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Abstract: Metasurfaces are arrays of sub-wavelength spaced nanostructures, which can be
designed to control the many degrees-of-freedom of light on an unprecedented scale. In this work,
we design meta-gratings where the diffraction orders can perform general, arbitrarily specified,
polarization transformation without any reliance on conventional polarization components, such
as waveplates and polarizers. We use matrix Fourier optics to design our devices and introduce
a novel approach for their optimization. We implement the designs using form-birefringent
metasurfaces and quantify their behavior – retardance and diattenuation. Our work is of
importance in applications, such as polarization abberation correction in imaging systems, and in
experiments requiring novel and compact polarization detection and control.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polarization is the path of oscillation of light’s electric field, which directly follows from the
plane-wave solution to Maxwell’s equations [1–3]. Polarization of light has played a critical role
in the advancement of science and technology, even before the concept was well understood. A
well studied example from history, of the exploitation of polarization in primitive technology,
is that of the use of calcite crystals as ‘sun stones’ by the Vikings back in the seventeenth
century, for navigation [4]. In the nineteenth and twentieth centuries, polarization of light and
polarization-based effects were rigorously studied and developed by many brilliant scientists
including Malus (Malus’ Law), Brewster (Brewster’s angle), Fresnel (Fresnel coeffecients), Stokes
(Stokes calculus), Maxwell (Maxwell’s equations), and Jones (Jones calculus) [5]. A thorough
understanding, and a robust framework delivered through these efforts in the study of polarization,
have since contributed to a myriad of inventions and innovations in science and technology,
including in fiber-optic based telecommunications [6,7], in astrophysics and astro-imaging [8,9],
chemical sensing and characterization [10–12], medicine [11,12], polarization-resolved imaging
[13,14], quantum light-matter interaction [15], and quantum information science [16,17], to list a
few.

Traditionally – and quite ubiquitously in optical labs – polarization is manipulated using
bulk optics such as polarizers and waveplates. Recent advances in nanotechnology [18–20],
however, have provided an opportunity to revisit and reinvent the design space for polarization
optics, to achieve unprecedented, wavelength-scale control over the polarization properties of an
optical system. One such recent advance in nanotechnology – which is also our technology of
choice for this work – is known as a metasurface, which is a subwavelength array of artificially
engineered nanopillars [20–22]. Recent research in polarization optics involving metasurfaces
include examples such as polarization beam splitters [22,23], chiral lenses [24,25], polarization
generation diffraction gratings [26,27], and polarization vectorial holograms [28,29]. These, and
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similar works, assume a particular incident polarization-vector for their designs, which essentially
restricts the design space available for the most general polarization transformations. We, instead,
use the matrix Fourier optics formalism [30], with a gradient descent based optimization, to design
the most general polarization (Jones) matrix transformations in the far-field. Using dielectric
metasurfaces, we implement two-dimensional diffraction gratings that behave as multi-order
polarizing element devices with user-defined polarization properties in chosen diffraction orders.
The proposed design principle in our work is general enough that it can be used to design any
set of arbitrary polarization transformations in the far-field. We show practical implementation
of our optimized designs using dielectric metasurfaces, as proof of principle. Despite recent
progress [31–33], our work is the first such design and implementation of an optical device
that has simultaneous and complete control over the polarization transformation properties of
resulting diffraction orders in the far-field, of a fully polarized system (i.e. no depolarization).
Our work bridges the gap that exists in solutions to problems involving compact and precise
polarization control, such as the correction of polarization abberations in optical systems [34].

1.1. Description of polarization transformation properties

In the context of this work, assume no depolarization. In that case, polarized light can be
represented as a two-dimensional vector, commonly known as a Jones vector:

|j⟩ = Aeiϕ ⎛⎜⎝
1

αei∆φ

⎞⎟⎠ (1)

where A is the overall amplitude and φ is the overall phase, of the EM wave, while α and ∆ϕ
are the relative amplitude and relative phase respectively, between x-polarized and y-polarized
light. α and ∆ϕ are usually of more significance in polarization optics, because they fully
describe the state of polarization. The Jones vector in an optical system can be transformed –
completely – by a 2× 2 complex matrix called the Jones matrix, J. In practice, it is often useful to
decompose an arbitrary Jones matrix transformation, into a product of two sub-transformations:
the ‘retarder’ transformation that transforms the global and relative phases of the Jones vector,
and the ‘diattenuator’ transformation, that transforms the global and relative amplitudes of the
Jones vector. Mathematically, the Jones matrix can be decomposed using the polar decomposition
into the product of a unitary matrix U, and a Hermitian matrix H.

