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Abstract: The impact of upper state lifetime and spatial hole burning on 

pulse shape and stability in actively mode locked QCLs is investigated by 

numerical simulations. It is shown that an extended upper state lifetime is 

necessary to achieve stable isolated pulse formation per roundtrip. Spatial 

hole burning helps to reduce the pulse duration by supporting broadband 

multimode lasing, but introduces pulse instabilities which eventually lead to 

strongly structured pulse shapes that further degrade with increased 

pumping. At high pumping levels gain saturation and recovery between 

pulses leads to suppression of mode locking. In the absence of spatial hole 

burning the laser approaches single-mode lasing, while in the presence of 

spatial hole burning the mode locking becomes unstable and the laser 

dynamics does not reach a steady state anymore. 
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1. Introduction 

Short pulse generation from Quantum Cascade Lasers (QCLs) emitting in the mid-infrared 

region (3.5-20 μm) could serve many applications ranging from time-resolved spectroscopy 

[1,2], and nonlinear frequency conversion [3–5] to high-speed free space communication [6] 

and frequency metrology [7]. QCLs [8] were first demonstrated in 1994 and they have 

become the most prominent and compact coherent light source in the mid-infrared. While 

conventional semiconductor lasers are bipolar devices and have an upper state lifetime 

ranging from hundreds of ps up to ns, QCLs are unipolar devices with an upper state lifetime 

that is in the few ps range. In QCLs, the emission wavelength, the gain spectrum and the 

carrier transport characteristics can be engineered over a wide range of values. 

The gain bandwidth of QCLs is large enough to potentially generate sub-picosecond mid-

infrared laser pulses due to the flexibility offered by band structure engineering. The most 

common technique for ultrashort pulse generation is mode locking, in which the longitudinal 

modes of the cavity are phaselocked either by an internal mechanism (passive mode locking) 

or by an external (active mode locking). However, short pulse generation from QCLs by 

mode locking is difficult due to the fast gain recovery time [9,10]. In intersubband transitions 

(i.e. transitions between quantized conduction band states in semiconductor quantum wells), 

the carrier relaxation time is very fast due to optical phonon scattering. As a result, the upper 

state lifetime in QCLs is typically one order of magnitude smaller than the roundtrip time, 40-

60 ps, of typical few mm long laser structures [9,10]. Usually, this situation prevents the 

occurrence of mode locking, i.e. stable pulse formation. The reason is, that the gain fully 

recovers before the next pulse arrives or even immediately after the pulse if the gain is fast 

enough, which leads to less amplification of the peak of the pulse than its wings. Due to this 

process the pulse lengthens in time and the laser approaches continuous wave (cw) lasing. On 

the other hand, if the gain recovery time is longer than the cavity roundtrip time, the gain 

saturates with the average power in the laser cavity and does not shape the pulse significantly 

(Fig. 1). Therefore, most recently, QCLs with long upper state lifetime have been fabricated 

by implementing a “superdiagonal” gain structure. Upper state lifetimes of 50 ps, similar to 

the cavity roundtrip time, have been achieved. Using such structures, an actively mode-locked 
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QCL [11,12] that produced stable and isolated picoseconds pulses, as confirmed by 

interferometric autocorrelation measurements, was demonstrated. Stable operation with these 

devices was obtained by current modulation of only a short section of the waveguide, while 

the whole waveguide was biased slightly above threshold. 

In this work, first the impact of upper state lifetime and pumping level on pulse formation 

is discussed without taking spatial hole burning into account. Then the role of spatial hole 

burning (SHB) in pulse shaping, destabilization of mode locking and interaction with fast gain 

recovery and saturation is clarified, beyond what has been discussed previously in [12,13], by 

extensive numerical simulations. SHB significantly reduces the pulse duration by supporting 

broadband multimode operation. However, it leads to pulse instabilities and non stationary 

pulse generation from the laser. 

 

Fig. 1. Intensity (black line) and inversion (red line) for (a) fast gain recovery time and (b) slow 

gain recovery time 

2. Prior work on multimode regimes in QCLs 

There are several previous works in which multimode regimes in QCLs were observed [6,14–

16]. In [14] self mode locking of CW pumped QCLs was claimed. The lasers were emitting 

broadband optical spectra over a wide range of DC pumping levels. In the photocurrent 

spectrum a strong, stable and narrow (less than 100 kHz) peak was observed, which indicated 

long term coherence of phase relationships between the longitudinal modes. However, no 

autocorrelation data were reported from which one could infer the formation of a stable train 

of ultrashort pulses separated by the cavity roundtrip time. 

