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Abstract: Vortex beams are characterized by a helical wavefront and a phase singularity 
point on the propagation axis that results in a doughnut-like intensity profile. These beams 
carry orbital angular momentum proportional to the number of intertwined helices 
constituting the wavefront. Vortex beams have many applications in optics, such as optical 
trapping, quantum optics and microscopy. Although beams with such characteristics can be 
generated holographically, spin-to-orbital angular momentum conversion has attracted 
considerable interest as a tool to create vortex beams. In this process, the geometrical phase is 
exploited to create helical beams whose handedness is determined by the circular polarization 
(left/right) of the incident light, that is by its spin. Here we demonstrate high-efficiency Spin-
to-Orbital angular momentum-Converters (SOCs) at visible wavelengths based on dielectric 
metasurfaces. With these SOCs we generate vortex beams with high and fractional 
topological charge and show for the first time the simultaneous generation of collinear helical 
beams with different and arbitrary orbital angular momentum. This versatile method of 
creating vortex beams, which circumvents the limitations of liquid crystal SOCs and adds 
new functionalities, should significantly expand the applications of these beams. 
© 2017 Optical Society of America 
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1. Introduction 

A helical mode of light is an optical field whose azimuthal phase evolution around the 
propagation axis (z) has the form exp[ ]i ϕ , φ being the azimuthal angle and   (an integer) 
called topological charge of the beam. The wavefront of a helical mode of charge   is 
constituted by   helical surfaces twisted together, whose handedness is set by the sign of  , 
resulting in a topological singularity (optical vortex), along the propagation axis [1]. Such 
vortex beams carry an average of   orbital angular momentum (OAM) per photon [2,3]. 
Additionally, circularly polarized modes carry a spin angular momentum of ±  per photon, 
depending on the polarization handedness. Such beams are central to the field of singular 
optics [4] and have found numerous applications such as optical trapping [5] where the 
angular momentum is a powerful manipulation tool to spin the trapped object [6,7] as well as 
to control its orientation [8]. 

The characteristic screw-type dislocation of a helical mode can be imposed on the 
wavefront of a propagating beam by means of different devices, for example, pitch-fork 
holograms [9,10] or cylindrical and axicons lenses and reflectors [11,12]. Additionally, 
helical modes can be also produced by exploiting the geometrical phase (also known as 
Pancharatnam-Berry (PB) phase) [13–15], to create inhomogeneous gratings for the 
wavefront reshaping [16,17]. In these spin-orbital angular momentum converters (SOC) the 
OAM of the vortex beam is coupled with the spin angular momentum of the illuminating 
light: switching the handedness of the illuminating beam polarization (spin angular 
momentum) flips the handedness of the vortex (orbital angular momentum). Locking the 
OAM to the spin angular momentum has unique applications in quantum computing and 
communications, allowing high dimensionality encoding of quantum units [18] and fast 
switching related to the modulation of the incident polarization of light [19–21]. 
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Fig. 1. (a) Schematic of the working principle of a spin-orbital angular momentum converter. 
A left circularly polarized beam with plane wavefront is turned into a right circularly polarized 
helical mode. In this representation the helical mode has a topological charge equal to 2, as the 
wavefront is composed of two intertwined helices. (b) Angled-view SEM image of one of our 
devices ( 1q = ) showing the orientation of the TiO2 nanofins on the glass substrate, φ is the 

azimuthal angle and |r| is the distance from the center. 

More recently, the wavefront manipulation allowed by metasurfaces [22] has been used to 
produce a variety of PB optical elements, e.g., lenses [23,24] and vortex beam generators in 
the near-infrared [25,26]. Similar approaches have allowed working with visible light 
although with low transmission efficiency in the bluest part of the spectrum [27–32]. To date, 
the most versatile spin-orbital angular momentum converters for visible light are the liquid 
crystal devices developed by Marrucci et al. in 2006 and known as q-plates [33]. They have 
found numerous applications in quantum optics although they are limited by degradation 
effects and resolution in defining the extent of the topological singularity region [34–38]. 
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2. Nanostructured dielectric Spin-to-Orbital angular momentum Converter 