J = UH (2)

In the context of polarization optics then, U is equivalent to the ‘retarder’ transformation
(Fig. 1(a)), and H is equivalent to the ‘diattenuator’ transformation (Fig. 1(b)).

Note that a ‘retarder’, being unitary, has phase-only eigenvalues. Phases (ϕ1, ϕ2) of the
complex eigenvalues (u1, u2) of U are used to define the retardance as:

R = |ϕ1 − ϕ2 |, 0◦ ≤ R ≤ 180◦ (3)

The generally complex, and orthogonal eigenvectors (r⃗1, r⃗2) corresponding to the eigenvalues
(u1, u2) are known as the retardance axes. A light wave polarized along r⃗1 would accumulate
R◦ more phase compared to a light wave polarized along r⃗2. A common example of a ‘retarder’
would be a quarter-wave plate (QWP), with R = 90◦, and eigen-axes parallel to the fast and slow
axes of the QWP.

Now, a ‘diattenuator’, being Hermitian, has only real eigenvalues. The eigenvalues (t1, t2)
of H, and the eigenvectors are used to define the ‘diattenutation’ property of the polarization
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Fig. 1. Jones matrix decomposition. (a) A unitary transformation, U, which satisfies
U†U = I, is a lossless transformation. Plane-waves incident along eigenvectors (r⃗1, r⃗2), will
generally accumulate separate phases. Physically, a retarder or a waveplate can perform a
unitary Jones matrix transformation. (b) A Hermitian transformation, H, satisfies H† = H.
Plane-waves incident along eigenvectors (d⃗1, d⃗2), will generally transmit with different
amplitudes. Physical implementation of a Hermitian Jones matrix is known as a diattenuator,
a limiting case of which is known as a polarizer. (c) In general, any arbitrary 2 × 2 Jones
matrix J can be written as a cascade of a diattenuator (H), followed by a retarder (U).

transformation. The diattenutation D of a polarization transformation is defined as:

D =
|t1 |2 − |t2 |2

|t1 |2 + |t2 |2
, 0 ≤ D ≤ 1 (4)

The generally complex, and orthogonal eigenvectors (d⃗1, d⃗2) corresponding to the eigenvalues
(t1, t2) are known as the diattenuation axes. Note that t1 and t2 are transmission amplitudes
for light wave polarized along d⃗1 and d⃗2, respectively. The diattenuation D, then, tells us the
contrast in transmission, between polarized light along d⃗1 and d⃗2. A common example of a
‘diattenutator’ would be an ideal linear polarizer, with D = 1, and diattenuation-axes parallel to
the maximum/minimum transmission axes of the polarizer.

In an optical system, even if the resulting polarization transformation is a mixture of retardance
and diattenuation, it can always be decomposed into its unitary and Hermitian parts using Eq. (2),
so that the retardance and diattenuation properties can be studied in isolation (Fig. 1). In our
work, by showing complete control over the retardance and diattenutation properties in the design
space of our optimization, we design and fabricate devices that can perform the most general
polarization transformations allowed by our metasurface platform.

2. Materials and methods

2.1. Matrix Fourier optics

In design, what enables us to have complete access to the retardance and diattenutation properties,
in the far-field, is a recently developed theory [30] known as ‘Matrix Fourier optics’. It is the
matrix generalization – which is allowed due to the linearity of the system – of the well established
Fourier optics, that links the ‘near-field’ (ignoring evanescent waves) to the far-field, by a simple
Fourier transform, as physically depicted in Fig. 2(a). In case of matrices, the coefficients in the
Fourier integral are not scalars, but instead are matrices, and we can write the modified Fourier
integral as:

J̃(kx, ky) =

∬ +∞

−∞

J(x, y)e−i(kxx+kyy)dxdy (5)

where J̃(kx, ky) is a distribution of 2 × 2 Jones matrices in the far-field over angular coordinates
(kx, ky), whereas J(x, y) is a distribution of 2 × 2 Jones matrices in the plane of incidence, over
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spatial coordinates (x, y). Note that the Fourier integral is distributed across each of the four
elements of J(x, y), yielding a matrix Fourier coefficient J̃(kx, ky).