In [6] active mode locking in QCLs, by modulating the laser current at the cavity 

roundtrip frequency, was pursued. Again, evidence of mode locking was deduced from the 

measured broadband optical spectra, as well as from the power spectra of the photocurrent. 

When the detuning between the driving frequency and the roundtrip frequency was large, only 

one mode was lasing. As the detuning was decreased more and more modes were lasing and a 

narrow beat note at roundtrip cavity frequency appeared. Information about the temporal 

profile of the generated pulses and proof for true short pulse generation can be obtained with 

second order autocorrelation measurements. Due to the lack of second order autocorrelators in 

the mid-infrared at that time, there was no direct evidence that the circulating waveform was 

consisting of a train of periodic isolated pulses with a stable steady state pulse shape. 

Once autocorrelation techniques based on two photon absorption quantum well infrared 

photodetectors (QWIPs) [17,18] became available, it was discovered that the wideband 

multimode operation in QCLs is due to phenomena, such as spatial hole burning and the 

Risken-Nummedal-Graham-Haken (RNGH) instability [13,19]. Recently, it was proposed that 

self-induced transparency (SIT) together with a fast saturable absorber may be used to 

passively mode lock QCLs [20]. 

3. Device model and modulation scheme 

The actively mode locked QCL, which we will study in the following is schematically 

depicted in Fig. 2a. A detailed description of a specific device can be found in [12]. The laser 
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cavity is formed by two semiconductor/air interfaces, which shall be located at z = 0 and z = 

L, where L is the cavity length. The cavity is divided into a short and a long section (Fig. 2b). 

Both sections are assumed to be equally and continuously pumped (DC pumping) with a 

current density thJ p J  , where thJ denotes the threshold current density and the pump 

parameter p shows how many times the laser is pumped above threshold. 

DC+RF DC 

b

DC+RF DC 

b

DC+RF DC 

b

DC+RF DC 

b

 

Fig. 2. a) Device used in the experiment, b) Modulation scheme for the actively mode locked 

QCL. The cavity is in total 2.6 mm long and the short modulator section at the beginning of the 

cavity is 240 μm long. 

Active mode locking is achieved by sinusoidal modulation of the pump current injected 

into the short, electrically isolated, waveguide section with the roundtrip frequency of the 

passive cavity. The modulation is supposed to drive a large number of longitudinal modes 

above threshold by creating modulation sidebands resonant with neighboring modes. The 

pump current of the small section is then given by  sin(2 )th RJ J p m f t   , where m is 

the modulation amplitude relative to threshold. 

The modulation of the injection current into the short section leads to temporal variation 

of the roundtrip gain that a pulse can experience, favoring pulsed operation. The common 

approach to achieve active mode locking is by periodic modulation of the intracavity losses. 

Here, we modulate the gain. The short section of the cavity acts as a gain modulator, and the 

long section is pumped to transparency or to slight net gain, helping to compensate the other 

losses in the laser cavity. 

4. Numerical model of QCL 

4.1 Three-level versus two-level model 

The dynamics of a QCL can be described by a three level model [21] as it is shown in Fig. 3a. 

It assumes that all QCL stages are identical and that laser action occurs between levels 2 and 

1, the upper and lower states of the laser transition. Level 0 corresponds to the superlattice 

which connects to the next QCL stage, which is again described by the upper laser level 2. 

The current density J driven through the device by an external voltage acts as the pump 

current density from level 0 to level 2. 21T  is the lifetime of the upper level, 10T  is the lifetime 

of the lower laser level, that couples to the superlattice. In reality, there is also a superlattice 

transport time, SLT , that describes the time it takes for the carriers to travel between different 
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stages, which we neglect here. The rate equations for the 3-level system shown in Fig. 3a 

reads 

  2
2 1 2

21

1
ph

dN
J I N N N

dt T
      (1) 

  1
2 1 2 1

21 10

1 1
ph

dN
I N N N N

dt T T
      (2) 

