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Modeling nanoscale V-shaped antennas for the design of optical phased arrays
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We present a simplified numerical method to solve for the current distribution in a V-shaped antenna excited
by an electric field with arbitrary polarization. The scattered far-field amplitude, phase, and polarization of the
antennas are extracted. The calculation technique presented here is an efficient method for probing the large
design parameter space of such antennas, which have been proposed as basic building blocks for the design of
ultrathin plasmonic metasurfaces. Our calculation is based on the integral equation method of moments and is
validated by comparison to the results of finite-difference time-domain (FDTD) simulations. The computation
time is approximately five orders of magnitude less than for FDTD simulations. This speed-up relies mainly on
the use of the thin-wire approximation, whose domain of validity is discussed. This method can be generalized
to more complex geometries such as zigzag antennas.
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I. INTRODUCTION

Optical devices modify the wave front of light by acting
on its phase and amplitude. At the core of many optical
components is a spatially varying phase response, as illustrated
by a simple lens, which has a parabolic phase profile. Most con-
ventional optical components rely on light propagation over
different optical lengths in order to create such a spatial phase
response profile. However, it was recently shown1 that abrupt
phase changes over the scale of a wavelength can be introduced
by using the phase response of plasmonic resonators. While a
single resonator is limited to providing a phase response with a
maximum range of π , it was shown that an element consisting
of two orthogonal resonators can provide arbitrary amplitude
and phase response, covering the entire 2π range for the scat-
tered light component polarized perpendicularly to the incident
light.1

In previous works,1–3 nanoscale gold V-shaped plasmonic
antennas supporting two plasmonic eigenmodes of opposite
symmetry [Figs. 1(a) and 1(b)], and thus acting as two-
oscillator systems, were used to provide adequate phase and
amplitude control of light. Such V-shaped antennas can be
used as the basic building blocks of a new class of flat optical
components using phase discontinuities1,2,4 since they enable
the creation of arbitrary phase and amplitude masks with
subwavelength “pixel” size.

We present here the results of numerical solutions for the
current distribution and scattered fields of V-shaped antennas,
and in doing so obtain a detailed picture of their near- and
far-field properties. In particular, we are able to accurately
map their amplitude, phase, and polarization responses in
arbitrary directions. The convenient modeling tool presented
here enables one to select and assemble various V-shaped
antennas into more complex optical systems, in addition
to giving detailed insight into the behavior of the antenna,
illustrating, for example, the effects of near-field coupling
between the two arms.

II. METHOD AND APPROXIMATIONS

Models describing the response of antennas have been
extensively studied.5–8 One of the main challenges is that the
integral equations governing the behavior of antennas have no
exact analytical solutions. However, with the development of
numerical methods in the last few decades, we can obtain
accurate numerical solutions in an efficient manner. This
work presents how the integral equation method of moments
(MoM)7–11 can be used to study the behavior of V-shaped
plasmonic antennas described by a Pocklington-type integral
equation.12 This numerical technique is very general and
has been used to compute the characteristics of complex
radio-frequency and microwave antenna geometries.7 The
Pocklington equation is often used to determine the current
distribution on cylindrical wires of small radius.6–8

We study here how the methods and approximations used
for long wavelengths apply to the midinfrared spectral range,
where plasmonic properties play a significant role, by compar-
ing our numerical results with the results of finite-difference
time-domain (FDTD) simulations. We emphasize that we use
a series of approximations to simplify the calculations as much
as possible, effectively reducing the problem to one dimension.
While full three-dimensional MoM simulation techniques
could be implemented on our geometry, our main goal here
was to propose a fast and efficient simulation method to probe
a large design parameter space, bringing in the mean-time
radio-frequency methods to the attention of the plasmonics
community. Since our numerical solution is one dimensional,
it gives direct access to integral quantities such as the current
distribution on the antenna, enabling straightforward interpre-
tation of nanoantennas as circuit elements.13–15 In contrast,
three-dimensional FDTD simulations give access to a current
density, whose integration into a one-dimensional quantity can
be challenging, in particular at corners and edges. Finally,
our method is approximately five orders of magnitude faster
than FDTD simulations, enabling the accurate mapping of the
properties of V antennas over various geometric parameters.
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FIG. 1. (Color online) Schematic of the first-order (a) symmetric
and (b) antisymmetric modes supported by a V-shaped antenna
excited by an incident electric field polarized either (a) along the
antenna symmetry axis or (b) perpendicular to the antenna symmetry
axis. The arrows indicate the instantaneous direction of the current in
each arm, while the colored shading qualitatively represents charge
density (darker shading indicates more charges). (c) Schematic of a
geometry used for FDTD simulations with h = 1.2 μm and � = 60 ◦.
The rectangular arms are 200 nm wide and 100 nm thick. Antennas
with different opening angle � are obtained by rotation about the
connecting corners of the rectangular arms (green dot). The junction is
formed by adding a triangular section. (d) Schematic of the geometry
used for the method of moments calculations. Each antenna arm
is modeled as a cylinder of diameter 2a, but the geometry will
be effectively reduced to that of a wire antenna (dashed line). The
V-shaped antennas have an opening angle � and a total length h.