Fig. 2. Metasurface design using Matrix Fourier optics. (a) A specially designed
metasurface with Jones matrix distribution Jmeta(x, y), has plane-wave polarization response
Jk in the far-field. (b) Representation of a single period of a 2D metasurface diffraction
grating, made up of discrete form-birefringent nanopillars. Each nanopillar within a period,
offers 3 independent degrees of freedom: propagation phases ϕX and ϕY (controlled by the
length DX and width DY ) and geometric phase controlled by the relative angular orientation
θ. (c) Representation of the far-field discrete diffraction orders, where the desired orders are
engineered to have specific polarization transforming properties. If light is incident on the
metasurface with some polarization |j⟩in, then the output in order (0, 1) will be J̃1 |j⟩in, in
order (1, 1) will be J̃2 |j⟩in, and so on.

This calculus forms the basis of our work, and enables us to set up an optimization to realize
arbitrary polarization transformations in the far-field, as detailed next.

2.2. Design principle

Let us consider a diffraction grating with chosen orders of diffraction with reasonably high
efficiencies, that performs desired polarization transformations for light diffracted in those orders.
To design such a grating, we can write the Matrix Fourier series which follows from Eq. (5):

Jmeta(x, y) =
∑︂

k⃗ϵ {G}

J̃kei(kxx+kyy) (6)

Equation (6) gives us a straightforward relation to finding the appropriate spatially varying
Jones matrix distribution J(x, y) in the incident plane, to get a set of desired Jones matrices J̃k in
the far-field. However, practically speaking, we are constrained when it comes to implementing
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J(x, y) because metasurfaces, consisting of shape birefringent optical elements, can only perform
unitary and symmetric transformations at the plane of incidence, of the form:

Jmeta(x, y) = R(θ(x, y)) ⎛⎜⎝
eiφX (x,y) 0

0 eiφY (x,y)
⎞⎟⎠R(−θ(x, y)) (7)

where R(θ) is the 2× 2 rotation matrix. ϕX and ϕY are the phases imparted on the two orthogonal
linear polarizations (X and Y), as incident light propagates through a nanopillar within the
metasurface. θ is the orientation of the nanopillar in relation to a reference, and is responsible for
introducing geometric phase in our design. In designing a device with far-field Jones matrices
J̃k in orders of interest (k⃗ϵ{G}), with reasonably high diffraction efficiencies, while satisfying
the form of Jmeta(x, y) in Eq. (7) at each spatial coordinate (x, y) in the incident plane, we need
to setup and run a constrained optimization with respect to a figure of merit. Our optimization
of choice is the gradient descent optimization (from the scipy.optimize library in Python), with
Lagrange multipliers to handle constraints. Note that ϕX(x, y), ϕY (x, y) and θ(x, y) can each be
independently controlled at each spatial coordinate (x, y) within the metasurface, and provide us
with the degrees of freedom to optimize for a particular design.

Consider the design of a two-dimensional diffraction grating where the first eight orders of
diffraction {G} = {(0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1), (0, 1)} are chosen
to produce desired J̃k in these diffraction orders, as shown in Fig. 2(a). Note that the choice of
orders and J̃k is arbitrary and totally designer-specified. To run an optimization to design such a
grating using our degrees of freedom ϕX(x, y), ϕY (x, y) and θ(x, y), in conjunction with Eq. (6)
and Eq. (7), we define the following figure of merit to be maximized:

Figure of merit:
∑︂

k⃗ϵ {G}

Tr(J̃†k J̃k) (8)

The trace Tr(J̃†k J̃k) is simply the sum of the square of amplitudes of the complex entries in
J̃k, and ensures that the optimization maximizes the diffraction efficiency in the set of orders of
interest {G}.

