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Engineering phase and polarization singularity
sheets
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Optical phase singularities are zeros of a scalar light field. The most systematically studied

class of singular fields is vortices: beams with helical wavefronts and a linear (1D) singularity

along the optical axis. Beyond these common and stable 1D topologies, we show that a

broader family of zero-dimensional (point) and two-dimensional (sheet) singularities can be

engineered. We realize sheet singularities by maximizing the field phase gradient at the

desired positions. These sheets, owning to their precise alignment requirements, would

otherwise only be observed in rare scenarios with high symmetry. Furthermore, by applying

an analogous procedure to the full vectorial electric field, we can engineer paraxial transverse

polarization singularity sheets. As validation, we experimentally realize phase and polariza-

tion singularity sheets with heart-shaped cross-sections using metasurfaces. Singularity

engineering of the dark enables new degrees of freedom for light-matter interaction and can

inspire similar field topologies beyond optics, from electron beams to acoustics.

https://doi.org/10.1038/s41467-021-24493-y OPEN

1 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. 2Nanophotonics Research Centre, Korea
Institute of Science and Technology, Seoul, Republic of Korea. ✉email: lim982@g.harvard.edu; capasso@seas.harvard.edu

NATURE COMMUNICATIONS |         (2021) 12:4190 | https://doi.org/10.1038/s41467-021-24493-y |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24493-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24493-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24493-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24493-y&domain=pdf
http://orcid.org/0000-0003-1689-6860
http://orcid.org/0000-0003-1689-6860
http://orcid.org/0000-0003-1689-6860
http://orcid.org/0000-0003-1689-6860
http://orcid.org/0000-0003-1689-6860
http://orcid.org/0000-0001-8749-9374
http://orcid.org/0000-0001-8749-9374
http://orcid.org/0000-0001-8749-9374
http://orcid.org/0000-0001-8749-9374
http://orcid.org/0000-0001-8749-9374
http://orcid.org/0000-0003-4534-8249
http://orcid.org/0000-0003-4534-8249
http://orcid.org/0000-0003-4534-8249
http://orcid.org/0000-0003-4534-8249
http://orcid.org/0000-0003-4534-8249
mailto:lim982@g.harvard.edu
mailto:capasso@seas.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Optical phase singularities are zeros in a complex scalar
field—regions of darkness surrounded by light1. These
singularities are ubiquitous in complex wave systems2

and typically arise due to rapid or discontinuous phase variation.
One common manifestation of this is encountered in helical
beams with orbital angular momentum (OAM), which exhibit a
linear singularity along the optical axis, around which the
wavefront (and thus the Poynting vector) swirls and forms an
optical vortex. Phase structures of this nature have attracted
much attention owing to the non-intuitive behavior they can
imprint upon the surrounding field3. For instance, due to ring
singularities around the Airy disk in the focal plane of a lens,
there are locations near the singularity which have time-averaged
Poynting vectors that point back towards the lens, thereby exhi-
biting locally backward energy flow4,5. Furthermore, super-
oscillations, whereby a bandlimited signal exhibits rapid spatial
variation that can be arbitrarily larger than its maximum Fourier
component6, also typically occur by virtue of nearby
singularities7. Moreover, phase singularities exhibit different
topologies as compared to bright regions and obey different
constraints. For example, the diffraction limit constrains the
focusing of light. There is no diffraction limit for dark: one can
make phase singularities arbitrarily localized and measure their
locations with deeply subwavelength precision, limited only by
the signal-to-noise ratio of the measuring apparatus8. Indeed,
measuring an intensity minimum is far more precise than mea-
suring the displacements of finite-width beams of light9, an
insight that enables a host of applications. Molecular scale ima-
ging enabled via the MINFLUX technique10 can infer the position
of a fluorescent particle from the spot of minimum emission
when the particle is illuminated with a doughnut-shaped pump
beam with zero on-axis intensity. Recently, the precise position of
the singularities was also exploited to create a subwavelength
ruler8 that can resolve displacements to better than λ/800.

Optical phase singularities such as those along the axis of OAM
beams are widely studied one-dimensional (1D) singularity lines.
Much is also known about the stochastic properties of 1D sin-
gularities in random fields such as laser speckle11. However, not
all phase singularities are 1D. One-dimensional structures are
indeed the most common singular features, as they are stable
under small perturbations of the scalar field12. Although less
common, point (0D) and surface (two-dimensional (2D)) sin-
gular structures also exist. Similar to high-order optical vortices,
these rare structures are structurally unstable as a small-field
perturbation can deform its singular region, removing the sin-
gularity altogether, or reducing it to a collection of stable 1D
singularities. These singular structures are typically only observed
in systems with high symmetry (“degenerate” cases), such as the
planar destructive interference fringes in Young’s double slit
experiment, as pointed out by Nye and Berry1 in their seminal
paper predating singular optics, and the radial nodes in cylin-
drically symmetric diffraction-less Bessel beams13.

