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The linewidth enhancement factor (LEF) has recently moved
into the spotlight of research on frequency comb generation
in semiconductor lasers. Here we present a novel modulation
experiment that enables direct measurement of the spec-
trally resolved LEF in a laser frequency comb. By utilizing
a phase-sensitive technique, we are able to extract the LEF
for each individual comb mode in any laser type. We first
investigate and verify this universally applicable technique
using Maxwell–Bloch simulations. Following, we present the
experimental demonstration on a quantum cascade laser fre-
quency comb, confirming the predicted key role of the LEF in
frequency comb dynamics.
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Semiconductor lasers are compact and electrically pumped and
provide substantial broadband gain. They are recently gaining
vast attention due to a wide range of applications that utilize their
coherence properties, such as high-precision spectroscopy [1].
Their asymmetric gain spectrum additionally sets them apart from
other laser types, where the lasing transition takes place between
two discrete levels. Following the Kramers–Kronig relations, an
asymmetric gain shape results in a dispersion curve of the refractive
index that has a non-zero value at the gain peak [2]. As a conse-
quence, a remarkable property of semiconductor lasers is that both
the refractive index and the optical gain change simultaneously
with the varying carrier population [3]. This property was quan-
tified with the linewidth enhancement factor (LEF), also called
the α-factor, defined by Henry as the ratio of changes of the modal
index and gain [4]. Many unique properties of semiconductor
lasers can be traced back to the non-zero value of this factor at the
gain peak. The LEF was first introduced in the 1980s to describe
the broadening of the semiconductor laser linewidth [4,5] beyond
the Schawlow–Townes limit [6]. Furthermore, the LEF determines
the dynamics of semiconductor lasers, as it describes the coupling

between the amplitude and phase of the optical field [7,8]. In lasers
with fast gain recovery times, the LEF was recently connected to
the onset of a giant Kerr nonlinearity [9] and frequency modulated
combs [10]. It was shown that the light amplitude–phase coupling,
quantified by the LEF, can lead to a low-threshold multimode
instability and frequency comb formation [11,12]. Appropriate
values of the LEF were predicted to result in the emission of
solitons in active media [13]. Precise knowledge of the LEF rep-
resents a key point in understanding many astonishing features of
semiconductor lasers and subsequently controlling them.

The physical origin of the non-zero LEF at the gain peak is
explained through the asymmetric gain spectrum of semiconduc-
tor lasers. In interband lasers, gain asymmetry is due to the opposite
curvatures of the valence and conduction bands in k-space [7],
which yield LEF values ∼2− 7 [3]. In intersubband lasers, such
as quantum cascade lasers (QCLs), where the states have simi-
lar curvatures, the gain asymmetry originates from the subband
non-parabolicity [14], counterrotating terms [15], and Bloch gain
[9]. In QCLs, measured values of the LEF range from−0.5 to 2.5
[11,16–19].

An established technique for extracting subthreshold values
of the LEF is the Hakki–Paoli method by measuring the peak
gain and wavelength shift [20,21]. Above threshold values can
be inferred from the measurements of the linewidth broadening
compared to the Schawlow–Townes limit [4] and the phase noise
[22]. Other methods are based on analysis of the locking regimes
induced by optical injection from a master laser [23], or on the
optical feedback and characterization of the self-mixing signal
[24,25]. Harder et al. provided a study of a single-mode laser’s
response under modulation of the injection current and were able
to extract the LEF value [26]. In a modified experiment, hetero-
dyne detection of a modulated single-mode QCL signal allowed
a direct measurement of the LEF [16]. All of the mentioned tech-
niques have one substantial limitation: they do not resolve the
spectral dependence of the LEF. Most methods rely on single-mode
operation, which is achieved either in Fabry–Pérot lasers slightly
above lasing threshold or by using distributed feedback (DFB)
lasers. In DFBs, the LEF is not measured at the exact position of
the gain peak, since the lasing frequency is detuned. In a semicon-
ductor optical amplifier, the LEF was measured spectrally resolved
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using a tunable single-mode laser [27]. However, measuring the
LEF in an amplifier does not consider the impact of gain satu-
ration, which has been shown to affect the LEF in an operating
laser [9].
In this work, we introduce a novel measurement technique that
enables the direct spectrally resolved measurement of the LEF of
a semiconductor laser operating in the frequency comb regime.
It extends the modulation experiment used by Harder et al. [26]
and enables extraction of the LEF for each individual comb mode
from a single measurement. Each comb mode, together with its
neighboring sidebands, created by RF modulation of the laser
bias current, produces two beatings. The knowledge of both the
amplitude and phase of these beatings enables the extraction of
the LEF for every mode across the entire comb spectrum. This
is made possible by shifted-wave interference Fourier transform
spectroscopy (SWIFTS) [28,29], as it allows to measure the spec-
trally resolved amplitudes and phases of all beatings in a single-shot
measurement. We first lay down the theoretical foundations of our
method. Subsequently, we compare the obtained analytic values
of the LEF with those extracted from numerical simulations of a
single-mode laser and a laser frequency comb. This is followed by
an experimental demonstration, where the method is employed on
a QCL frequency comb.