To get the desired performance in the far-field, we introduce the following two constraints in
our optimization:

Constraint I: σ
(︂
Tr(J̃†k J̃k)

)︂
= 0 (9)

Constraint II:

|︁|︁|︁|︁|︁ J⃗k.J⃗k,des

|J⃗k | |J⃗k,des |

|︁|︁|︁|︁|︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
for all kϵ {G}

= 1 (10)

In Constraint I (Eq. (9)), σ operator computes the standard deviation in the computed traces
Tr(J̃†k J̃k), for all kϵ{G}. We want this standard deviation to be 0, to ensure that the ‘weights’
of the Jones matrices J̃k in the desired orders are uniform; physically, one can think of this in
terms of the ‘diffraction efficiencies’. (Note, that since the response is polarization dependent,
we are defining the diffraction efficiency of an order as the average transmission efficiency of
that order for any two orthogonal polarizations.) This constraint essentially helps us avoid the
case where one, or more, orders of interest have extremely low efficiencies, because the figure
of merit (Eq. (8)) optimizes for the sum total of the efficiencies. Note, however, that the exact
diffraction efficiency ratios in Constraint I (Eq. (9)) can be chosen arbitrarily, and that uniform
efficiencies is simply one of infinite choices. Constraint II (Eq. (10)) is the constraint in our
optimization which ensures that the Jones matrices J̃k, during the optimization, converge to the
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desired forms J̃k,des, for all kϵ{G}. To fully understand Constraint II (Eq. (10)), note that we
convert each complex-valued 2 × 2 Jones matrix J̃k, into an 8-element vector J⃗k:

J̃k =
⎛⎜⎝
ar + iai br + ibi

cr + ici dr + idi

⎞⎟⎠ =⇒ J⃗k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ar

ai
...

dr

di

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

This allows us to simply use the vector dot product in Constraint II (Eq. (10)) to ensure that the
computed Jones matrices at each iteration, and the desired Jones matrices, are ‘aligned’ - i.e, have
the same form. In summary, the figure of merit (Eq. (8)) ensures that the overall efficiency of the
device is as high as possible, while Constraint I (Eq. (9)) ensures that the diffraction efficiencies
are uniformly distributed across orders of interest, and Constraint II (Eq. (10)) ensures that the
Jones matrices in orders of interest are implemented as desired.

As far as order efficiencies are concerned in the final design, at least currently, it is not possible
to predict theoretically what the efficiency might be for some arbitrary grating design (or what
the global maximum might be during optimization). It is known that a scalar phase-only grating
may only have one or infinitely many diffraction orders [35], and so a grating which is phase-only
can never be a solution to an arbitrary beam-splitter design (in which all the light is diffracted
into a limited and finite set of orders). Extending this scalar analogy to the case of Jones matrix
gratings, we have shown previously [30] that a unitary only grating (Eq. (7)) can never be a
solution to an arbitrary beam-splitter design, of the types we show in this work (so we know the
theoretical efficiency would be less than 100%). Therefore, the purpose of the optimization is to
converge to a local maximum with a high enough efficiency for our application of choice. In
designs in Figs. 4–6, we report numerical diffraction efficiencies as high as 77%. In each of the
examples shown in Figs. 4–6, the optimization took roughly 3 hours to converge, using a 16 GB
RAM, core i7 CPU with 1.80GHz processor.

2.3. Device fabrication and characterization

Using the design principle and techniques described above, we design a range of polarization
controlling 2D metasurface diffraction gratings, as proof of concept. We stress that the design
choices are arbitrary, and that in practice, these gratings can be designed to suit desired applications
in polarization optics, some of which we discuss later in the Discussion section.

Once the designs are ready, and we have the required values of our parameters ϕX(x, y), ϕY (x, y)
and θ(x, y) at each lattice point within a period on our metasurface diffraction grating (note that
spatial coordinate (x, y) are descritized as seen in Fig. 2(b)), we can select the appropriate pillar
(planar) dimensions from a library of simulated pillar results, using the scheme described in
[22]. We prepare our device for fabrication by first spin coating a fused silica substrate with a
positive tone electron beam resist, with the appropriate thickness (pillar height). After baking, the
pillar patterns are written by exposing the resist using electron beam lithography. The developed
pattern defines the geometry of the individual nanopillars. Afterwards, we deposit TiO2 using
atomic layer deposition (ALD), to conformally coat the developed pattern. The excess layer of
TiO2 on top of the device is etched away by reactive ion etching (RIE). We finally remove the
resist chemically, leaving the desired TiO2 nanopillars, on top of the substrate, surrounded by air.
The fabrication process is described in much greater detail in Ref. [20]. The SEM images of one
of the fabricated metasurface gratings are shown in Fig. 3.

