the President and Fellows of Harvard College.

Article https://doi.org/10.1038/s41467-023-35956-9

Nature Communications |          (2023) 14:495 10

https://arxiv.org/abs/2209.08332


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-35956-9.

Correspondence and requests for materials should be addressed to
Vincent Ginis or Federico Capasso.

Peer review information Nature Communications thanks Emanuele
Galiffi and the other anonymous reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-35956-9

Nature Communications |          (2023) 14:495 11

https://doi.org/10.1038/s41467-023-35956-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Resonators with tailored optical path by cascaded-mode conversions
	Results
	Theory of cascaded-mode resonances
	Experiments

	Discussion
	Methods
	Design of the cascaded-mode resonators
	Spectroscopic technique
	Numerical simulations
	The directed graph representation of cascaded-mode resonators
	Graph representation of mode-independent resonances
	The transmission spectrum of cascaded-mode resonators with residual back-reflection

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