The geometry considered is that of gold V-shaped antennas
fabricated at the interface between a silicon substrate and air.
Light is incident on the antenna from the silicon substrate.
The antennas are 200 nm wide and 100 nm thick. For all of
the results presented, the incident wavelength is λ0 = 7.7 μm.
The two arms of the antennas have equal length (h/2), in order
to preserve the symmetry of the structure and thus simplify
the understanding of the two orthogonal plasmonic modes.
We note, however, that the calculation presented here could
very easily be generalized to nonsymmetric geometries. As
shown in Fig. 1(c), antennas with different opening angles
are obtained by rotation of the rectangular arms about their
connecting corners. While this exact geometry is simulated in
our FDTD calculations, we use several approximations in our
MoM calculations [see Fig. 1(d)]: (1) We assume the antennas
to be cylindrical with a radius of a = 100 nm. The optical
properties of the antennas are moderately affected by the
cross-section dimensions since they are much smaller than the
length of the antenna. We verified that our results have limited
dependence on the value of a chosen. (2) We use the thin-wire
approximation (a � λ and a � h, with a as the antenna radius
and h as its total length), which enables us to consider the
current distribution on the antenna to be purely axial and
azimuthally invariant,7,8 i.e., invariant for rotations around the
antenna axis (see Appendix). This approximation transforms
the geometry studied to that of an infinitely thin antenna, and
thus enables one to reduce the problem to an effective one-
dimensional problem, which results in the dramatic increase
observed for the computation speed. Information on the finite
dimension of the cross section (radius a) is, however, preserved
in our equations, in particular in the expression of the effective

distance between two points of the antenna (see Appendix).
While fully justified at long wavelengths, this approximation
may seem crude for midinfrared antennas for which typically
λ/a � 5 and h/a � 10. Our first concern will thus be to
validate our results by comparing them with the results of
well-established simulation tools. For this purpose, we use
here FDTD simulations realized with a commercial software
(LUMERICAL FDTD) as a reference. (3) We consider the antenna
to be surrounded by a uniform medium with an effective
index of neff = 2.6. This value is such that the scattering
resonance curve for a straight rod antenna embedded in a
uniform dielectric of index neff overlaps with the scattering
resonance curve of the same antenna located at an interface
between silicon and air, with both curves being obtained by
FDTD simulations. Although imperfect, our approach offers
the advantage of preserving simplicity, and comparisons with
FDTD simulations will show that it is accurate enough to
guide the design of optical components, thereby answering
doubts expressed in the past as to whether the numerical
solution presented here would accurately handle wire antennas
in a space partially filled with dielectric medium,16,17 such
as antennas defined on a dielectric substrate. (4) The finite
conductivity of gold is taken into account in our calculations
(details in the Appendix) and is derived from the optical
constants found in Ref. 18.

Our solution follows the outline of the derivation presented
in Ref. 8 for the numerical integration of Pocklington’s equa-
tion in the case of a straight cylindrical rod antenna. We first de-
rive the integral equation governing the behavior of V-shaped
cylindrical antennas, reduce the two-dimensional problem to
one dimension, and implement a numerical solution based on
the MoM. We initially obtain the current distribution driven at
the surface of the antenna by a known incident field. The far
field scattered by the antenna in any direction, with amplitude,
phase, and polarization information, is then calculated as the
coherent sum of the fields scattered by a series of infinitesimal
current elements distributed along the antenna and having their
amplitude and phase given by the current distribution, using
an analytical expression for the radiation pattern of interfacial
dipoles.19 The numerical solution is detailed in the Appendix.

III. RESULTS

A. Comparison with FDTD

In order to compare our results with FDTD simulations, we
calculated the far-field amplitude and phase of the scattered
field for different antenna lengths h, ranging from 0.6 μm
(total length) to 3.2 μm, and different opening angles �,
ranging from 0 ◦ to 180 ◦. The antenna is illuminated by
a plane wave coming at normal incidence with respect to
the antenna plane. The details of the FDTD simulations are
provided in the Appendix. In Fig. 2, we present the calculated
amplitude and phase response of the V-shaped antennas, in the
direction normal to the antenna plane, for an incident electric
field oriented either along the symmetric [Figs. 2(a)–2(d)] or
antisymmetric [Figs. 2(e)–2(h)] plasmonic mode (see inset
schematics).

We observe a very good agreement between FDTD cal-
culations and our MoM calculations, demonstrating that our
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FIG. 2. (Color online) (a), (c) Amplitude [(b), (d) Phase] of the
scattered field in the direction normal to the plane of the antenna for
an incident electric field oriented parallel to the symmetric mode (see
insets and Fig. 1), obtained with (a), (b) FDTD calculations and (c),
(d) our MoM numerical solution, for different antenna geometries.
(e)–(h) are similar to (a)–(d), but for an incident electric field oriented
parallel to the antisymmetric mode. Details of the FDTD simulations
are provided in the Appendix. For the phase plots, the colors encode
the phase and we superposed a white mask whose transparency is
proportional to the amplitude of the scattered field: the lower the
amplitude, the whiter the pixel (see color bar). This enables one to
highlight the significant areas of the plot only, i.e., the one where
the scattered amplitude is strong. A white frame is added in (e)
and (g) to highlight the region where our approximations are least
valid and where the main differences are observed between our MoM
calculations and FDTD simulations. The FDTD maps have 57 × 37
cells, each corresponding to a different three-dimensional simulation.
The MoM maps have 100 × 100 cells.

calculations give an accurate picture of the phase and ampli-
tude response of nanoscale V-shaped antennas. Importantly,
each point on the map is calculated in about 10 milliseconds
on a desktop computer using our method, compared to
about 15 minutes for the corresponding FDTD simulation.
In order to obtain the full map with 57 × 37 points, each
corresponding to a different geometry and thus requiring a new
three-dimensional simulation, three weeks of computation is
needed for FDTD, while only about 100 seconds is required
with our method to obtain 100 × 100 points.

In the symmetric mode [Figs. 2(a)–2(d)], excited by an
incident electric field parallel to the axis of symmetry of the
antenna, the current distribution in each arm approximates that
of an individual straight antenna of length h/2, and therefore
the first-order antenna resonance occurs at h/2 � λ0/(2neff).20

In the antisymmetric mode [Figs. 2(e)–2(h)], excited by an
incident electric field perpendicular to the axis of symmetry of
the antenna, the current distribution in each arm approximates
that of one half of a straight antenna of total length h, and
the condition for the first-order resonance of this mode is
h � λ0/(2neff). These features can be observed in Fig. 2, where
a maximum of the scattered field amplitude is observed when a
resonance condition is satisfied. We also observe a phase shift
of magnitude approximately equal to π across the resonances,
as is expected across any resonance.