In the presence of a non-zero value of the LEF, a sinusoidal
modulation of the laser bias current results in both intensity modu-
lation (IM) and optical frequency modulation (FM) of the laser
output [7,26]. The optical field E (t) of a modulated single-mode
laser is given by

E (t)=
√

I0

√
1+m cos(2π fmodt + φ)

× cos(2π f t + β sin(2π fmodt + φ + θ)), (1)

where I0 is the average intensity, f is the lasing frequency, fmod is
the modulation frequency, and m =1I/I0 and β =1 f / fmod

are the IM and FM indices, respectively, where1I and1 f are the
amplitudes of the modulation-induced variations of the intensity

and optical frequency [30]. We include an additional arbitrary
phase shift φ with respect to the current modulation and an FM-
IM phase shift θ . The modulation of the instantaneous optical
frequency is given by fi = f + β fmod cos(2π fmodt + φ + θ).

Using the Jacobi–Anger expansion [31], we write Eq. (1) as a
Fourier series (Supplement 1):

E (t)=
√

I0

+∞∑
n=−∞

En exp(2iπ( f + n fmod)t). (2)

Under the assumption of weak modulation strength
(m, β� 1), the complex beating signals B± between the central
mode E0 and its first modulation sidebands E± can be written as

B+ = E+E ∗0 = ei(φ+θ)
(
β

2
+

m
4

e−iθ
)
,

B− = E0 E ∗
−
= ei(φ+θ)

(
−
β

2
+

m
4

e−iθ
)

. (3)

The extraction of the modulation indices m and β is possible
from Eq. (3) only if both the amplitudes and phases of B± are
known. Furthermore, this is also valid in the case of a multimode
laser, where each mode k produces beatings Bk,± with its neigh-
boring modulation sidebands. With knowledge of the modulation
indices, the spectral LEF for each mode k can be calculated directly
[3,16,18,26], and the determination of its sign is explained in
Supplement 1:

LEFk = 2
βk

mk
=

∣∣∣∣ Bk,+ − Bk,−

Bk,+ + Bk,−

∣∣∣∣ . (4)

The emission spectrum of a modulated single-mode laser is
sketched in Fig. 1(a) (top) in the cases when only IM or FM is
present. The corresponding beating signals B± between the central
mode and the sidebands are plotted below in the complex plane.
They are in-phase with each other in the case of a pure IM, and

Fig. 1. Intensity modulation (IM) and frequency modulation (FM) of a single-mode laser and the LEF extraction. (a) Modulation sidebands and their
beating signals B± with the center mode in the case of a pure IM or FM (top). The beatings are represented in the complex plane (red). A mixture of both IM
and FM is analyzed for two values of the IM-FM phase shift θ . (b) Simulated time traces of the laser intensity and instantaneous frequency. Analytical curves
given by Eq. (1) (red dashed-dotted lines) are fitted to the numeric time traces (blue solid lines), obtained from simulation [10]. The frequency is modu-
lated around the lasing frequency f , and the time is normalized to the modulation period Tmod, with fmod = 3GHz. The phase shift between the frequency
and intensity modulations is θ ≈ π/2. (c) Dependence of the calculated LEF on the lasing frequency of a simulated single-mode laser. Simulations are con-
ducted for three values of the LEF at the gain peak αpeak. The lasing frequency is swept in discrete steps around the gain peak frequency fpeak. The values
extracted by using Eq. (4) are represented with symbols. The analytic model of the LEF, given by Eq. (S14) in Supplement 1, is plotted with solid lines. The
two methods are in agreement.
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Fig. 2. LEF of a simulated multimode semiconductor laser frequency
comb. The normalized intensity spectrum is depicted on the top. The
spectrally resolved LEF is shown on the bottom. Red dots represent the
LEF for each lasing mode, calculated using Eq. (4). The solid blue line
depicts the LEF from the analytic model [Eq. (S14) in Supplement 1].

anti-phase (π phase-shifted) for a pure FM. In a modulated semi-
conductor laser, a mixture of IM and FM is always present, due to
the coupling between the gain and the refractive index. The beat-
ing signals in this case are sketched in Fig. 1(a) for two exemplary
values of the FM-IM phase shift θ = 0 and π/3, which in a real
experimental setting is unknown a priori.

In Fig. 1(b), we show the instantaneous intensity and frequency
of a simulated semiconductor single-mode laser biased above
threshold with a small superimposed sinusoidal modulation. We
obtain them from a numerical spatiotemporal model of the laser
based on the Maxwell–Bloch formalism [10,11], which addi-
tionally includes the LEF. The analytical model given by Eq. (1)
is fitted to the numerical time traces of both the instantaneous
intensity and frequency. The IM-FM phase shift θ approachesπ/2
[Fig. 1(b)]. However, its value cannot be a priori assumed without
measurement, since effects such as thermal and adiabatic chirp can
have a large impact [18,32]. Therefore, our measurement tech-
nique removes this uncertainty by not depending on the value of
θ (Eq. (4)). In Fig. 1(c), we show the extracted LEF of a simulated
single-mode laser, whose lasing frequency was tuned in discrete

steps around the gain peak frequency fpeak. We extracted the LEF
using Eq. (4). The simulations are conducted for three different
values of the LEF at gain peaks αpeak = 0.5, 2 and 4, represented
by green triangles, red squares, and blue circles, respectively. The
extracted LEF values from the numerical model are in excellent
agreement with the LEF obtained from the analytical model (solid
lines) of the optical susceptibility [33,34] [Eqs. (S12) and (S14) in
Supplement 1].