The diffraction gratings are measured and characterized using the setup shown in Fig. 3(a).
Given that commercial half-wave plates (HWPs) and quarter-wave plate (QWPs), can sometime
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Fig. 3. Measurement setup and SEM images. (a) The incident polarization states are
prepared by using a polarizer, half-wave plate (HWP), and quarter-wave plate (QWP), which
are mounted on automated rotational stages. A long focal length lens is used to reduce
the spot size, without introducing any significant higher-k components. The polarized
light is incident on the metasurface sample (MS), and the resulting diffraction orders are
measured one by one, by using a commercial polarimeter mounted on a custom 3D rotating
mount. (b) Top-view of a fabricated metasurface grating. The periods Λx and Λy, in x and
y spatial directions respectively, both equal 4.62µm, consisting of 11 nanopillars in each
direction, uniformally spaced by 420nm. (c) Slightly angular top-view of a metasurface
diffraction grating, showing sidewalls of the nanopillars. (d) Angular top-view of the edge
of a metasurface diffraction grating. All nanopillars have a constant height of 600nm.

have a significant error in retardance, and are also sensitive to incidence angle, it is important to
perform the measurements using a calibrated procedure. We first perform a calibration using K
pairs of HWP and QWP orientations. (K = 16 was found sufficient in our case.) The polarizations
generated by these orientations, which are chosen to adequately sample the Poincaré sphere, are
stored in a calibration matrix:

C̃ =
⎛⎜⎜⎜⎜⎝
| | · · · |

S⃗in
1 S⃗in

2 · · · S⃗in
k

| | · · · |

⎞⎟⎟⎟⎟⎠
(12)

The K polarizations are then incident on the metasurface, turn-by-turn, and the Stokes vector
output on order (n, m) in response to kth input polarization is recorded as S⃗(n,m)

k , and all these
Stokes vectors are stored in the output matrix:

Õ(n,m) =

⎛⎜⎜⎜⎜⎝
| | · · · |

S⃗(n,m)

1 S⃗(n,m)

2 · · · S⃗(n,m)

k

| | · · · |

⎞⎟⎟⎟⎟⎠
(13)
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The Mueller matrix M̃(n,m) associated with diffraction order (n, m) is given by:

M̃(n,m)C̃ = Õ(n,m) (14)

M̃(n,m) = Õ(n,m)C̃T (C̃C̃T )−1 (15)

Each Mueller matrix is then further post processed, to get the desired polarization properties:
to get the retardance and diattenuation properties from a Mueller matrix, we use the polar
decomposition analogue for the Mueller calculus, known as the Lu-Chipman decomposition [36],
after which we can extract out the retardance, diattenutation, and their respective eigen-axes.

While showing working devices at the visible wavelength using TiO2 metasurfaces is important
from a technological standpoint, note, that the design principle discussed is wavelength-agnostic,
and thus could be useful for any suitable material choice at a desired wavelength. Furthermore,
the limitation of our metasurface platform (i.e each pillar can only do a unitary and symmetric
transformation) in the context of our work, is discussed in detail in Supplement 1.

3. Results

As proof of concept, we design, fabricate, and measure five different 2D metasurface diffrac-
tion gratings with different polarization responses in the first eight diffraction orders, {G} =

{(0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1), (0, 1)}. The fabricated metasur-
faces are designed for an incident wavelength λ = 532nm and normal incidence. We show the
results of three out of five gratings, here in the main text, while the remaining are shown in
Supplement 1. The designs chosen are arbitrary, but they are representative of what can, in
general, be achieved in the polarization optics design space, while employing the techniques and
technology used in this work.

We have compiled results for three of the gratings in Figs. 4–6. Note that we show ideal,
simulated, and measured, juxtaposed for comparison. The ideal refers to the results of our
numeric optimization, in which the designed Jones matrices are accurate to a set tolerance of
four decimal places. (Thus the numerical polarization responses could be considered ‘perfect’
from a practical standpoint). This degree of accuracy in polarization response comes at the
cost of overall device efficiency. As you can note in Fig. 4, each order has an ideal (numerical)
diffraction efficiency of 8.88%, which means the overall numerical efficiency of the grating is
8 × 8.88% ≃ 71%. The rest of the power is lost to extraneous orders of diffraction, which are
actually necessary to afford our optimization the flexibility to meet design requirements. The
presence of these extraneous orders of diffraction as loss channels can also be understood as a
consequence of having more tuning parameters in the design space. In our case, the grating
period consists of 11 × 11 nanopillars, but increasing the parameter space with the addition of
more pillars (pillar separation is fixed at 420nm), would also increase the period of the grating,
resulting in more orders of diffraction available for the light to leak into. The focus of our work,
is achieving the desired polarization responses, and relative powers between orders, rather than
getting a high absolute efficiency. The latter while important, is not a necessary requirement
for most polarization optics applications because often one can increase the incident power
externally. The simulated responses refer to the results compiled from FDTD simulations, using
actual ellipsometry TiO2 data, and the optimized device dimensions. The measured responses
refer to the results compiled following full-Stokes polarimetry of fabricated devices. Note that
error bars have not been included, as errors are separately discussed in Fig. 7.