The scattered field amplitude vanishes for large (small)
opening angles � for a symmetric (antisymmetric) excitation,
corresponding to the evolution of the scattering cross sections
with opening angle. We note that for the symmetric mode,
the results from our numerical solution are still in very good
agreement with FDTD for small �, where near-field interac-
tions between the two arms are expected to be maximum. This
suggests that distortions of the current distributions induced
by coupling effect between the two arms are well accounted
for in our numerical solution.

The scattering amplitude at small opening angles (� <

90 ◦) and close to the first antisymmetric resonance [Figs. 2(e)
and 2(g), within the white frame] shows the main divergence
between our calculations and FDTD simulations. This region
(the lower left corner) corresponds to the region where the
thin-wire approximation is the least valid since the arm length
is only two to three times larger than the antenna diameter.
We observe that the scattering amplitude decays faster in our
MoM calculations than in FDTD simulations as the opening
angle is reduced. The geometry simulated by FDTD [see
Fig. 1(b)] is such that there is always a significant portion of the
antenna, in particular at the junction, that is oriented parallel
to the antisymmetric excitation (i.e., perpendicularly to the
antenna symmetry axis). This is a result of the finite width
of the arms. We thus expect a slow decrease of the scattering
cross section with decreasing opening angle. In contrast, the
effective geometry considered in our MoM calculations is that
of an infinitely thin wire. This effect is thus not taken into
account and we expect the scattering cross section to decrease
faster with decreasing opening angles. In the rest of this work,
we will leave out this region in our discussion of the results.

One could expect in a first-order approximation that as
the opening angle is reduced for a fixed antenna length, the
resonance position does not move and only the scattering
cross section is reduced. However, the “tilted” shape of the
symmetric resonance in Figs. 2(a) and 2(c) suggests the
opposite. The red shift (blue shift) of the resonance as the
opening angle is reduced for the symmetric (antisymmetric)
mode is a result of the interaction between the two arms of
the V-shaped antennas. Charges of similar (opposite) signs
accumulating at both extremities of the antenna contribute
to a weaker (stronger) restoring force in the symmetric
(antisymmetric) mode, and thus a red shift (blue shift). We
note that we use the expressions red and blue shift even though
our results are for a fixed wavelength because we translate a
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FIG. 3. (Color online) (a), (c) Amplitude and (b), (d) phase of the
scattered field component polarized perpendicularly to the incident
polarization for different antenna geometries. The incident electric
field is polarized at 45 ◦ with respect to the symmetry axis of the
antenna. (a) and (b) are obtained with our MoM numerical solution,
while (c) and (d) are obtained with FDTD simulations. Details of
the FDTD simulations are provided in the Appendix. (e) and (f)
correspond, respectively, to the absolute difference between (a) and
(c) (amplitude) and (b) and (d) (phase). A white frame is added in
(e) and (f) to highlight the region where the main differences are
observed between our MoM calculations and FDTD simulations.

resonance shifting to a longer (shorter) antenna length as a
blue shift (red shift) of the resonance.

The polarization of the scattered radiation is the same as
that of the incident light when the latter is polarized parallel
or perpendicular to the antenna symmetry axis. However, for
an arbitrary incident polarization, both antenna modes are
excited with different amplitude and phase because of their
distinct resonance conditions. As a result, the scattered light
can have a different polarization from that of the incident light.
In Figs. 3(a) and 3(b), we show the amplitude and phase of
the scattered field component polarized perpendicularly to the
incident polarization, which is itself polarized at 45 ◦ with
respect to the symmetry axis of the antenna. The plots are
obtained with our MoM numerical solution. The two areas
of highest amplitude correspond to the resonant excitation of
either the symmetric or the antisymmetric mode. Across each
of these resonances, a π phase shift is observed, so that overall
a coverage of almost the full 2π range can be achieved.1

In Figs. 3(c) and 3(d), we show for comparison purposes
the same quantities as in Figs. 3(a) and 3(b), as obtained
with FDTD simulations. The absolute differences between
the results of the two calculation methods are shown in
Figs. 3(e) and 3(f), for the amplitude and the phase of the

FIG. 4. (Color online) (a) Current distribution along an antenna
of total length h = 2.4 μm for opening angles � from 30 ◦ to 180 ◦.
The incident electric field is polarized along the symmetric mode (see
inset). The incident wavelength is λ0 = 7.7 μm. The height indicates
the amplitude of the current, while the phase is given by the color.
(b) is similar to (a) for an incident electric field polarized along the
antisymmetric mode (see inset). The black lines are drawn at regular
intervals of 30 ◦ in order to outline the amplitude variations of the
current distribution. The position along the antenna is indicated by
the curvilinear coordinate running along the antenna from one end
to another, with its origin at the junction. Black arrows on the inset
schematics of the antennas indicate the direction of the current in
each arm for the symmetric and antisymmetric modes.

cross-polarized scattered field. Except for the lower left corner
already discussed above, the two methods are in agreement to
within ≈0.15 in amplitude and π/10 in phase. These results
demonstrate that resonant midinfrared plasmonic antennas are
within the domain of validity of our approximations. The
errors observed (lower left corner) stem from distortions of the
antenna response created by the finite width of the antenna.
Provided that the antenna geometry has a sufficient aspect ratio
between the width and the length of the antenna, on the order
of 1 : 4, such errors remain small.

Using the maps presented in Figs. 3(a) and 3(b), one can
quickly explore a large design-parameter space for V-shaped
antennas, choose antennas with specific amplitude and phase
response in the cross polarization, and assemble them to form
an arbitrary phase and amplitude profile. For examples, for
the phase-gradient plate used in Ref. 1, antennas with similar
scattering amplitudes and regularly spaced scattering phases
were chosen.