In order to describe some general features of a SOC based on PB phase, it is useful to define 
the orientation angle ( , )x yα  of the optical axis (fast or slow) of each element of the device in 
the transverse plane (x-y plane). Regardless of the constituents, if each element imposes a π 
phase delay between the field transverse components, an incident uniform left-circularly 
polarized beam 0 [1, ]inE E i= ×  is turned into the beam 0 exp[ 2 ( , )] [1, ]outE E i x y iα= × −  that is 
right-circularly polarized with a geometrical phase 2 ( , )x yα in the transverse plane. 
Analogously to what reported in the first description of a q-plate [33], if the azimuthal 
variation of the angle α  in the PB-device follows the relation 0qα ϕ α= + , the incident wave 
front is then turned into a helical wavefront composed of 2 q intertwined helical surfaces 
which carries an orbital angular momentum 2q= ±  , where the sign depends on the 
handedness of the incident light polarization ( 0α is a constant). For instance, if 1q =  and the 
incident light is left-circularly polarized (spin angular momentum of + ), the out coming 
light is right-circularly polarized (spin angular momentum of − ) with an OAM per photon 
of 2  and zero net angular momentum transferred to the device (Fig. 1(a)). For 1q ≠ there 
will be a net angular momentum exchange with the PB-device to preserve the total angular 
momentum of the system. 

In our devices, as compared to previous work on metallic metasurface q-plates [28,29], 
the constitutive elements (nanofins) are subwavelength dielectric resonators [39–42] made of 
TiO2 [43] (Appendix). Each nanofin is 250 nm long, 90 nm wide and 600 nm tall. The radial 
distance between two fins is of 325 nm (Fig. 1(b)). Figures 2(a) and 2(b) show the scanning 
electron microscope (SEM) images of the devices with 0.5q =  and 1q =  ( 1= and 2=  
respectively). The insets of Figs. 2(a) and 2(b) show the devices as imaged in cross-
polarization. The first polarizer sets the incident polarization direction. Each nanofin works as 
a half waveplate for the incident light: the nanofin rotates the incident polarization according 
to its orientation. The cross polarizer after the metasurface filters out the polarization opposite 
to that of the light incident on the metasurface thus creating 4q intensity lobes in the camera 
image. 

In order to fully characterize the vortex beams, we used a Mach-Zehnder interferometer as 
shown in Fig. 2(c). In this configuration, the source beam (a solid-state laser emitting at 532 
nm with power lower than 2mW) is split in two linearly polarized beams by means of a 50/50 
beam splitter. Half of the light (upper arm of the interferometer) passes through a quarter 
waveplate (QWP1) to produce a circularly polarized beam incident on the device. The vortex 
beam created by the device then passes through a polarization filter made of a quarter 
waveplate (QWP2) and a linear polarizer (LP2) in cross-polarization with respect to QWP1. 
This polarization filter is used to eliminate non-converted light passing through the device 
(Appendix). The reference beam propagates in the lower arm of the interferometer and passes 
through a half waveplate (HWP) to acquire the same polarization of the helical mode in port 1 
(as well as in port 2). This maximizes the intensity modulation (thus the contrast) in the 
interference pattern. 

Figure 2(d) shows the intensity distribution of a vortex beam with 1= , generated by the 
device in Fig. 2(a), in a transverse plane (plane of the camera at port 1 of the setup) at about 
45 cm from the device exit plane, when the reference beam is blocked. Figure 2(f) shows the 
intensity profile for the vortex beam with 2=  generated by the device of Fig. 2(b). The 
four insets of Figs. 2(e) and 2(g) show the intensity patterns produced in the plane of the 
camera by interfering the vortex beam with the reference beam. Such interference 
experiments are widely used to reveal phase singularities [4]. The pitchfork-like interference 
is obtained when a vortex beam and a Gaussian beam interfere with an angle between their 
propagation axes, which sets the fringe spacing. If the vortex beam is collinear with the 
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reference beam from the lower arm of the interferometer, a spiral is obtained as an 
interference pattern, with the number of arms equal to the topological charge of the vortex 
beam. The handedness of the incident circularly polarized light sets the orientation of the 
pitchforks and spirals. 