Here we show on-demand engineering of sheet (2D) singula-
rities in scalar fields without the symmetry constraints. We do so
by enforcing large, directed phase gradients at the target singular
locations to produce dark sheets. We perform this phase gradient
maximization in linearly polarized fields to produce phase sin-
gularities and separately in the paraxial vectorial electric field to
produce transverse polarization singularities. We validate these
numerical predictions experimentally using metasurfaces which
implement the required wavefront profile. In contrast to existing
studies, our approach does not specify the analytical mathema-
tical description of the field in the vicinity of the singularities14,15,
as in the construction of a superoscillating function to form an
array of optical vortices16. Instead, we sculpt singularities based
on phase gradients at the position of the singularity itself. This

enables the dark regions to be realized with remarkably high
contrast and fidelity. Singularity engineering points to the pos-
sibility of designing complex beams combining structured light
and structured dark, and may inspire exotic field topologies in
wave physics beyond optics, from electron beams to acoustics.

Results
Singularity geometries and structural stability. Singularities
refer to undefined parameter(s) of a field. Phase singularities
occur where real and imaginary parts of a scalar time-harmonic
(with e−iωt convention here) field E(r)= Re[E(r)]+ iIm[E(r)] are
simultaneously zero, thus leaving the phase ϕ(r)= arg(E(r))
undefined there. In most complex three-dimensional (3D) scalar
fields, the points at which the real (or imaginary) part of the field
vanishes forms a 2D surface: a zero-isosurface. The optical sin-
gularities thus occur at the intersection of these two zero-
isosurfaces (Re[E(r)]= 0 and Im[E(r)]= 0). The intersection may
occur at exactly one point where the zero-isosurfaces touch,
forming a point singularity (Fig. 1a). By bringing the two zero-
isosurfaces closer together, the intersection locus becomes a
closed loop (Fig. 1b). Linear singularities can also be open,
extending to infinity, as in the widely known fundamental
Laguerre–Gaussian0,1 (LG0,1) vortex beam (Fig. 1c), where the
real and imaginary zero-isosurfaces only cross on the optical axis.
Cross-sections of these 1D singularities demonstrate that the
complex phase swirls in either a clockwise or anticlockwise
manner around the singularity locus, accumulating ±π/2 over
each of the four quadrants defined by the zero-isolines. Higher-
order versions of these 1D geometries, such as the second-order
LG0,2 beam, can be produced if the intersection line coincides
with more than one sheet from each of the real and imaginary
zero-isosurfaces (Fig. 1d). Notably, when the two zero-isosurfaces
coincide, a 2D sheet singularity is produced (Fig. 1e).

First-order 1D singular structures differ from the other
topologies in terms of their structural stability. Consider adding
a small complex number to each of the scalar fields in Fig. 1.
Physically, it can be considered an additional plane wave in the
long wavelength limit, which, e.g., may arise from a defect or
scatterer in the medium. The addition displaces and distorts the
zero-isosurfaces. For 0D and 2D topologies, this shift misaligns
the precise orientation of the zero-surfaces, destroying the
singularity altogether (when the zero-surfaces do not intersect)
or producing 1D singular lines (where the new isosurfaces
intersect). On the contrary, the perturbation to the 1D singularity
fields with first-order singularities in Fig. 1b or c merely causes
the intersection to be displaced in space, preserving the existence
of the 1D singularity. Higher-order 1D singularities (as in Fig. 1d)
also dissociate into collections of first-order 1D singularities
(Fig. 1c) in realistic circumstances under perturbation17. In
summary, first-order 1D singularities are robust against field
perturbations, whereas 0D, higher-order 1D, and 2D singularities
are not.