B. Current distribution

As mentioned above, we approximate the current to be
purely axial. The current distribution is then fully described
once given the complex value of the current as a function of
the curvilinear coordinate running along the antenna length,
as plotted in Fig. 4 for a constant antenna length h = 2.4 μm
and for opening angles � varying from 30 ◦ to 180 ◦. The π

155457-4



MODELING NANOSCALE V-SHAPED ANTENNAS FOR THE . . . PHYSICAL REVIEW B 85, 155457 (2012)

FIG. 5. (Color online) (a) Amplitude and (b) phase of the current
along an antenna with opening angle � = 45 ◦ and total antenna
length varying from 0.6 to 10 μm. The incident electric field is
polarized along the symmetric mode. The incident wavelength is
λ0 = 7.7 μm. The labels A, B, and C indicate the position of the first
three resonances observed. (c) and (d) are similar to (a) and (b) for
an incident electric field polarized along the antisymmetric mode and
for an opening angle of � = 135 ◦.

phase difference between the two arms for the symmetric mode
[Fig. 4(a)] indicates that the current flows in opposite direction
in the two arms. We note here that we define the direction of the
current with respect to the curvilinear coordinate orientation
running from one end of the antenna to the other. There is a
node of current at the center of the antenna. This agrees well
with the picture of the symmetric mode being analogous to the
mode supported by two parallel individual straight antennas
of length h/2. In contrast, the asymmetric mode [Fig. 4(b)]
features a single lobe consistent with it being approximately
equivalent to the mode of a single straight antenna of total
length h.

The small distance between the two arms leads to near-field
coupling translating into distortions of the current near the
junction, especially for small opening angles. This is illustrated
by the central dip which appears in the current distribution of
the antisymmetric mode for small opening angles. This feature
can be easily understood since, for � < 90 ◦, the electric field
radiated by the current in one arm opposes the current in the
other arm. On the contrary, a small increase of the current near
the junction can be observed for the symmetric mode (and for
� < 90 ◦), since now the electric field radiated by one arm
contributes to drive the current in the other arm.

Figure 5 shows the current distribution along the antenna
(with the position indicated by the curvilinear coordinate)
for opening angles � = 45 ◦ [Figs. 5(a) and 5(b), with the
incident electric field polarized along the symmetric mode]
and � = 135 ◦ [Figs. 5(c) and 5(d), with the incident electric
field polarized along the antisymmetric mode] and different
arm lengths h/2. We can observe the appearance of the
higher order modes with increasing length. For the symmetric

FIG. 6. (Color online) (a) Schematic with definition of the far-
field coordinates (θFF, ϕFF). The incident electric field is propagating
along the z axis and is polarized along the y axis. The antenna is
in the x-y plane. (b) Current distribution (amplitude and phase)
for a V-shaped antenna with � = 135 ◦ and h/2 = 1.2 μm. The
angle α between the symmetry axis of the antenna and the incident
polarization is 45 ◦ (see inset schematic) in order to excite both
symmetric and antisymmetric modes. Corresponding (c) amplitude
and (d) phase of the cross-polarized scattered field for different
far-field coordinates (θFF, ϕFF). The distance to the center of the plot
is proportional to θFF, with θFF = 0 at the center and θFF = π/2 at the
edge. The white circles represent values of θFF regularly spaced from
0 to π/2. The azimuthal angle of the plot is equal to ϕFF.

mode [Figs. 5(a) and 5(b)], the single lobe observed in
each arm for h/2 � λ0/(2neff) (A) splits into three lobes
for h/2 � 3λ0/(2neff) (C). This is again consistent with the
picture of the symmetric mode being analogous to the mode
supported by two parallel individual straight antenna of length
h/2. Interestingly, we observe an intermediate resonance for
h/2 � 2λ0/(2neff) (B), whose excitation should be prohibited
by symmetry considerations. The coupling between the two
arms enables one to couple energy into this mode. Other details
of the current distribution indicate the effects of near-field
coupling between the two arms, such as the asymmetry in
the three-peak high-order pattern observed in each arm for
h/2 = 4 μm (C): the side lobe closer to the junction does not
have the same shape as the one close to the extremity of the
antenna. For the antisymmetric mode [Figs. 5(c) and 5(d)], the
single lobe observed at h � λ0/(2neff) splits into three (and
then five, seven,...) lobes for h equal to odd-integer multiples
of λ0/(2neff), in agreement with it being approximately
equivalent to the mode of a single straight antenna of total
length h.

C. Far-field radiation pattern

We now study the far-field radiation pattern of a given
V-shaped antenna with � = 135 ◦ and h/2 = 1.2 μm. The
geometry and the definition of the far-field coordinates are
represented in Fig. 6(a) and the current distribution is
shown in Fig. 6(b). The angle α between the symmetry axis
of the antenna and the incident polarization is 45 ◦. The
current distribution is a superposition of a symmetric and an
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antisymmetric mode, featuring two lobes reminiscent of the
first-order symmetric mode and a nonvanishing current at the
junction as for the antisymmetric modes.

In Fig. 6(c), we show the amplitude of the cross-polarized
scattered field. The far field is calculated as the coherent sum
of the far fields radiated by infinitesimal current elements
distributed along the antenna, having phase and amplitude
following the current distribution plotted in Fig. 6(b). The
cross-polarized scattered field, i.e., the scattered field compo-
nent resulting from a 90 ◦ polarization conversion process,
is obtained as the coherent sum of the fields radiated by
the projections of these current elements on the x axis. The
information on the position of the current elements, one
relative to the other, along the antenna is kept in order to
calculate the interference of the fields radiated by different
current elements. Note that the phase difference between
the fields radiated by different current elements contains a
geometric term as well as a term coming from the nonuniform
phase of the current distribution along the antenna. We observe
that the main lobe is not in the direction normal to the plane
of the antenna as a result of interference between the fields
radiated by different sections of the antenna. The symmetry
of the antenna is not preserved in the far field since the
incident electric field is not along one of the antenna symmetry
or antisymmetry axes. The asymmetric amplitude and phase
profile of the current distribution in Fig. 6(b) also illustrates this
point. The scattered intensity vanishes in all directions parallel
to the antenna plane. This is a known result for dipoles located
at an interface between two different dielectric media.19

The phase of the cross-polarized scattered field is shown in
Fig. 6(d). It is interesting to observe that it is not constant, with
variations on the order of π/8 over the main scattering lobe.
A good knowledge of the amplitude and phase profile of the
scattered field over the full half space is important to optimize
optical components relying on the precise engineering of the
scattering of the antennas at large angles, such as short-focal-
distance flat lenses.