 

Fig. 2. (a) and (b), Scanning electron microscope image of TiO2-based spin-orbital angular 
momentum converters with 0.5q =  and 1q =  respectively (scale bar = 650 nm). The insets 

show the devices observed in cross-polarization at the design wavelength of 532nm. (c), 
Sketch (top view) of the interferometric setup used to characterize the devices. The 
interference of the helical mode and the reference beam was monitored at port 1 by means of a 
CCD. The polarization state of the beam after each optical element is sketched. The laser 
polarization is linear and perpendicular to the optical table. Light becomes circularly polarized 
after the first quarter waveplate (QWP1). The helical mode generated by the device is 
circularly polarized with opposite handedness. The helical mode after the polarization filter 
(QWP2 followed by LP2) is linearly polarized parallel to the optical table. The reference beam 
in the lower arm of the interferometer becomes also linearly polarized parallel to the optical 
table after passing through a half waveplate (HWP) that rotates the polarization direction by 
90°. (d), Transverse intensity distribution of the vortex beam generated by the device of Fig. 2 
(a). This beam has a topological charge equal to 1. (e), Interference patterns obtained with 
tilted reference beam (pitchforks) or collinear reference beam (spirals) in the setup of Fig. 2(c). 
The flipped features result from opposite handedness of the beam that illuminates the device. 
(f), (g), Same as (d) and (e) for the device in Fig. 2(b). 

Figure 3 shows how our approach can be used to produce optical vortices with higher 
values of topological charge, 5=  (Figs. 3(a)-3(d)) and 10= (Figs. 3(e)-3(h)). Each 
individual device is 500μm in diameter and all devices are on the same glass substrate of 1 
inch diameter (Appendix). This allows mounting the device on standard opto-mechanical 
components and to select the desired topological charge just by translating the corresponding 
device into the laser beam path. 
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Fig. 3. Transverse intensity profile of a beam with topological charge 5 generated by means of 
our 2.5q =  spin-orbital angular momentum converter. (b), The 2.5q =  device imaged in 

cross-polarization. (c), (d), Images of the interference patterns obtained with a collinear 
reference beam (Fig. 2(c)) for incident left or right circular polarized light. (e), (f), (g), (h), 
Same as for (a), (b), (c), (d) for the topological charge 10 beam and the 5q = device. Scale 

for (e) is same as shown in (a). 

Another important feature of our devices is related to the localization of the beam 
singularity. The fabrication process is based on atomic layer deposition (ALD) and electron 
beam lithography (EBL) (Appendix). This guarantees high resolution and reproducibility, 
resulting in precise definition of the singularity region and improving the vortex beam quality. 
For example, the 0.5q =  device has a singularity region smaller than 3μm (Appendix). 

In our devices we reached absolute efficiencies (the amount of light from the illuminating 
beam that is actually converted into the helical mode while also accounting for absorption and 
reflection from the device/substrate) of 60% (Appendix). Since TiO2 is ideally transparent at 
these wavelengths and the nanofins are only 600 nm in height, this measured efficiency is 
limited mainly due to reflections at the air-substrate and substrate-metasurface interfaces and 
error between the fabricated and designed nanofin dimensions. Thus this device provides a 
substantial improvement in efficiency as compared to previous metallic metasurface q-plate 
devices with conversion efficiencies of 8.4% at an operating wavelength of 780 nm [29]. The 
simulated phase delay between the x- and y-component of the electric field and resulting 
conversion efficiency as a function of wavelength are shown in Appendix E and while the 
efficiencies we reported here were for 532 nm illumination, high efficiencies can be achieved 
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at any visible wavelength simply by re-optimizing the lengths and widths of the individual 
TiO2 nanofins, as we showed in ref [43]. Finally, the fact that these devices are fabricated 
using lithography and etching allows many devices with different topological charge to be 
placed on a single substrate—this is not easily-achievable with liquid crystal devices. 