 0
1

10

1dN
J N

dt T
     (3) 

where 2N , 1N  and 0N  are the population sheet densities of levels 2, 1 and 0 respectively, J  

is the pump current density from level 0 to the upper lasing level 2,   is the cross section for 

stimulated emission between levels 2 and 1 and phI  is the photon flux at the transition 

frequency 21f . If the relaxation rate 101 T is very large in comparison with the stimulated and 

spontaneous transition rate from level 2 to 1, which is  1 2 211 1phI N N T   , then level 1 

will stay empty at all times, i.e. 1N  = 0. This is especially the case in the laser here, since it is 

never pumped far above threshold and the ratio 21 10 100T T  . Thus even for sub-picosecond 

short pulses the stimulated emission rate would never exceed the decay rate 101 T , which 

would lead to significant build-up of population in the lower laser level. 

Assuming that the lower lasing level stays empty, we can describe the QCL dynamics by 

an open two-level model (Fig. 3b) for simplicity. The rate equations for the 3-level system 

shown in Fig. 3b read 

 2
2 2

21

1
ph

dN
J I N N

dt T
     (4) 

 1 0N    (5) 

The population inversion in the open two-level model is effectively the upper state 

population. The gain recovery time in the two-level model is then equal to the upper state 

lifetime 21T  and the pump current density fills the upper laser state 2 at a given rate 

determined by the injected current density. The two-level model does not include the 

superlattice transport dynamics since it is derived from the three level model (Eq. (1)-(3)) 

which also does not involve this transport and this may be one reason for some of the 

remaining discrepancies between the theoretical and experimental results. 

 

Fig. 3. a) Three-level system which describes QCL dynamics, b) Open two-level model that we 

use in the simulations 
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4.2 Maxwell-Bloch Equations 

To describe the interaction of the laser field with the gain medium, we expand the two level 

rate equations to full Maxwell-Bloch Equations [13], that also take the coherent interaction 

between the field and the medium into account. The dynamics of polarization and inversion of 

the gain medium is described by the Bloch equations (Eq. (6-7)) and the pulse propagation 

through the gain medium located in the Fabry Perot cavity is described by the wave equation 

(Eq. (8)). The electric field propagates in both directions resulting in standing waves. 

 
2

ab
t ab ab

dE
i i

T


        (6) 

  
2

*

2

1

2t ab ab

dE
i D

T z
  

  
      


  (7) 

  
2

2 2 2 *

2 2

0

z t t ab ab

n Nd
E E

c c
 


        (8) 

where ab  is the off-diagonal element of the density matrix, bb aa     is the population 

inversion,  is the resonant frequency of the two-level system, d is the dipole matrix element 

of the laser transition, D is the diffusion coefficient, E is the electric field, N is the number of 

two-level systems per unit volume, n is the background refractive index, 1T  is the upper state 

lifetime, 2T  is the dephasing time and  is the pumping rate, that is directly proportional to 

the injection current J in the rate equations. In the model, we modulate the gain in the short 

section via the pump parameter  sin(2 )th Rp m f t      and in the long 

section th p   . The last term in Eq. (7) accounts for spatial diffusion of the inversion, i.e. 

of electrons in the upper laser level along the plane of the layers. 

The waves traveling in the two directions are coupled as they share the same gain 

medium. This gives rise to SHB: the standing wave formed by a cavity mode imprints a 

grating in the gain medium through gain saturation. As a result, other modes may become 

more favorable for lasing and multimode operation is triggered. 

We make the following ansatz for the electric field, the polarization and the inversion: 

                * *1 1
( , ) , , , ,

2 2

i t kz i t kz i t kz i t kz
E z t E z t e E z t e E z t e E z t e

        

   
      
   

 

  (9) 

          
, , ,

i t kz i t kz

ab z t z t e z t e
 

  
 

     (10) 

        2 * 2

0 2 2, , , ,ikz ikzz t z t z t e z t e       (11) 

where /k n c . The + and – subscripts label the two directions of propagation. E and  are 

the slowly varying envelopes in time and space of the electric field and the polarization, 

respectively. The spatially dependent inversion is written as a sum of three terms, where 0 is 

the average inversion and 2 is the amplitude of the inversion grating. 0 and 2 vary slowly 

in time and space. 