One-dimensional singularities are commonly called topological
singularities because they possess an invariant quantity, the
topological charge, which is conserved under small-field pertur-
bations and with propagation. For simplicity, we focus here on
paraxial fields with a well-defined transverse plane. The
topological charge s= ∮C(∇ϕ/2π)·dr is computed around an
enclosing loop C (usually chosen to lie on the transverse plane
and defined to be positively oriented in the clockwise direction)
so that the singularity line penetrates the interior of C. When
there are no singularities along C, ϕ is continuous on the closed
loop and must return to its original value modulus 2π. Thus, s is
an integer and can be positive, negative, or zero. This same
concept can be extended to 2D singularities by picking C large
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enough to encircle the 2D structure on the transverse plane. Care
must be taken, however, when dealing with 2D singularities that
have a closed transverse cross-section, as for calculating s, C must
be chosen to have both an inner and outer loop (Supplementary
Fig. 1). s is conserved under small field perturbations and with
wave propagation, provided no singular structures cross C, and is
equal to the sum of the topological charges of the singular
structures penetrating the interior of C.

Although optical devices can be designed to shape lighted
regions of a field according to one’s specifications through
iterative techniques such as computer-generated holography, the
Gerchberg–Saxton (GS) algorithm18,19 or adjoint optimization20,
or through non-iterative means such as in freestyle laser
traps21,22, sculpting the dark is more challenging. Iterative
light-shaping numerical techniques rely on the reverse propaga-
tion of a desired light-field distribution to provide information on
how to improve the design of an optical device in the next
iteration. These techniques work well if the desired output optical
intensity profile comprises lighted regions but fail if the desired
pattern is dark or associated with little optical intensity; if there
are singular regions in the desired optical output, reverse
propagation of the output from these regions will result in zero
information provided to the iterative algorithm. One might argue
that these limitations can be bypassed by specifying the way the
nearby fields are distributed so that the intensity goes to zero at
the desired singularity locations. By doing so, one can then
construct the closest wave-equation solution to the predefined
phase and amplitude distribution using analytic techniques23.
However, in specifying one spatial pattern adjacent to the
singularity, one will reduce the space of acceptable designs by
excluding other optical fields that also contain the desired
singularity structure, potentially excluding better-behaved fields
which more closely approximate the desired field distribution. In
short, one must go beyond the standard techniques of optical
engineering to manipulate the dark side of light.

Singularity shaping strategy. Phase singularities are intimately
connected to phase gradients, which rise to arbitrarily large values

in the vicinity of a singularity. Hence, our approach to singularity
engineering does not rely on optimizing values of field parameters
(e.g., amplitudes or phases), but rather their gradients. An arbi-
trarily large phase gradient at a point implies that there is van-
ishing field value there, although the reverse implication is not
true (Supplementary Note 1). The magnitude of a phase gradient
(normalized to the field wavenumber k0) is thus a continuous
measure of the degree to which a singularity-like optical field
approaches true singularity behavior, where an infinite value
indicates a mathematical singularity with undefined phase and
identically zero amplitude. Unlike the field amplitude, such a
measure does not need to be normalized to the overall amplitude
scale of the optical field. This connection between phase singu-
larities and phase gradients motivates our approach to inverse-
designing the dark. We maximize the spatial derivatives of the
phase as a proxy for enforcing phase singular behavior. In par-
ticular, as the phase gradient is a vector normal to the wavefront
(the surface of constant phase), by maximizing it at a point in a
specified direction, we produce an asymptotically zero intensity
sheet oriented normal to that direction. Figure 2a demonstrates
the result of one such optimization for a single point. A very large
and directed phase gradient can be achieved by designing the real
and imaginary zero-isosurfaces so that they touch tangentially
and are normal to that specified direction, as visualized in Fig. 2a.
Notably, minimizing the field amplitude to produce a phase
singularity does not produce this alignment; it merely enforces a
crossing of the zero-isosurfaces instead (Fig. 2b). The extent of
the singularity sheet can be increased by maximizing the phase
gradient at multiple nearby positions (Fig. 2c), e.g., by using an
objective function that depends on the phase gradient at multiple
positions. In contrast, minimizing the field amplitude at two
nearby points may not have this alignment effect, often producing
multiple discrete intersections instead (Fig. 2d).