3. Fractional and interlaced spin-to-orbital angular momentum converters 

As a further demonstration of the versatility of our approach, we designed a SOC that 
produces a vortex beam with fractional topological charge. This is possible when a non-
integer phase discontinuity is introduced in the azimuthal evolution of the helical mode. In 
this case, Berry described the optical vortex as a combination of integer charge vortices with a 
singularity line in the transverse plane surrounded by alternating optical single charge vortices 
[44,45]. From a quantum optics point of view, the average angular momentum per photon has 
a distribution peaked around the nearest integer value of the topological charge and a spread 
proportional to the fractional part of the charge [46]. We fabricated a SOC producing a 6.5 
topological charge vortex beam. Figure 4(a) shows the intensity distribution of the resulting 
helical mode at about 55μm from the device plane (Appendix) and Fig. 4(b) shows pitchfork-
like interference obtained in the Mach-Zehnder configuration of Fig. 2(c). The phase 
singularity line predicted for such vortices is evident. The interference pattern (Fig. 4(b)) also 
shows the line of alternating vortices (single line pitchforks) along the singularity line. For 
half odd-integer values of the OAM, two helical modes with same OAM but phase 
singularities lines with a relative π orientation are orthogonal [45]. This has been used, for 
instance, to observe high-dimensional photon entanglement [47,48]. 

Our approach to SOC enables a new and unique feature, the generation of collinear beams 
from a single device with arbitrary and different OAM. In contrast, a detuned q-plate (i.e., a 
q-plate with phase delay not equal to π) can only produce a beam with OAM of 2q and a 0th 
order Gaussian beam with zero OAM, which is unconverted light. 
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Fig. 4. (a), Transverse intensity distribution of a beam with topological charge 6.5 at 55μm 
from the device exit plane. (b), Interference pattern arising from the interference with a 
reference beam at oblique incidence. The resulting pitchfork pattern shows the singularity line 
surrounded by alternating single charge vortices, a characteristic feature of fractional helical 
modes. The direction of the singularity line in (a) and (b) is the same although in these figures 
they are on opposite directions due to the camera orientation during the experiment. 

To demonstrate this concept, we designed an interlaced 2.5q =  and 5q =  device (Fig. 
5(a)). Two metasurfaces with different azimuthal patterns are interleaved by placing the 
nanofins at alternating radii. Although they have different topological charges ( 5= and

10= ), the beams emerge collinearly from the device, interfering in the plane transverse to 
the propagation direction. Figures 5(b) and 5(c) show the intensity patterns recorded in 
transverse planes (far from the device) for opposite handedness of the incident light. It is 
evident that the two interference patterns are flipped according to what is expected for beams 
with opposite topological charges. Figures 5(c) and 5(d) show the calculated interference 
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patterns of two collinear helical modes of topological charges 5 and 10 with opposite 
handedness. These interference patterns are close to what we found experimentally if we 
assume for the charge 5 beam a Rayleigh range three times greater than for the charge 10 
beam. In the calculations this accounts for the different divergence of the two experimental 
beams. While the interlaced designs allow for multiple values of OAM to be imprinted on a 
single beam, the measured efficiency for the interlaced device is 20%, which is less than the 
single topological charge. This drop in efficiency results from the spatial multiplexing of two 
devices—the period of each individual device is doubled leading to higher orders of 
diffraction. 

It is important to note that each nanofin in our device has two interfaces, glass-TiO2 and 
air-TiO2. Illuminating one side or the other, as in Fig. 5(f), does not alter the phase delays 
imposed by the nanofins (Appendix) but only slightly affects light coupling into the latter, 
due to the different reflectance of the air-TiO2 and glass-TiO2 interfaces. We measured a 
small decrease (< 5%) in the device efficiency when illuminating from the air-side, due to the 
larger refractive indices difference with TiO2. 