We substitute Eq. (9-11) into Eq. (6-8), and perform the slowly varying envelope 

approximation obtaining the following set of equations [13]: 

#124519 - $15.00 USD Received 23 Feb 2010; revised 27 Apr 2010; accepted 7 Jun 2010; published 10 Jun 2010
(C) 2010 OSA 21 June 2010 / Vol. 18,  No. 13 / OPTICS EXPRESS  13621



 

 
2

0

t z

n Ndk
E E i E

c n



          (12) 

  0 2

22
t

id
E E

T


 
         (13) 

  * * 0
0

1

. .t

id
E E c c

T
     


         (14) 
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For compact notation we introduced: 2 2

    and *

2 2

   .  
*

2 2

     . The last term in the 

equation for the electric field represents the waveguide losses. The model assumes fixed 

waveguide losses, . In addition to the waveguide losses there are also losses upon reflection 

from the waveguide facet, which are in the case considered here 53% on each end of the laser 

due to the reflection from the semiconductor air interface, which is not contained in the 

propagation equations (Eq. (12-15)), but included in the simulation. In fact the low facet 

reflectivity is the major source of loss in this laser so that other small loss variations in the 

device due to changes in the operating conditions are expected to be of minor importance and 

can be safely neglected. In contrast to ref [13], we do not include any effective saturable 

absorber effects due to potential Kerr-Lensing, since we compare the simulations later with 

experimental results from devices with a wide ridge (8-20μm), where such effects are greatly 

reduced as discussed in [13]. 

For simulation purposes, i.e. elimination of noncritical model parameters, we normalize 

the field with respect to the dipole matrix element, i.e. Rabi frequency, and correspondingly 

polarization, inversion, inversion grating and pumping as follows: 

 
Ed
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0 02
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The equations transform to 
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For ease of interpretation of the simulation results and matching of model parameters to the 

experimentally realized operating conditions, which are always related to the threshold pump 

current, we derive the threshold pumping and threshold inversion for cw-lasing. The 

continuous wave steady state polarization for E E E   is 
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  2
0 2

2

T
i E      (20) 

which can be substituted in Eq. (16). Thus for the forward propagating field we find 

  2
0 2

2
z t

Tn
E E E

c

 
       
 

.  (21) 

Thus the gain is  2 0 2 2g T   . At threshold the electric field vanishes and we obtain 

from Eq. (18) for the inversion 0 1T   and since there is no grating, 2  = 0. We therefore 

find that the small signal gain is given by 0 1 2 2g T T . At threshold the gain is equal to the 

losses, thus the pumping at threshold must be 1 22th l T T  and the inversion at threshold is 

22th l T  . For the following, we normalize the plots for the inversion always with respect 

to the threshold inversion th for ease of interpretation. 

Spatial hole burning is associated with the amplitude 2  of the inversion grating that 

couples the electric fields propagating along the two directions in the laser. As can be seen 

from Eq. (19) the inverse lifetime of the gain grating is given by 1 1 2

1 4gT T k D   , i.e. it is 

the sum of the terms due to diffusion of the carrier density modulation and the inverse carrier 

lifetime, since the latter is the rate by which carriers are homogenously injected in each 

volume element. SHB is strong in mid-IR QCLs since the strength of diffusion, which 

combats the carrier density modulation, scales with the square of the wave number k [13], 

which is about an order of magnitude smaller for mid-IR QCLs than for semiconductor lasers 

in the visible. In steady state, Eq. (18) shows that the term  * *i E E      that drives the 

inversion grating in Eq. (19) scales with 0 1T . So, in steady state, the strength of the carrier 

density modulation or gain grating is  2

2 0 1~ 1 4k DT   . In AlInAs-InGaAs 

heterostructures, the diffusion coefficient D is 46 cm2/sec at 77 K and for vacuum wavelength 

6.2 μm, we obtain 4k2D = 0.2 THz. In regular mid-IR QCLs (T1 = 5 ps), 24k D  is roughly the 

same as 1/ T1 and SHB is strong ( 2 00.5   ). Even for a longer upper state lifetime, such as 

T1 = 50 ps, which is the case for the “superdiagonal” QCL structures discussed here, the 

effects of SHB cannot be neglected ( 2 00.1   ). Due to the fast gain recovery time of 

QCLs, carrier diffusion cannot suppress SHB, in contrast to standard semiconductor lasers. 