Calculating fields with large phase gradients also requires
special care in taking the derivative. Finite difference methods
should not be used to estimate the phase gradient near
singularities where the phase gradients are diverging because it
is susceptible to errors, in particular due to the 2π phase
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Fig. 1 Intersection topologies of zero-isosurfaces that form optical singularities. Optical singularities are formed at the intersection of the zero-
isosurfaces of the real (Re) and imaginary (Im) parts of a complex field (e.g., a linearly polarized electric field). Top row: intersection topologies of the two
zero-isosurfaces (blue: Re= 0, red: Im= 0). Bottom row: phase profiles for each intersection topology in the top row, evaluated at the gray cross-sectional
plane. Black lines indicate the zero-valued contours on the cross-sectional plane. a When the zero-isosurfaces intersect at a point, a 0D point singularity is
formed. 1D singularities can be formed as b a closed loop or c, d an open line. c The fundamental Laguerre–Gaussian0,1 vortex beam, with its corkscrew-like
zero-isosurfaces. d A higher-order Laguerre–Gaussian0,2 vortex beam has more than one pair of zero-sheets intersecting along a line. e When the zero-
isosurfaces coincide, the singularity is 2D.
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periodicity. In our approach, we perform all calculations on an
algorithmic differentiation (backpropagation) platform. We
record the mathematical operations performed in connecting
variables (e.g., device design parameters and their positions in
space) to their results (e.g., complex field values or objective
function values). We then traverse this record using the chain rule
for derivatives to obtain the exact numerical derivative of any
calculated value with respect to any other variable24.

It is important to mention that the 2D singularities we study
here may not be absolute mathematical singularities in the sense
that the field value along the singularity is small but may not be
identically zero. This can be reconciled as follows: first, we chose
to explore the parameter space of physically realizable light fields
generated through a finite aperture and to find the closest field
solutions that maximize the phase gradient locally on a finite set of
points. Mathematically exact sheet singularities that are infinitely
extended over space typically require an infinite aperture to be
replicated perfectly, such as those associated with 1D diffraction
patterns1 or those similar to Bessel beam nodes13 and LG radial
nodes25. Second, although the phase gradient can become
arbitrarily large during optimization, we truncate the optimization
process early to avoid dealing with infinities and numerical

precision limitations. These approximate singularities may not
have zero field value but are close enough to zero with large phase
gradients for physically interesting realizations. It is noteworthy
that this is also the case for 3D volumetric singularities: although
volumetric singularities are not mathematically possible (see
Supplementary Note 2), “perfect” optical vortices (i.e., vortices
with dark core radii that are both independent of the topological
charge and where the largest field gradients are located) with a
core volume containing very low light intensity have been
designed and generated experimentally26.

Although not the focus of this study, we note that one way to
deterministically position 0D point singularities is to place them
on the axis of a cylindrically symmetric field. Both amplitude
minimization and phase gradient maximization can be applied to
produce these singularities. Supplementary Fig. 2 plots a
simulated cylindrically symmetric field with three deterministi-
cally placed 0D singularities. More details are available in
the Supplementary Methods.

Engineered phase-singularity sheet. As a proof-of-concept for
singularity sheet engineering, we design a 2D phase-singularity
sheet with a heart-shaped cross-section (Fig. 3). The heart-shaped
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Fig. 2 Comparison between phase gradient maximization and field minimization to obtain phase singularities. Both methods can be used to obtain
phase singularities, but they produce different field behavior in terms of its real (blue) and imaginary (red) zero-isosurfaces. Yellow dots label the positions
at which the field and phase gradients are optimized. Inset surface plots are the logarithmically scaled field intensities at z= 0 μm over the same XY
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singularity is centered at z= 10 mm and is designed for the scalar
field associated with the x-polarized electric field at λ0= 532 nm
emitted from a 0.8 mm × 0.8 mm patterned aperture. The para-
xial scalar field approximation (qualitatively supported by the
propagation distance to the target plane being much larger than
the aperture size) is justified by a full vectorial propagation27 of
the electromagnetic fields, which shows that the time-averaged
energy density associated with the y (transverse) and z (axial)
polarization components over the volume of interest is much
smaller (in this case, <0.05%) than that of the x-polarization. The
sheet singularity is constructed by maximizing the phase gradient
in the directions oriented normally to a heart-shape at the target
z= 10 mm plane. The free parameters are the propagation phase
delay (from 0 to 2π) at each pixel on the patterned aperture
located at z= 0 mm. The optimized phase pattern is shown in
Fig. 3b and does not exhibit any discernible long-scale pattern
apart from a series of concentric rings, which appear to apply a

focusing effect. Figure 3a shows a field intensity isosurface of the
singularity profile to depict its orientation in 3D space (real and
imaginary zero-isosurfaces are plotted in Supplementary Fig. 3),
along with the locations and directions at which the phase gra-
dient maximization was performed. This surface represents the
points at which the phase gradient is very large, nearly reaching
100 times the wavenumber k0. Simulated cross-sectional intensity
and phase plots at the z= 10 mm plane are depicted in Fig. 3d, g,
respectively. There is a visible phase jump of π radians across the
singularity boundary as the field changes sign. The phase profile is
in fact continuously differentiable with a well-defined
phase gradient and just achieves a large gradient value at the
singularity boundary. In Fig. 3c, we plot this phase gradient
magnitude |∇⊥ϕ|2= (∂xϕ)2+ (∂yϕ)2 profile alongside the inten-
sity and phase profiles for the linear cut indicated in Fig. 3d.
These profiles are qualitatively similar to those of a transverse cut
through the singular optical axis of a fundamental LG0,1 vortex