 

Fig. 5. (a) Schematic of the nanofins azimuthal distribution in the inner part of metasurface 
device with interleaved patterns that generate collinear beams having topological charges 

5=  and 10= . The device has a 500 μm diameter and contains more than 700 

interleaved radial rows of nanofins. (b), (c), Transverse intensity distributions of the light 
emerging from the metasurface for opposite handedness of the incident light. (d), (e), 
Simulated intensity patterns for collinear 5 and 10 topological charge beams. (f), Sketch of the 
setup that allows illumination of the transparent devices from the glass and air side 
simultaneously with circularly polarized beams of opposite handedness. In this case, there are 
two light beams, whose power can be made equal by suitably balancing the two arms, 
circularly polarized with opposite handedness that simultaneously illuminate the device from 
opposite sides at normal incidence. In this configuration, the helical modes propagating 
towards optical port 2 and 3 have also opposite wave-front handedness. This setup was also 
used to obtain the intensity distributions of Figs. 5(b) and 5(c). 
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4. Conclusions 

In the setup of Fig. 5(f), the beams illuminating the sample from opposite interfaces have 
opposite handedness. The double-face characteristic of our devices together with the 
illumination configuration of Fig. 5(f) allows one to simultaneously generate similar beams 
with opposite topological charges. This configuration was also used to obtain the intensity 
distributions of Fig. 5(b) and 5(c) representing the helical modes at optical ports 3 and 2 
respectively. 

Although we limited our interlaced design to two collinear beams, it is possible to produce 
three or more collinear vortices simultaneously as well as +  and -  collinear vortices 
(Appendix). This can find important applications in entanglement and quantum computing 
experiments. Moreover, the quantum description of a device simultaneously generating co-
propagating vortex beams with different topological charges has never been investigated and 
represents a stimulating direction for future work. Finally, we expect good tolerance to 
heating since TiO2 has an intensity damage threshold of 0.5 J/cm2 in the femtosecond regime 
[49]; thus we envision using such devices for non-linear optics with pulsed lasers. We 
actually exposed one of our devices to a CW laser (532nm wavelength) with a power of 1W 
over the device area for 5 hours without observing any change in the device efficiency and 
beam quality. 

In summary we have demonstrated that the interaction of light with designer metasurfaces 
can lead to the generation of complex wavefronts characterized by arbitrary integer and 
fractional topological charges and co-propagating beams with different orbital angular 
momenta. Our approach represents a major advance in design with respect to liquid crystals 
devices and as such has considerable potential in several areas of optics and photonics, 
ranging from quantum information processing to optical trapping and complex beam shaping. 

Appendix A. The device constitutive element (nanofin) 

The individual units of the devices demonstrated in the main text are TiO2 nanofins, shown 
schematically in Figs. 6(a) and 6(b). These units were fabricated using electron beam 
lithography and atomic layer deposition of TiO2 onto the electron beam resist, as was 
previously described by our group in reference [43]. The low temperature deposition yields 
amorphous TiO2 that has minimal surface roughness, which minimizes scattering losses. 
Additionally the TiO2 has a high refractive index, ranging from 2.64 at λ= 400 nm to 2.34 at λ 
= 700 nm and a bandgap of 3.46 eV, which lies outside of the visible portion of the spectrum. 
At the design wavelength (λ= 532 nm) for the devices described in the main text the measured 
TiO2 refractive index is 2.43. This value of refractive index is sufficiently high to confine the 
incident light to individual nanostructures and the bandgap occurring in the ultraviolet ensures 
there is no absorption at visible wavelengths. 

In order to impose a geometric phase on an incident light field while maximizing the 
efficiency [16], the nanofins must possess structural birefringence so that a π phase delay can 
be imparted on orthogonal components of the incident electric field (the x- and y-components 
of the electric field in the example shown here). With our nanofins this birefringence is 
implemented for a fixed height (h), Fig. 6(a), by varying the length (L) and width (W), Fig. 
6(b). In this way, different each component of light experiences a different effective refractive 
index, i.e. the nanofins are acting as waveplates with a fast and slow axis. 

As stated in the main text, a waveplate with a spatially-varying fast axis (Pancharatnam-
Berry phase optical elements [PBOE]), can impart a geometry-dependent phase on an 
incident circularly polarized light field. The imparted phase arises due to rotation of 
individual elements causing incident light to traverse two different paths on the Poincaré 
sphere. When the paths form a closed loop, the phase of the exiting light is then equal to half 
the solid angle of the loop. For our nanofins, which act as half waveplates, spatial rotation of 
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component. The image shows that the singularity localization in the device plane is smaller 
than 3μm. In ref [28] device singularities of 750 nm are reported. The physical dimension of 
the device singularity (region with no nanofins) in these metasurface devices is 1200 nm, 
however the fabrication technique used here can produce devices with controlled vacancies 
(i.e., lack of nanofin) on the order of the unit cell dimension of a few hundred nanometers. As 
pointed out in [28] this is an advantage of the metasurface q-plates. 