IV. CONCLUSION

In summary, using the integral equation method of mo-
ments, we presented an accurate and efficient numerical
computation of the current distribution in V-shaped antennas
excited by an electric field of arbitrary polarization. Using
this information, we extracted the far-field phase, amplitude,
and polarization response of these elements in any direction.
We demonstrated the accuracy of our numerical solution
by comparing the results with FDTD simulations. The key
element leading to the increased computational efficiency
is the use of the thin-wire approximation, which effectively
reduces the problem to one dimension. This approximation
necessitates aspect ratios of at least 1 : 4 between the width
and the length of the antenna. We discussed details of the
current distribution related to near-field coupling between the
two arms of the antennas. The numerical method presented
here enables a fast probing of the large design-parameter
space of V-shaped antennas, which have been shown to be
essential building blocks for optical elements relying on phase
discontinuities.1
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APPENDIX

1. General problem

Our solution is inspired by the derivation found in Ref. 8 of
the numerical integration of Pocklington’s equation in the case
of a straight rod antenna. After deriving the integral equation
governing the behavior of V-shaped antennas, we generalize
the numerical solution to a two-dimensional problem.

We initially want to solve for the current distribution driven
at the surface of the antenna by a known incident field Einc.
By either assuming that the antenna is made of perfect electric
conductor (PEC), or by modeling accurately the finite conduc-
tivity of a real metal, we obtain a relation between the incident
and the scattered electric field Escat, which is valid at the surface
of the antenna. Using Maxwell’s equations for the scattered
field, we further link the scattered field at the surface of the
antenna and the current that radiates it. We thus finally obtain
an integral equation expressing the scattered field as a function
of the current distribution. Using a numerical method, we can
then invert this equation and solve for the current. Once the
current distribution is known, we are able to derive the electric
field Escat scattered by the antenna in all space (we initially
only knew Escat at the surface of the antenna) and thus infer
the far-field response in amplitude, phase, and polarization, in
any direction. Figure 7(a) describes the geometry and defines
the parameters used in the following derivation.

We start from Maxwell’s equations to connect the scattered
fields Escat and Bscat to the current and charge sources:19

∇ · Bscat = 0, (A1a)

∇ × Escat = −jωBscat, (A1b)

∇ · Escat = ρ

ε0εr

, (A1c)

∇ × Bscat = μ0J + jωn2

c2
Escat. (A1d)

We assume here that the antenna is embedded in a uniform
dielectric medium with refractive index n = √

εr .
From Eqs. (A1a) and (A1b), we infer the existence of the

magnetic and electric potentials A and ϕ satisfying

Escat = −∇ϕ − jωA, (A2a)

Bscat = ∇ × A. (A2b)
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FIG. 7. (Color online) (a) Schematic of a cylindrical antenna of
radius a and total length h. We represented the vector potential A(r)
at point r(ρ,θ,z), radiated by the element of current I (z′) ρ′dθ ′

2πa
at point

r′(ρ ′,θ ′,z′). (b) Schematic of a V-shaped antenna with opening angle
�. Note that the vector potential radiated by an element of current in
one arm is not parallel to the other arm. The orientation of the antenna
with respect to the incident electric field is defined by the angle α

between the axis of symmetry of the antenna and the electric-field
polarization.

Substituting Eq. (A2) and the Lorenz gauge ∇ · A +
jωμ0ε0εrϕ = 0 into Eqs. (A1c) and (A1d), we obtain the
Helmholtz wave equation for the potentials:

∇2ϕ + k2ϕ = − ρ

ε0εr

, (A3a)

∇2A + k2A = −μ0J, (A3b)

where k = ωn/c.
In order to find a solution to Eq. (A3b), we introduce

the Green function G(r), which is the solution of the Green
problem ∇2G(r) + k2G(r) = −δ(r), where δ is the Dirac delta
distribution. In a three-dimensional space, the solution is given
by G(r) = e−jk|r|

4π |r| . We then write the solution of Eq. (A3b) as
the convolution of G(r) with the current source μ0J :

A(r) = (G ∗ μ0J)(r) = μ0

4π

∫ ∫ ∫
R3

J(r′)
e−jk|r−r′ |

|r − r′| dr′. (A4)

For a rod made of a perfect electric conductor with
vanishing skin depth, conservation of the tangential component
of the electric field at the rod surface gives

ẑ · [Escat(ρ = a) + Einc(ρ = a)] = 0, (A5)

where ẑ is a unit vector tangential to the antenna at the point
where Eq. (A5) is evaluated. In the case of a straight antenna, ẑ
is parallel to the antenna axis. We study later how this relation
is modified in the case of a real metal with finite conductivity.
We consider the current to be limited to the surface of the
rod (ρ = a). This is exact in the case of a perfect electric
conductor and represents an approximation in the case of
real metals. Furthermore, using the thin-wire approximation
(a � λ and a � h), we can consider the current distribution
J(r) to be axial and azimuthally invariant.17 We can thus define
the quantity I (z) such that J(r) = ẑI (z)δ(ρ − a) 1

2πa
. A sharp

angle on the antenna, as in the case of the V antennas discussed
later, could break down this approximation. However, since
a current element at one point affects the vector potential
at another point with a magnitude decaying as the inverse
of the distance between the two points [see Eq. (A4)], the
perturbation introduced by a sharp angle will remain local
so that we can still consider the approximation valid along the
entire antenna, except in the immediate vicinity of the junction.