Fig. 3 An engineered heart-shaped optical phase-singularity sheet (λ0= 532 nm). a Isosurface of low field intensity for the simulated singularity sheet.
The phase gradient was maximized in the directions indicated by the arrows on the gray z= 10 mm plane, at the locations of the yellow dots. b Inverse-
designed phase profile, located at z= 0mm, which realizes the heart-shaped optical singularity. c The 1D cut profile of intensity, phase, and phase gradient
magnitude |∇⊥ϕ|= [(∂xϕ)2+ (∂yϕ)2]1/2 for the dotted blue line in d, overlaid with the corresponding quantities for a Laguerre–Gaussian vortex beam.
d Simulated relative intensity and g phase profile of the singularity sheet, at z= 10mm. e Relative intensity profile obtained experimentally with a fabricated
metasurface and h phase profile (obtained from iterative phase retrieval), at z= 10mm. As a comparison, the results of Gerchberg–Saxton (GS) iterative
optimization to get the same heart pattern on the z= 10 mm plane are plotted in f for the intensity and in i for the phase at the target plane, which
demonstrates lower pattern fidelity and contrast as compared to the phase gradient maximization result.
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beam of the same wavelength (with a beam waist diameter equal
to the diagonal of the 0.8 mm × 0.8 mm square aperture), which
are plotted using dotted lines in Fig. 3c. The transverse phase
gradient over the transverse plane is plotted in Supplementary
Fig. 4. This phase gradient achieves large magnitudes near the
heart-shaped boundary and even exceeds k0 by an order of
magnitude, thereby exhibiting superoscillatory behavior. The
longitudinal behavior of this cut profile with z is displayed in
Supplementary Fig. 5, which shows that |∇⊥ϕ| exceeds k0 for a
superoscillatory region ~150 μm in front of and behind the target
z= 10 mm plane. The characteristic depth of this singularity
sheet using this superoscillatory region is thus around 300 μm.
The depth of a singularity sheet can be extended by maximizing
the phase gradient over more than one transverse plane. We also
exhibit additional phase-singularity sheet shapes (flat sheet and
double-walled cylinders) in Supplementary Fig. 6 to demonstrate
the versatility of this algorithm.

Similar to asymmetric optical vortices with fractional topolo-
gical charge or high-order vortices with topological charge >1, the
2D heart-shaped singularity sheet is unstable with
propagation28,29 and hence has a finite length in the axial
direction. This instability with propagation is not a general
characteristic of 2D sheet singularities; Bessel and LG beam nodes
and 1D diffraction patterns are notably stable with propagation.
The topological charge of our heart singularity sheet measured at
the target plane is s= 0, computed using the inner and outer
curves in Supplementary Fig. 7, indicating that equal numbers of
vortices with s=+1 and −1 are formed following the break-up of
the sheet singularity. The physical interpretation of this quantity
is that it is an estimate of the mean OAM per photon l associated
with a region comprising the singularity, in units of ħ. We can
explicitly compute l over the cross-sectional area A between a set
of inner and outer curves (Supplementary Fig. 7) using the
method proposed by Allen and Padgett30, where l is given by the
ratio of the time-averaged OAM, Jz, to the time-averaged energy
per unit length, W (Eqs. (1–3)).

Jz ¼ ϵ0

Z Z
A
dxdyðr ´Re½E ´ B*�=2Þ � ẑ ð1Þ

W ¼ cϵ0

Z Z
A
dxdyðRe½E ´ B*�=2Þ � ẑ ð2Þ

l ¼ ωJz=W ð3Þ
We obtain l=−0.0011, which is very close to the topological

charge of s= 0 obtained by line integration.