Figure 4 shows the result of a ‘diattenuator-only’ grating, where we only engineer the
diattenuation property of the polarization transformation, in the orders of interest, while avoiding
any retardance (in which case the retardance part of the transformation is simply the identity
matrix). In this specfic design, in the orders of interest {G}, the diattenutation changes from
1 (full-contrast), to 0.5 (partial contrast), to 0 (no contrast), and the diattenuation-axes are

https://doi.org/10.6084/m9.figshare.16862029
https://doi.org/10.6084/m9.figshare.16862029
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Fig. 4. Far-field results of a 2D metasurface diffraction grating with varying diatten-
uation. In this grating, the diattenuation values of the designed Jones matrix responses,
change, across the eight orders of interest, while the diattenuation-axes are designed to be
symmetric, i.e d⃗+ is aligned along S1 axis for half the orders, and anti-aligned for the other
half. The diattenuation-axes are plotted on the Poincaré sphere.

designed such that the maximum transmission axis is aligned along S1 for half the orders, and is
anti-aligned for the other half. Another example of a ‘diattenuator-only’ grating is seen in Fig.
S2 in Supplement 1, in which we keep the same diattenuation, but change the diattenuation-axes
across orders of interest.

Figure 5 shows the results of a ‘retarder-only’ grating, where we only engineer the retardance
property of the polarization transformation, in the orders of interest, while avoiding any
diattenuation (in which case the diattenuation part of the transformation is simply the identity
matrix). In this specfic design, in the orders of interest {G}, the retardance is kept at a constant
of 90◦ (quarter-wave), while the retardance-axes is designed to rotate along the S1-S2 plane of
the Poincaré sphere, in fixed increments of 45◦, as we move from one order in {G} to another.
Another example of a ‘retarder-only’ grating is seen in Fig. S3 in Supplement 1, in which we
keep the same retardance-axes, but change the retardance values, across orders of interest.

https://doi.org/10.6084/m9.figshare.16862029
https://doi.org/10.6084/m9.figshare.16862029
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Fig. 5. Far-field results of a 2D metasurface diffraction grating with varying
retardance-axes. In this grating, the retardance values of the designed Jones matrix
responses, are kept the same (R = 90◦), while the retardance axes are designed to rotate,
across the eight orders of interest. The retardance-axes are plotted on the Poincaré sphere,
and the retardance-axes rotate along the S1-S2 plane.

Figure 6 shows the results of a ‘general’ polarization grating, in which we simultaneously
engineer the diattenuation and retardance properties in orders of interest {G}. As we move
from one order to another, we see that the diattenuation, and retardance values, as well as their
respective eigen-axes are designed to change arbitrarily, showing the flexibility and versatility of
our optimization-enabled design space.

Note that the results shown Figs. 4–6 are not snapshot measurements, but are in fact, time-
averaged. The error bars associated with the time-averaged measurements have not been included,
after they were found to be negligible. This is unsurprising, given that our setup was fully
automated, and that the commercial polarimeter (ThorLabs model PAX5710VIS-T) measures
Stokes components within an accuracy of 0.5%. A more meaningful error metric is the difference
between the designed/desired polarization properties, and the ones ultimately measured after
fabricating the device, results of which are compiled in Fig. 7. Another interesting value to
consider is the depolarization index [2] – which is the degree of resulting depolarization –
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Fig. 6. Far-field results of a 2D metasurface diffraction grating with varying diattenu-
ation and retardances properties. In this grating, the diattenuation, the diattenuation-axes,
the retardance, and the retardance-axes, all change across orders of interest. The axes are
plotted on the Poincaré sphere, and the axes rotate along the S1-S2 plane.