We can now rewrite Eq. (A4) as

A(r) = μ0

4π

∫∫∫
R3

ẑ′I (z′)δ(ρ ′ − a)
e−jk|r−r′ |

2πa|r − r′|ρ
′dρ ′dφ′dz′

= μ0

4π

∫ h
2

− h
2

ẑ′I (z′)dz′K(|r − r′|), (A6)

where we introduced the kernel K(|r − r′|) as

K(|r − r′|) ≡ 1

2π

∫ 2π

0

e−jk|r−r′ |

|r − r′| dφ′. (A7)

Additionally, substituting the Lorenz gauge in Eq. (A2a),
we obtain

Escat = 1

jωμ0ε0εr

[∇(∇ · A) + k2A]. (A8)

Writing this equation at the surface of the antenna, where we
can express Escat as a function of the known incident field Einc,
we can solve Eqs. (A6) and (A8) for the current distribution
I (z). Once the source current is known, we can determine Escat

in any point of space. Because we approximate the current as
flowing only along a wire, we are only solving for a scalar
quantity. Thus, solving a scalar equation is enough and we will
use the projection of Eq. (A8) on the tangent to the antenna at
each point to obtain J .

Combining Eqs. (A5), (A6), and (A8) leads to a
Pocklington-type equation.12 This equation has no exact
analytical solution. However, it can be studied numerically.
In order for the numerical solution to be tractable in a
reasonable time, we use an approximation for the expression
of the kernel defined in Eq. (A7). Using again the thin-wire
approximation, we can simplify the kernel by observing that
the distance |r − r′| is basically independent of φ′ and, in
the case of a straight antenna, approximately equal to Rr =√

(z − z′)2 + a2. We will refer to this simplified expression
as the effective distance. We thus obtain the reduced kernel,
Kr (z − z′) = e−jkRr

Rr
. This approximation is valid as long as

| z−z′
a

| is not too close to zero. Indeed, we notice that Kr (0) =
e−jka

a
, whereas the exact kernel K diverges for |r − r′| → 0.

We will come back to this issue when explaining the details of
our numerical solution.

2. V-shaped antennas

We now consider the case of a V-shaped antenna as
represented in Fig. 7(b). The two arms of the antenna are 1 and
2, respectively, in the directions γ̂1 and γ̂2. For convenience,
we choose γ̂1 to be collinear to the ẑ axis. The angle between
the two arms, oriented in the positive direction from γ̂1 to γ̂2, is
�. We consider the curvilinear coordinate l along the antenna
length, with origin at the junction point O, positive on 1 and
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negative on 2. For the sake of simplicity, we consider that the
two arms have equal length h/2. However, the solution could
be easily generalized to an asymmetric configuration with two
different arm lengths.

The effective distance between a current source
at coordinate l′ and the observation point (x,z) for
the vector potential can be written as Rr (x,z,l′,�) =√

a2 + [z + l′ cos(�)]2 + [x − l′ sin(�)]2, where � = π if l

and l′ are on the same arm, and � = � otherwise. We note that
the expression for a linear antenna is recovered by setting � =
π , l′ = z′, and x = 0. The term a2 comes from the thin-wire
approximation. Using this effective distance, we can define a
reduced kernel as introduced above: Kr (x,z,l′) = e−jkRr

Rr
. We

consider here that the observation point is in the z-x plane of
the antenna. This is justified by the thin-wire approximation
for which azimuthal variation of the current on the wire surface
is neglected. In other terms, we consider that the current is only
a function of the curvilinear coordinate l.

Now that the problem is two dimensional, the vector
potential radiated by an element of current at one point of the
antenna is not always parallel to the antenna at another point.
This represents the main challenge of the calculation presented
here. In writing Eq. (A8), cross derivatives now appear for the
term ∇(∇ · A):

∇(∇ · A) · ẑ =
[

∂

∂z

(
∂

∂z
Az + ∂

∂x
Ax

)]
. (A9)

We can directly compute the expression ∂
∂x

Ax from the
analytical expression of Ax , written using the reduced kernel
introduced above:

Ax(x,z) = μ0

4π

∫ 0

− h
2

I (l′)
e−jkRr (x,z,l′,�)

Rr (x,z,l′,�)
dl′(−γ̂2 · x̂). (A10)

Note that only the current flowing in 2 creates a nonvan-
ishing component of A along the x axis, hence the integration
is limited to [−h/2,0]. We then obtain

∂

∂x
Ax

∣∣
x=0(x,z) = μ0

4π

∫ 0

− h
2

I (l′)
e−jkRr

R3
r

(1+jkRr ) sin2(�)l′dl′.

(A11)

We now write Eq. (A8), evaluated in x = 0 and z = l, for all
l ∈ 1, using (A6) and (A11), and we obtain a Pocklington-
type equation generalized to our two-dimensional problem:

[
∂2

∂l2
+ k2

] [
jη

2π

∫ h
2

− h
2

I (l′)K̃1(l,l′,�)dl′
]

+
[

∂

∂l

] [
jη

2π

∫ h
2

− h
2

I (l′)K̃2(l,l′,�)dl′
]

= 2kEγ1 (l) ∀ l ∈ 1, (A12)

where

K̃1(l,l′,�) = −e−jkRr (0,l,l′,�)

Rr (0,l,l′,�)
H (−l′) cos(�)

+ e−jkRr (0,l,l′,π)

Rr (0,l,l′,π )
H (l′),

K̃2(l,l′,�) = sin2(�)
e−jkRr (0,l,l′,�)

R3
r (0,l,l′,�)

× [1 + jkRr (0,l,l′,�)]l′H (−l′).