Experimental realization of phase-singularity sheet. We vali-
date the numerical predictions experimentally by fabricating a
transmissive metasurface to realize the required phase profile in
Fig. 3b. Metasurfaces are not the only means to produce sheet
singularities; any wavefront shaping device, which can sample the
highest spatial frequency of the target pattern, can also be
deployed. The metasurface comprises cylindrical nanopillars of
TiO2 on an SiO2 substrate. Scanning electron micrographs of the
full metasurface and the nanopillar arrays are exhibited in Fig. 4a,
and the experimental setup used to profile the singularity sheet
produced is displayed in Fig. 4b. The intensity and reconstructed
phase profiles produced by the metasurface at the z= 10 mm
plane are plotted in Fig. 3e, h, respectively. The phase profile was
obtained through single-beam multiple-intensity reconstruction31

applied to the measured 3D intensity map, as depicted in Fig. 4c.
The intensity and phase profiles show close correspondence to
those obtained through simulation in Fig. 3d, g. Furthermore, the
rapid intensity decay along the singularity sheet (~−35 dB),
stemming from the phase gradient maximization, can be observed

in the plots. Notably, the continuity and uniformity of the dark
contour is difficult to achieve using conventional computer-
generated holography techniques that rely on amplitude mini-
mization. This can be seen by comparison to Fig. 3f, i, which
exhibits the best field intensity and phase obtained by using the
GS phase retrieval algorithm to design a similar heart-shaped
singular trajectory just on one transverse plane. Supplementary
Fig. 8 demonstrates how the GS algorithm is unable to replicate
fine intensity features over the transverse plane due to the limited
range of transverse spatial frequencies and further details on this
can be found in Supplementary Note 3. In addition, Supple-
mentary Fig. 9 displays the cross-sectional intensity and phase
profiles of the singularity at various z-positions alongside the
numerical predictions and are in very good agreement.

Engineered polarization singularity sheet. The process for
engineering 2D phase-singularity sheets is also directly applicable
to engineering 2D polarization singularity sheets. A detailed
review of the connection between phase and polarization singu-
larities is provided by Ruchi et al.32. Polarization singularities can
take multiple forms, but here we focus on C-point singularities in
which the polarization azimuth Ψ (in a paraxial field, with neg-
ligible Ez contribution) is singular12,33. Ψ is the angle that the
major axis of the polarization ellipse makes with the transverse x-
direction (Supplementary Fig. 10). Together with the ellipticity
angle θ, which determines the eccentricity and handedness of the
ellipse, the pair (Ψ, θ) parameterizes the space of fully polarized
light. To deploy phase gradient maximization, we need to identify
a complex scalar field σ such that arg(σ)∝Ψ. This complex field
will exhibit the same geometries in Fig. 1. Maximizing the phase
gradient of σ then maximizes the azimuth gradient and produces
polarization singularities. One such field is σ= |Ex | 2− |Ey | 2+
2i·Re(ExEy*) for which arg(σ)= 2Ψ. This can be written as σ=
s1+ is2 using the Stokes polarization parameters, which comprise
four experimentally measurable intensities that parametrize the
full space of polarized (and partially polarized) light. They are
defined in Eqs. (4)–(7) using the left-handed convention34.

s0¼Ix þ Iy ¼ jExj2 þ jEyj2 ð4Þ

s1¼Ix�Iy ¼ jExj2�jEyj2 ð5Þ

s2¼I45��I�45� ¼ 2 � ReðExEy
*Þ ð6Þ

s3¼ILCP�IRCP ¼ 2 � ImðExEy
*Þ ð7Þ

where Ij refers to the intensity of the polarization component
projected in the j direction. For fully polarized light, s02= s12+
s22+ s32, which allows all polarization states to be assigned a
unique point on a sphere in (s1,s2,s3) space—the Poincaré sphere
(Supplementary Fig. 10). Lines of constant Ψ are longitudes on
the sphere. Just as globe longitudes intersect at the poles so that
the longitudinal coordinate is undefined there, Ψ is singular at the
Poincaré sphere poles at which circularly polarized light resides.
There, s1 and s2 go to zero, in analogy to the vanishing of the real
and imaginary parts of a scalar complex field at a phase singu-
larity. It is noteworthy, however, that the overall field intensity at
the polarization singularity can be non-zero, because s3 may not
vanish.