5. QCL Dynamics 

In this section we show and discuss the simulation results, initially without and then with 

SHB. The parameters that stay fixed and are used in all examples in this paper, if not 

otherwise explicitly noted, are given in Table 1. It is important to note, that for the QCL with 

superdiagonal gain structure discussed here, the roundtrip time is almost equal to the gain 

recovery time, T1, a fact that enables stable mode locking as explained before. 
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Table 1. Parameters used in simulations if not otherwise noted 

Quantity Symbol Value 
Gain recovery time 

1T  50 ps 

Dephasing time 
2T  0.05 ps 

Linear cavity loss  10 cm1 
Roundtrip time 

RT  56 ps 

Roundtrip frequency 
Rf  17.86 GHz 

Cavity length L 2.6 mm 
Modulator section length Ls 0.24 mm 
Facet reflectivity R 53% 

5.1 QCL Dynamics without SHB 

First, the steady state behavior of the laser is investigated when SHB is not included in the 

Maxwell-Bloch equations (i.e. 2 0  ). Initially the continuous wave steady state solution of 

the model is determined when the current modulation is switched off. Figure 4 shows the 

resulting total intracavity intensity and normalized inversion. That means, in each point of the 

cavity there is a forward and a backward wave and we add the intensities of both waves to the 

total intensity at each point. The total intensity increases slightly towards the facets of the 

cavity to compensate for the output coupling losses and as a result the gain is more strongly 

saturated at the edges than in the center of the cavity. 
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Fig. 4. Steady state intensity (blue line) and inversion (green line) in the cavity without SHB 

and without modulation for DC pumping p = 1.1 after 1785 roundtrips. 

For completeness, Fig. 5 shows the pumping, the inversion and the intensity versus time 

for a point inside the short (modulated) section. The inversion does not follow the pumping 

current instantaneously, because the modulation frequency is close to the inverse gain 

recovery time (i.e Rf  = 17.86 GHz and 11 20T  GHz) and as a result the inversion is 

delayed by almost 90 degrees compared to the pumping. Also, the gain peak does not coincide 

with the pulse maximum. The front of the pulse extracts gain so it is more amplified than the 
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back of the pulse experiencing the reduced gain, due to the long gain recovery time compared 

to the pulse duration. As a result, the group velocity of the pulse is increased. 
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Fig. 5. Pumping, inversion and intensity for a point inside the modulation section for p = 1.1 

and m = 5 without SHB. 

Second the laser dynamics under current modulation is studied. Figure 6 shows the 

intensity of the output pulses from the QCL at the right end of the laser cavity, (i.e. the laser 

output is monitored as a function of time) for different DC pumping levels and constant 

modulation amplitude (m = 5). As expected, isolated pulses with a steady state pulse shape 

are formed by the strong gain modulation in the short gain section. For increased DC-

pumping levels of the long gain section, the pulse energy or average output power is 

increasing. The pulse duration depends on the pumping level. This can be understood by the 

fact that the long section acts as an amplifier with a recovery time on the order of the cavity 

roundtrip time. Although the gain is slow, with a recovery time equal the cavity roundtrip 

time, it leads to substantial reshaping of the pulse towards longer pulses, i.e. suppression of 

multimode operation. When the DC pumping level is close to threshold (p = 1.1) the pulse is 

weak and therefore only weakly saturates the amplifier leading to minimum pulse lengthening 

during propagation through the long section. The long section mostly helps to compensate for 

the waveguide and facet losses. With increasing DC pumping (p = 1.45 and p = 1.61), the 

pulse energy and with it the gain saturation and pulse lengthening increases, explaining the 

increase in pulse duration with increased pumping. 

 

Fig. 6. Intensity profile of output pulse train for modulation with AC-amplitude m = 5 for 

different DC pumping levels without SHB. a) p = 1.1 b) p = 1.45, and c) p = 1.61 
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Fig. 7. Spectral intensities for modulation with AC-amplitude m = 5 for different DC pumping 

levels without SHB a) p = 1.1 b) p = 1.45, and c) p = 1.61 

For the purpose of comparison with later simulation and experimental results, Fig. 7 

shows the normalized spectral intensities and Fig. 8 shows the computed Interferometric 

Autocorrelation (IAC) traces for the three cases in Figs. 6a-6c. When DC pumping is close to 

threshold many modes are lasing and locked (Fig. 7a) and as a result the pulses are fairly 

short, as we can see in Fig. 6a. As DC pumping increases we can see in Fig. 6 that the pulses 

become longer in time and from the spectra we observe that fewer modes are lasing due to the 

intensity smoothing effect of a saturating and fast recovering gain in the long section. For low 

DC pumping level the ratio of peak to background is 8:1 (Fig. 8a), which verifies that the 

pulses are isolated. IAC traces for higher DC pumping levels start to overlap. For the case 

without SHB, the IAC traces and in fact the computed electric fields do not show any chirp 

i.e. nontrivial phase over the pulse. 