The Heaviside function H [defined as H (l) = 1 ∀ l � 0
and H (l) = 0 ∀ l < 0] was used to distinguish contributions
to the vector potential A from 1 (l′ > 0) and 2 (l′ < 0),
respectively. We introduced two reduced kernels K̃1 and K̃2

containing, respectively, the terms Az (from both arms) and
∂
∂x

Ax (only from 2). The projection of the incident field Einc

on γ̂1 is used: Eγ1 (l) = Einc cos(�
2 + α), where α defines the

incident polarization [see Fig. 1(c)]. The constant η =
√

μ0

ε0εr

is introduced.
Equation (A12) is valid for all points along 1, i.e., it links

the current distribution over the whole antenna and the vector
potential on the surface of 1. We now obtain the second half of
the equation (l ∈ 2) by symmetry considerations (� → −�,
I → −I , l → −l, and l′ → −l′) and by introducing the pro-
jection of the incident field on γ̂2, Eγ2 (l) = Einc cos(�

2 − α):[
∂2

∂l2
+ k2

] [
jη

2π

∫ h
2

− h
2

I (l′)K̃1(−l,l′,�)dl′
]

−
[

∂

∂l

] [
jη

2π

∫ h
2

− h
2

I (l′)K̃2(−l,l′,�)dl′
]

= −2kEγ2 (l) ∀ l ∈ 2. (A13)

We used here the symmetry of our particular geometry to
simplify the derivation. When treating asymmetric geometries,
one has to rederive the equation governing the second arm, but
the general idea of the derivation remains the same.

We can now gather Eqs. (A12) and (A13) into a single
equation valid for all l in 1 ∪ 2:[

∂2

∂l2
+ k2

]
V (1)(l) +

[
∂

∂l

]
V (2)(l) = 2kE(l) ∀ l ∈ 1 ∪ 2,

(A14)

where E(l) = Eγ1 (l)H (l) + Eγ2 (l)H (−l). We introduce

V (1)(l) ≡ jη

2π

∫ h
2

− h
2

I (l′)
[
K̃1(l,l′,�)H (l)

− K̃1(−l,l′,�)H (−l)
]
dl′ (A15)

and

V (2)(l) ≡ jη

2π

∫ h
2

− h
2

I (l′)[K̃2(l,l′,�)H (l)

+ K̃2(−l,l′,�)H (−l)]dl′. (A16)

3. Numerical solution

As mentioned above, Pocklington’s integral equation can-
not be solved analytically. Here we extend the numerical
solution presented in Ref. 8 to a two-dimensional problem.

The curvilinear coordinate l ∈ [− h
2 , h

2 ] is discretized into
a vector L = [l−M,l−M+1, . . . ,lM ] with N = 2M + 1 points
spaced by a constant step D. We also define Ṽ (i)

n = V (i)(ln),i =
1,2, and Ẽn = E(ln).
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The current I (l) is expanded into a sum of basis functions
Bn chosen here to be Dirac functions [Bn(l) = δ(l − ln)],

I (l) =
M∑

j=−M

ĨjBj (l). (A17)

We note that other basis functions could be chosen, such as
triangular or sinusoidal functions. Choosing a basis of Dirac
functions greatly simplifies the evaluation of the integral over
l′ in Eqs. (A15) and (A16). We obtain

Ṽ (i)
n =

M∑
j=−M

κ
(i)
nj Ĩj , or Ṽ (i) = κ (i)Ĩ , i = 1,2, (A18)

where κ (i) are the reduced kernel matrices

κ
(1)
nj = jη

2π
[K̃1(ln,lj ,�)H (ln) − K̃1(−ln,lj ,�)H (−ln)],

κ
(2)
nj = jη

2π
[K̃2(ln,lj ,�)H (ln) + K̃2(−ln,lj ,�)H (−ln)].

The thin-wire approximation used when introducing the
reduced kernel is valid only as long as the distance between
the integration point (lj ) and the observation point (ln) is large
enough compared to the radius a of the antenna. It is thus
never valid for the diagonal terms for which lj = ln. While the
exact kernel K diverges for |r − r′| → 0, the reduced kernel
Kr keeps a finite value. In order to reduce computation time,
we set the value of the diagonal terms to 2Kr (0), so that
the value of the diagonal term is about twice the value of
the neighboring nondiagonal terms. This reproduces well the
sharp divergence of the exact kernel. Although rather coarse,
this approximation gives accurate results, as was confirmed
earlier by comparison to FDTD simulations. More refined
strategies have been developed to remove the singularity from
the kernel in Pocklington’s equation and may be of interest
for the reader.22,23 With our approximation, the diagonal terms
of the reduced kernel matrices become

κ (1)
nn = jη

π
[K̃1(ln,ln,�)H (ln) − K̃1(−ln,ln,�)H (−ln)],

κ (2)
nn = jη

π
[K̃2(ln,ln,�)H (ln) + K̃2(−ln,ln,�)H (−ln)].

For all nondiagonal terms in the matrices κ (i), we empirically
determined that we can safely use the reduced kernel expres-
sion, provided D

a
� 0.2. As D is further reduced, we observed

that the solution becomes unstable since the “discontinuity”
we introduced by setting the value of the diagonal terms
becomes sharper than the actual divergence of the exact kernel.
A finer computation of the kernel for the terms neighboring the
diagonal could be used for increased accuracy. However, our
main purpose here is to develop a simple and fast modeling tool
to probe a large parameter space, so we used the approximate
evaluation. In our numerical solution, the total length of the
antenna is discretized in 90 points, so that the minimum
step size D for the smallest antenna calculated is such that
D/a > 0.2.

The first- and second-order derivatives in Eq. (A14)
are approximated by the following finite-difference schemes
(neglecting round-off error):

∂2

∂l2
V (1)(l)

∣∣
l=ln

= Ṽ
(1)
n+1 − 2Ṽ (1)

n + Ṽ
(1)
n−1

D2
+ O(D2),

∂

∂l
V (2)(l)

∣∣
l=ln

= Ṽ
(2)
n+1 − Ṽ

(2)
n−1

2D
+ O(D2).