Now, we extend this technique to a laser frequency comb.
The modulation of the laser current induces modulation side-
bands around each comb mode. By finding the beatings Bk,±

of each mode with its sidebands, we can obtain the LEF of each
comb mode. Figure 2 shows an intensity spectrum of a simu-
lated laser in a multimode comb regime. The extracted spectrally
resolved LEF is plotted with red dots below, together with the LEF
from an analytical model of the laser gain medium [Eq. (S14) in
Supplement 1], represented with the blue solid line. We attrib-
ute the slight deviations to coherent mechanisms that couple the
frequency comb modes.

Experimentally, the amplitudes and phases of the beatings
Bk,± can be measured most elegantly using SWIFTS [Fig. 3(a)].
SWIFTS employs a Fourier-transform infrared (FTIR) spectrom-
eter to spectrally resolve all individual beatings. We measure the
modulation of the laser output waveform using a fast photodetec-
tor and a lock-in amplifier to obtain the SWIFTS interferogram
(Fig. 1 in Supplement 1). The beatings are then obtained using
the Fourier transformation. A detailed derivation of the SWIFTS
spectrum can be found in Supplement 1. We extended our existing
SWIFTS setup [35] with a custom-built high-resolution FTIR
spectrometer (∼500 MHz) to resolve the narrowly spaced beat-
ings. The setup consists of a Newport Optical Delay Line Kit
(using DL325), a broadband mid-infrared beam splitter, a tem-
perature stabilized He–Ne laser, and a Zurich Instruments HF2LI
lock-in amplifier for acquisition of the intensity and SWIFTS
interferograms of the measured laser, as well as the interferogram
of the He–Ne laser. A more detailed explanation of the experiment
can be found in Supplement 1.

The QCL that we used in this measurement is a 3.5 mm long
ridge laser emitting at around 8µm and optimized for RF injection
[36]. The laser was operated in a free-running frequency comb

Fig. 3. Experimental data of a SWIFTS measurement with LEF evaluation. (a) Sketch of the experimental setup. FTIR, Fourier transform infrared
spectrometer; BS, beam splitter; QCL, quantum cascade laser; DC, bias voltage; RF, RF generator; LO, local oscillator; QWIP, quantum well infrared
photodetector; LNA, low-noise amplifier. (b) Measured intensity spectrum of the QCL and extracted LEF values for each mode (red dots) with a fit using
Eq. (S14) in Supplement 1 (blue dashed line). (c) Intensity (top), beating intensity (middle), and beating phase spectrum as obtained from the SWIFTS
measurement for the highlighted gray area in (b).
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state with a repetition frequency of 12.2 GHz. The frequency
of the weak modulation was chosen to be sufficiently lower at
9.593 GHz, and a demodulation frequency of 9.570 GHz was
set on the local oscillator. For light detection, we used an RF-
optimized quantum well infrared photodetector (QWIP) cooled to
78 K. The intensity spectrum [Fig. 3(b)] shows a frequency comb
spanning over 75 modes. A zoom of the gray-shaded area is shown
in Fig. 3(c). Although the weak modulation sidebands are not
visible in the intensity spectrum (top), the amplitudes and phases
of the beatings (middle and bottom, respectively) can be obtained
with a high signal-to-noise ratio by using SWIFTS [Fig. 3(c)].
Using Eq. (4), we extract the LEF for each individual comb mode
[Fig. 3(b), bottom]. The spectrally resolved LEF follows the
expected shape [see Figs. 1(c) and 2]. Using Eq. (S14) to fit the
extracted LEF, we can also infer the laser gain width above thresh-
old. The extracted spectral LEF values match the prediction from
a recent theoretical work [9], which pinpointed its origin in QCLs
to the Bloch gain. The measured LEF furthermore supports its
predicted key role in frequency modulated combs [10,37], as well
as in ring QCLs emitting localized structures akin to dissipative
Kerr solitons [11–13].
In conclusion, we present a novel technique to directly measure the
spectrally resolved LEF of a running semiconductor laser frequency
comb. The measurement concept is first verified using elaborate
numerical simulations of a modulated semiconductor laser. There,
an excellent agreement is observed with the expected spectral LEF
from the analytical model. The experimental demonstration was
performed on a QCL frequency comb, while the technique itself
is universal. It will allow to extract the spectral LEF in frequency
combs based on any type of a semiconductor laser. The LEF gov-
erns many coherent processes in a running semiconductor laser,
including frequency comb operation. Its precise knowledge will
provide a better fundamental understanding of light evolution,
which will promote further technological advancements.
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