 

Fig. 8. Image of the singularity region of a 0.5q = device. 

Appendix E. Device efficiency and conversion over the visible range 

The polarization filter of Fig. 2(c) is used to eliminate the light that passes unperturbed 
through the device. This light has opposite handedness with respect to the helical mode and is 
absorbed by the polarization filter. It is known that when a waveplate that introduces a phase 
delay Γ  between the transverse field components is illuminated by circularly polarized light, 
the out coming field has two components with opposite handedness [38]: 

 ( ) ( )Γ Γ 21 1
1 1

2 2
i i i

outE e e e ασ σ− − −= + + −  (1) 

The term weighted by the ( )Γ1
1

2
ie−+  has the same handedness (σ ) of the incident light, the 

term weighted by ( )Γ1
1

2
ie−−  has opposite handedness (σ − ) with respect to the incident field and 

acquires an extra phase term i2αe , where α  is the orientation of the plate axis (each nanofin 
in our devices). 

In some experiments in literature, the percentage of light with σ −  handedness (

( )iΓ 2 21 Γ
1 e  sin

2 2
−− = ) is reported as the beam purity since represents the fraction of total 

outcoming light converted into the desired helical mode to the unconverted light [31]. This 
feature, though, does not account whatsoever for the device transmittance since the purity can 
be close to 100% even if the transmittance is as low as a few percent. This is a particularly 
important point for communication and quantum optics applications where for high fidelity 
systems it is necessary that both the transmission efficiency and conversion efficiency of the 
transmitted light be maximized. 
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the proper phase delay. This could result in even higher efficiency values at the designed 
wavelength. However, such design is limited to cylindrically symmetric structures like those 
necessary to generate a topological charge 2 vortex and cannot be applied to generate 
arbitrary vortex beams. 

The wavelength dependence of the phase delay Г imposed by the constitutive elements of 
spin-orbital momentum converters based on metasurfaces limits the efficiency bandwidth of 
such devices. The actual phase delay is equal to π only at the designing wavelength. The 
farther the wavelength is from the designed wavelength the larger the amount of unperturbed 
light, according to Eq. 1. However, the Pancharatman-Berry phase is path-length independent 
and does not change with the wavelength of the incident light. Figure 9 shows a single charge 
helical mode obtained at different wavelengths from a supercontinuum laser with our 532nm 
optimized device. 

The simulated phase shift between the x- and y- components of the electric field after 
passing through the nanofin and resulting as a function of wavelength is shown in Fig. 10. As 
can be seen from the figure, the conversion peaks around the design wavelength (532 nm) and 
is lower away from the design wavelength since the nanofin no longer acts as a half wave 
plate. Changing the design parameters of the nanofins would allow optimizing the device 
operation at other wavelengths [43]. 

Appendix F. Fractional Vortex in far-field 

Figure 11 shows the light distribution of the fractional 6.5 vortex beam at the camera plane, 
about 45cm from the device exit plane. The singularity line visible at 55μm from the device 
(Fig. 4 (a)) is no longer visible [50]. 

 

Fig. 11. Far-field image of the 6.5 topological charge vortex beam. 

                                                                                                      Vol. 25, No. 1 | 9 Jan 2017 | OPTICS EXPRESS 392 



Appendix G. Plus/Minus topological charge interlaced device 

In addition to the interlaced +5,+10 device, we have also produced a device with the same 
magnitude but opposite sign of topological charge (Fig. 12). 

 

Fig. 12. (a), Scanning Electron Microscopy micrograph of an interlaced 2.5q = ±  device. 

(b), light distribution at 45 cm from the device exit plane. (c), simulated interference pattern of 
two collinear beams with topological charges + 5 and −5. 
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