We can now write the discretized equation corresponding
to Eq. (A14) as

[Aκ (1) + Cκ (2)]Ĩ = QdẼ, (A19)

where

A = 1

D2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 · · · 0

1 −2α 1 0 0 · · · 0

0 1 −2α 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 1 −2α 1 0

0 · · · 0 0 1 −2α 1

0 · · · 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

with α = 1 − k2D2

2 ,

C = 1

2D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 · · · 0

−1 0 1 0 0 · · · 0

0 −1 0 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 −1 0 1 0

0 · · · 0 0 −1 0 1

0 · · · 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

and

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
. . .

...

0 · · · 0 1 0 0

0 · · · 0 0 1 0

0 · · · 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

and d = 2k.
Matrices A, C, and Q are square N × N matrices. Note

that Q represents the projection on the interior of the antenna,
i.e., excluding the two end points. We added a first row and
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a last row of zeros in the matrices A, C, and Q. These rows
do not add any equation and ensure that the finite-difference
schemes are defined for n = ±M . At this point, Eq. (A19)
represents a system of N − 2 equations for N unknowns (the
N components of the vector Ĩ ). It is therefore not invertible.
However, two unknowns are given by the boundary conditions:
I ( h

2 ) = I (− h
2 ) = 0, or, in matrix form: (IN − Q) Ĩ = 0, where

IN is the N × N identity matrix. We can finally write the
discretized Pocklington equation as

[Aκ (1) + Cκ (2)]QĨ = QdẼ. (A20)

Introducing Z̄≡([Aκ (1)+Cκ (2)]Q)
2�n�N−1
2�j�N−1

, Ī=Ĩ2�n�N−1,

and Ē = Ẽ2�n�N−1, Eq. (A20) takes the form

⎡
⎢⎣

0 0 0

0 Z̄ 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣

0

Ī

0

⎤
⎥⎦ = d

⎡
⎢⎣

0

Ē

0

⎤
⎥⎦ .

We can thus reduce the system to N − 2 equations for
N − 2 remaining unknowns (the N − 2 components of the
vector Ī ), from which we can calculate the discretized current
distribution:

Ī = dZ̄−1Ē. (A21)

4. Modeling real metals

We have so far assumed that the antenna is made of perfect
electric conductor. This assumption was only used in order
to derive Eq. (A5), i.e., the relation between the incident and
the scattered electric field at the surface of the antenna. In the
case of real metals, the boundary condition is modified with
the introduction of a finite conductivity, and using Ohm’s law,
we obtain, at the surface of the antenna,21

E‖(ρ = a)

= ẑ · [Escat(ρ = a) + Einc(ρ = a)] = 1 − j

2πa

√
μ0ω

2σ
I,

where μ0 is the magnetic permeability and σ is the ac
conductivity of the real metal, derived from the optical
constants found in Ref. 18. Equation (A21) is thus still correct
provided the matrix Z̄ is changed to Z̄ + dzintIN−2, with

zint = 1−j

2πa

√
μ0ω

2σ
.

5. Far-field calculation

Once the axial current distribution along the antenna is
known, we can calculate the scattered far field. We approx-
imate the far field radiated by the antenna as the coherent
sum of the fields radiated by a series of infinitesimal current
elements distributed along the antenna and having amplitude
and phase given by the current distribution solved for. We
use an analytical expression for the radiation pattern of an
infinitesimal electric dipole located on the plane interface
between two dielectric half spaces (air and a medium of
refractive index n).19 For the case of a dipole lying horizontally

FIG. 8. (Color online) Schematic of an infinitesimal horizontal
electric dipole located at an interface between air (z > 0) and a
dielectric medium (z < 0) of refractive index n.

along the interface, the radiated field components in air are19

Eθ = κ

[
cos2 θ

cos θ + (n2 − sin2 θ )1/2
− sin2 θ cos θ

× cos θ − (n2 − sin2 θ )1/2

n2 cos θ + (n2 − sin2 θ )1/2

]
cos φ

eik0r

r
,

Eφ = −κ
cos θ sin φ

cos θ + (n2 − sin2 θ )1/2

eik0r

r
,

where the angles θ and φ are defined in Fig. 8.

6. FDTD simulation details

FDTD simulations realized using a commercial software
(LUMERICAL FDTD) are used to validate our numerical solution.
A realistic geometry is simulated, corresponding to fabricated
V-shaped antennas.1 Both arms have a rectangular cross
section, 200 nm wide and 100 nm thick. The antennas are
defined on a silicon substrate. The interface between silicon
and air lies at the center of the simulation area, which
spans 4.5 × 4.5 × 6 μm (width × depth × height). Perfectly
matched layers (PML) enclose the simulation area. The mesh
cells are 30 × 30 × 15 nm in size in the plane of the antenna
and within a 300-nm-thick layer encompassing the silicon-air
interface (and the 100-nm-thick antenna itself). Beyond this
layer, the vertical dimension of the mesh cells (height) is
gradually increased to about 280 nm in air and 90 nm in
silicon (or about 1/25th of the wavelength in the medium).
The simulation is stopped when an auto-shutoff condition is
reached corresponding to the fields in all cells being smaller
than 10−5E0, where E0 is the incident electric-field amplitude.
The time step is smaller than 0.037 fs. The optical constants
are obtained by fitting the values found in Palik18 to a
multicoefficient model.

We use a total-field scattered-field (TFSF) plane-wave
source encompassing the antenna. The dimensions of the
total field region are 4.2 × 4.2 × 4 μm. The plane wave is
launched in the direction perpendicular to the antenna, from
the silicon side. A monitor is placed outside this region to
isolate the scattered fields. A near- to far-field transform is then
used to calculate the scattered field radiated in the direction
perpendicular to the plane of the antenna.
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