results of which are shown in Fig. 7(c). During our data analysis process, we can compute
the depolarization index, from the Mueller matrix, at each grating order of interest. For a
non-depolarizing system, the depolarization index should be 1. Since the laser we use is coherent
over the length scales of our measurement, and there are no other sources of depolarization in
the setup, our system always has a depolarization index of 1, for all diffraction orders. This
measure provides us with a good sanity check: if our measurement setup (including alignment
of the polarimeter etc) and analysis is correct, then the computed depolarization index for each
diffraction order should be ∼ 1. Any random or systematic error during measurement, could
potentially show up as an artifact of depolarization with a depolarization index ≠ 1. As we see in
Fig. 7(c), the mean depolarization index is well position at ∼ 1.01 with a standard deviation of
∼ 4%, which shows that our measurements are robust.
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Fig. 7. Histograms of the measured ∆ diattenuation, ∆ retardance, and depolarization
index. (a) The diattenuations measured across various devices and their diffraction orders,
show that the standard deviation in the measured diattenuations with respect to the desired
diattenuations is ∼ 8%. (b) The retardances measured across various devices and their
diffraction orders, show that the standard deviation in the measured retardances with respect
to the desired retardances is ∼ 10◦. (c) The depolarization index, which should ideally be 1
because there is no inherent depolarization in the system, is well poised at a mean µ = 1.01
with a standard deviation of ∼ 4%.

4. Discussion

We have shown, how to design a multi-order device with simultaneous control over the polarization
properties. The design strategy can implement any conceivable polarization transformation on
the diffraction orders, using phase-only structures such as metasurfaces. One inherent limitation
of using linearly birefringent metasurfaces is that one is confined to designing symmetric Jones
matrices in the far-field. This limitation is discussed in detail in Supplement 1. However, note
that this is only a limitation of our specific platform, and not a fundamental one, since our
optimization scheme does allow for the implementation of any 2× 2 Jones matrix. Our work also
focuses on completely polarized light, fully characterized by Jones calculus, which is suitable
for many current applications. A more complete treatment, however, would involve partial
polarization and depolarization, which can potentially be introduced in the system via spatial
incoherence [37], and would be subject of future work.

It is also important to discuss the inability of conventional polarization optics, such as
quater/half waveplates and polarizers, to realize arbitrary Jones matrix transformations. While
it is possible to engineer an arbitrary retardance transformation – by either custom-cutting a
waveplate to a thickness that corresponds to the desired retardance, or by cascading quarter and
half wave plates – it is much harder to engineer an arbitrary diattenuation transformation, using
off-the-shelf solutions, such as polarizers and waveplates. Instead of cumbersome conventional
solutions, the single metasurface device we propose in this work can be used to perform, not
just one, but a set of arbitrary transformations on multiple orders. In the future, the novel way
of designing polarization optics introduced in this work, will help replace bulky conventional
polarizers and waveplates, especially in applications requiring compact designs. The finer
control over diattenutations and retardances shown in our work should also open up possibilities
beyond standard polarization optics. Furthermore, recent advances in multi-wavelength [38] and
broadband metasurfaces [39,40] should allow the implementation of our work over a broad band
of frequencies, which would be much more useful in practical settings.

One area of particular interest is that of polarization aberrations [34]. Polarization aberrations
are deviations from a uniform polarization state expected in an optical system [2]. Parasitic
diattenuation and retardance in an optical system can unwittingly transform the expected or
desired polarization state within an optical system. This can be undesirable in a number of
applications. For instance, the point spread function (PSF) of astronomical telescopes depends
not only on geometric abberations, but also on polarization dependent abberations introduced
by reflection and transmission through various coatings within the optical system [41]. While

https://doi.org/10.6084/m9.figshare.16862029


Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 39077

the polarization abberations may appear small in scale, the effect is enough to interfere with
the detection of large stellar bodies such as exoplanets [42]. Polarization abberations have also
been a problem in polarized-light microscopy, where simultaneously achieving high spatial
resolution and contrast is hard because of the presence of these polarization abberations [43].
Their correction is thus paramount in such optical systems. The flexibility in engineering
diattenutation and retardance properties in our devices, open up a potentially exciting area of
research in countering parasitic polarization aberrations in any optical or imaging system, using
custom designed metasurfaces. Investigating the uses of metasurface polarization gratings in
overcoming polarization abberations, would be subject of future work.
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