Figure 5 plots transverse cross-sections of an engineered
polarization singularity sheet with a jump in Ψ tracing the shape
of a heart (real and imaginary zero-isosurfaces of the σ-field are
plotted in Supplementary Fig. 3). The cross-sectional heart-shape
is identical to that of the phase-singularity sheet in Fig. 3, is also
centered at z= 10 mm, and is designed to be generated by a plane
wave at λ0= 532 nm and with 45° linear polarization incident on
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a patterned 0.4 mm × 0.4 mm square aperture (at z= 0 mm) that
serves as a spatially variant waveplate. The paraxial approxima-
tion (qualitatively supported by the target plane distance being
much larger than the aperture size) is justified, as the energy
density associated with the longitudinal Ez in the volume of
interest is much smaller (in this case, <0.05%) than that of the
transverse Ex and Ey components. The polarization singularity
sheet is inversely designed by tuning the properties (phase delay,
fast axis angle) of the spatially variant waveplate on a pixel-by-
pixel level. The optimized parameters are plotted in Supplemen-
tary Fig. 11. Figure 5 plots Ψ, θ, and the field intensity (s0) of the
simulated singularity sheet at and around z= 10 mm in the
“Sim.” columns. The Ψ jump across the singularity has a
magnitude of π/2 (as opposed to π, as in the phase-singularity
sheet), because a sign flip in σ means that the change in arg(σ)=
2Ψ is π. The polarization singularity can also be visualized by
examining the transverse gradient of the azimuth |∇⊥Ψ|
(Supplementary Fig. 4), which displays rapid spatial variations
far exceeding k0.

Experimental realization of polarization singularity sheet. As
designed, the polarization singularity requires a device that can
control the polarization variation of an optical wavefront, point-by-
point. Although a spatial light modulator can perform this by
structuring and then superimposing two coherent beams with
orthogonal polarizations, a single spatially variant waveplate is best
suited for this application. One realization of a spatially variant
waveplate is a polarization-sensitive metasurface. Transparent
birefringent nanofins on a metasurface behave locally as waveplates
that perform a unitary transformation of the incident electric
fields35. We fabricated this metasurface using TiO2 nanofins on
SiO2 (micrographs in Fig. 6a). The polarization singularity

structures generated by the metasurface are analyzed at 41 z-posi-
tions around z= 10mm using rotating quarterwave plate
polarimetry36 in the experimental setup shown in Fig. 6b. The
measurements of Ψ, θ, and intensity (s0) at and around z= 10mm
are plotted in Fig. 5 in the “Exp.” columns and show good agree-
ment to the simulated patterns. The Stokes’ parameters comparison
between simulations and experiment are plotted in Supplementary
Fig. 12.

Discussion
Here we provide experimental demonstrations of on-demand
singularity shape engineering beyond simple curved or straight
lines. We have achieved 2D singularity sheets with precisely
engineered dark intensity profiles in both scalar and vector fields
by maximizing phase gradients orthogonal to the desired sheet
structures. On-demand singularity engineering opens up a vast
set of possibilities in wide-ranging fields: the sensitivity of sin-
gularity sheets to perturbations and inhomogeneities in the pro-
pagation medium can be exploited to reconstruct density
fluctuations and currents in transparent or weakly scattering
media. This can be performed by sending a precisely engineered
singularity structure into a weakly scattering medium, and then
capturing the distorted light field with a phase-sensitive techni-
que. The singularities may also be strategically introduced in
holography to improve the light/dark contrast, or in microscopy
and telescopy to selectively suppress signals from parts of the
image, as an extension of the vortex coronagraph from
astronomy37,38. Such shaped singularities may also be useful in
conjunction with MINFLUX-like techniques to localize elongated
fluorescent emitters (e.g., quantum rods), both in space and in
rotation angles with deeply subwavelength precision. By rotating
and translating a pump beam with an extended singularity feature
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Fig. 4 Fabrication and characterization of the heart-shaped phase-singularity sheet. a Left, scanning electron micrograph of the fabricated metasurface.
This metasurface comprises 101 × 101 superpixels with a pitch of 8 μm. Each superpixel comprises a uniform 32 × 32 array of cylindrical nanopillars with a
pitch of 0.25 μm. a Right, high-magnification SEM of the interface between two superpixels. b Experimental setup for the optical characterization of the
heart-shaped phase singularity. The ×100 objective (numerical aperture (NA)= 0.95) is scanned over 41 z-positions (from 9.6 to 10.4 mm) to capture the
longitudinal variation of the phase singularity using a complementary metal oxide semiconductor (CMOS) camera sensor. c Iterative single-beam multiple-
intensity reconstruction phase retrieval algorithm used to estimate the phase profile at each z-position. During one cycle, the forward propagation is
performed from the first image (at z= 9.6 mm) to each image and backwards to the first image. This cycle is performed 50 times to yield the 41 phase
profiles at each z-position.
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around an elongated emitter, then finding the position and
orientation that minimizes the fluorescent signal, one can identify
the associated position and orientation of that elongated emitter
with wavelength-independent precision. Singularity engineering
may also be deployed in shaping radiofrequency or acoustic
emission patterns so as to deterministically produce and
manipulate dead or quiet zones.