 

Fig. 8. Interferometric autocorrelation traces (IACs) for modulation with AC amplitude m = 5 

for different DC pumping levels without SHB a) p = 1.1 b) p = 1.45, and c) p = 1.61 

As we will see later, these do not fully account for what is found experimentally and 

inclusion of SHB is necessary to explain the observations. 

5.2 Experimental observations 

The experiments are described in detail in [12]. The experimental results show the same 

general trend of pulse lengthening with increased DC pumping, however there is a major 

difference. The pulses in the simulations are in general longer in time than the pulses 

observed experimentally. For the case of a DC pumping parameter p = 1.1, the pulse in Fig. 

6a is close to a Gaussian with a 7 ps FWHM duration. The measured interferometric 

autocorrelations for different pumping levels are shown in Fig. 9, and in particular for p = 1.1 

in Fig. 9a, assuming a Gaussian pulse shape, a FWHM pulse duration of 3 ps is extracted. The 

experimentally observed spectra are also much more broadband compared to the theoretical 

ones from the simulation. This indicates that SHB is important and must be incorporated in 

the model. 
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Fig. 9. Measured interferometric autocorrelation traces (IACs) for modulation with AC 

amplitude m = 5 (35 dBm applied RF-power) for different DC pumping levels. a) p = 1.1 (340 

mA) b) p = 1.45 (450 mA), and c) p = 1.61 (500 mA) [12]. 

5.3 QCL Dynamics with SHB 

To include SHB in the model we use Eqs. (16-19) in the simulations. The total inversion now 

consists of the average inversion Δ0 and the inversion grating. The interference of the two 

counter-propagating waves produces a standing wave pattern in the optical intensity, which in 

turn varies spatially the saturation of the laser medium. Due to the spatial gain grating more 

modes start lasing, however as we will show below this grating does not become stationary. 

The wave, as it propagates, is reflected from the nonstationary grating at some positions (SHB 

interferes with mode locking) and this leads to differential and time varying phase shifts 

between the modes. Thus, in the presence of SHB the modes acquire nonlinear phase shifts 

and with it also the pulse. Like in the case without SHB, the DC pumping level should be 

close to threshold so that the pulses do not lengthen too much. 

To obtain insight into the nonstationary gain grating, the continuous wave solution of the 

model is determined in the absence of a current modulation. In Fig. 10 we show the inversion 

along the cavity for DC pumping 1.1 times above threshold at three different times about 

5000 roundtrips apart. As the number of roundtrips increases, the average inversion and the 

inversion grating continue to evolve and never reach a steady state. The inversion profile and 

inversion grating show a degree of randomness. If there would be a steady state, one would 

expect that due to the large losses per roundtrip the system would certainly come into steady 

state within at least a hundred roundtrips. This is not the case. 
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Fig. 10. Average inversion Δ0 (blue line) and total inversion along the cavity length including 

the inversion grating (red line) for DC pumping p = 1.1 and no modulation after a) 5357 

roundtrips, b) 10714 roundtrips c) 17857 roundtrips. 

If we increase the DC pumping to 2 times above threshold, the degree of randomness in 

the grating is further increased due to the increase in the number of modes that are lasing, see 

Fig. 11. 
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Fig. 11. Average inversion Δ0 (blue line) and total inversion along the cavity length including 

the inversion grating (red line) for DC pumping p = 2 and no modulation after a) 5357 

roundtrips, b) 10714 roundtrips c) 17857 roundtrips. 

In the following, we show the intensity and the inversion profiles in the cavity when the 

modulation is switched on, for various time instants and different DC pumping levels. In Fig. 

12 the DC pumping is 1.1 times above threshold. When the pulse is reflected from one of the 

facets, Figs. 12a and 12c, a grating is formed due to the presence of forward and backward 

waves. Since there are isolated pulses produced, there is no grating when the pulse is 

propagating in the middle of the cavity, Fig. 12b. However, there is still some gain grating left 

over at the left end of the waveguide, where the pulse was reflected last and consequently the 

grating has not yet decayed completely. 
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Fig. 12. Intensity profile (blue line) and total inversion (red line) along the cavity for DC 

pumping p = 1.1 and AC amplitude m = 5 a) when the pulse is reflected off the left facet and 

propagates to the right b) when the pulse is in the middle of the cavity and propagates to the 

right c) when the pulse is reflected off the right facet and propagates to the left. 