In particular, singularity sheets may find application in atomic
trapping of neutral atoms using intensity gradients. The vast
majority of optical dipole traps for cold atoms are “red” traps,
which trap atoms in arrays of tightly focused spots of light, where
the light is red detuned from the dipole resonance. Blue traps with
3D spatial confinement, which trap the atoms in a dark spot
surrounded by blue-detuned light, are much harder to realize and
techniques using a single structured beam have only been able to
produce single blue traps thus far39–41. Deterministic singularity
engineering of singularities produced by a single incident beam
and metasurface may prove to be useful in generating blue trap
arrays or exotic shapes on demand.

Beyond optics, singularities are found in many complex wave
systems, such as acoustic, particle beam, fluidic, and plasmonic
systems. Similar strategies of optimizing spatial gradients may
enable one to engineer complex fields imbued with the strange
behavior of nearby singularities.

Methods
Detailed methods for device optimization and fabrication are found in the Sup-
plementary Methods.

Simulations. Full vectorial field profiles were obtained by discretization of the
vector diffraction propagation integrals27 on the Tensorflow automatic differ-
entiation platform42. The free parameters for each optimization are either the
phases at each pixel on a phase mask or the waveplate properties (phase shift in the
fast and slow axes, rotation angle of the fast axis) at each pixel on a spatially varying
waveplate. The optimization objective function to be maximized is a smooth
approximation to a minimum function applied to the list of directional phase
derivatives at specified points in the field. Optimization is performed using gradient
descent through the Broyden–Fletcher–Goldfarb–Shanno algorithm43 with itera-
tive refinement applied to the parameter distribution, to reduce the risk of con-
verging to a poorly performing local optimum.

Metasurface fabrication. The metasurfaces are fabricated out of TiO2 on a glass
substrate44,45. The glass substrate is a 0.5 mm-thick JGS1-fused silica. The meta-
surface pattern is written into ZEP520A-positive electron-beam resist (thickness
600 nm) using a 125 kV electron-beam lithography system. After resist develop-
ment and oxygen plasma descum, the patterned holes in the electron-beam resist
are backfilled with amorphous TiO2 through atomic layer deposition up to a height
of 200 nm above the resist patterns. The excess TiO2 is etched back using reactive
ion etching until the resist surface is exposed and the residual resist is removed by
immersion in Remover PG solution for 30 h, which leaves free-standing TiO2
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Fig. 5 An engineered heart-shaped optical polarization singularity sheet (λ0= 532 nm) profiled at various transverse planes. The columns are, from
left to right, experimental polarization azimuth Ψ, simulated polarization azimuth Ψ, experimental ellipticity angle θ, simulated ellipticity angle θ,
experimental intensity (s0 Stokes parameter) profile, and simulated intensity profile. Black and white ellipses in the azimuth plots indicate the local
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Device characterization. For the 2D phase-singularity sheet, 532 nm laser light is
incident normally on the non-patterned face of the metasurface and the trans-
mitted light is imaged by a microscope with a ×100 objective. The intensity image is
captured at 41 z-planes, where z= 0 mm corresponds to the patterned surface of
the metasurface. At each z-plane, the intensity image is captured at six different
exposure times. These multiple exposure images are weighted by their respective
exposure times and stacked to remove saturated pixels and produce a composite
image with a large intensity dynamic range. The field phase at each z-plane was
obtained by a modified version of the single-beam multiple-intensity reconstruc-
tion technique31.

For the 2D polarization singularity sheet, 532 nm light at 45° linear polarization
is incident normally on the non-patterned face of the metasurface and the
transmitted light is imaged by a microscope with a ×100 objective. Between the
objective and the tube lens, we place a quarterwave plate and linear polarizer to act
as a polarization analyzer. At each of the 41 z-planes, we capture 36 intensity
images (3 exposure times for exposure-weighted image stacking) where the
quarterwave plate fast axis is rotated in steps of 5°. We measure the four
unnormalized Stokes parameters for each pixel using the rotating quarterwave plate
method36.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that support the findings of this study are available from the corresponding
author upon reasonable request.
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magnification SEM image at the interface of four pixels showing the
individual nanofins. b Experimental setup for optical characterization of the
2D polarization singularity metasurface. The incident laser light is polarized
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180° from the horizontal. These images are used to reconstruct the
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