If we increase the DC pumping to 2 times above threshold (Fig. 13) there are no longer 

isolated pulses per roundtrip. The pulse has broken up into multiple beats of the lasing modes, 

due to the large and too fast recovering gain in the long waveguide section and a gain grating 

is observable over the full length of the laser cavity. 
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Fig. 13. Intensity profile (blue line) and total inversion (red line) along the cavity for DC 

pumping p = 2 and AC amplitude m = 5 a) when the pulse is reflected off the left facet and 

propagates to the right b) when the pulse is in the middle of the cavity and propagates to the 

right c) when the pulse is reflected off the right facet and propagates to the left. 
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Note, in both Figs. 12 and 13 there is a discontinuity in the inversion at the boundary 

between the short modulated section and the long, continuously pumped section. 

Similar to Figs. (6-8), we simulate the laser dynamics under current modulation in the 

presence of SHB. The simulation results shown in the following are snapshots of the laser 

dynamics after simulating 10,750 roundtrips (0.6 μs). Figure 14 shows the normalized time 

averaged spectral intensities that are generated by Fourier-Transformation of a 29 roundtrip 

long time series, and Fig. 15 shows the intensity of the output pulses at the end of the QCL 

cavity for different DC pumping levels and constant modulation amplitude (m = 5) for a 

duration of about three cavity roundtrips. As explained above, the generated pulse trains and 

spectra do not reach a true steady state, but rather remain dynamic on the few percent level. If 

we compare the spectral intensities in Fig. 14 with the ones in Fig. 7, where no SHB is 

included, we see that many more modes are lasing in the presence of SHB in agreement with 

the experiment. For DC pumping close to threshold (p = 1.1) the phases between the modes 

are locked to the values favoring the formation of an isolated pulse and the main peak of the 

pulse becomes as short as 2 ps (Fig. 15a). With increasing DC pumping level, more modes 

start lasing (Figs. 14b, 14c), since the magnitude of the inversion grating becomes stronger. 

At the same time, the intensity profile of the pulses becomes more structured (Figs. 15b, 15c). 

The reason for the structure is the decorrelation of the phases between the modes due to SHB. 

Also the speed of the gain modulation, which stays fixed, is no longer capable to lock all 

modes of the increasingly broadband spectrum. Furthermore, with increased DC-pumping, 

passive gain modulation in the amplifier section, due to gain saturation by the pulse and 

partial gain recovery, becomes stronger and again the peak of the pulse experiences less gain 

than the wings, destabilizing short pulse generation. 

 

Fig. 14. Spectral intensities for modulation with AC amplitude m = 5 for different DC pumping 

levels including SHB a) p = 1.1 b) p = 1.45, and c) p = 1.61 

 

Fig. 15. Intensity profile of output pulse train for modulation with AC amplitude m = 5 for 

different DC pumping levels including SHB a) p = 1.1 b) p = 1.45, and c) p = 1.61 

The computed IAC traces for the three cases in Fig. 15 are shown in Fig. 16 and reflect the 

structure that is observed in the intensity profiles. As DC pumping increases, we observe in 

the IAC traces more and more substructure. The simulation traces back this sub-structure to 

the nonlinear phase introduced by SHB. 
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Fig. 16. Interferometric autocorrelation traces (IACs) for modulation with AC amplitude m = 5 

for different DC pumping levels including SHB. a) p = 1.1 b) p = 1.45, and c) p = 1.61 

The grating decay time Tg is always smaller than the upper state lifetime T1, see Eq. (19). 

When the effects of carrier diffusion are negligible, i.e. Tg becomes close to T1, the strength of 

SHB increases (the amplitude of the inversion grating relaxes slower) and the side lobes in the 

IAC become more pronounced. In Fig. 17a we see the effect on the side lobes when Tg 

increases from 5 ps (used so far) to 10 ps. The same behavior also occurs when T1 decreases. 

As explained before, decrease in T1 results in increase of the effect of SHB and subsequent 

deterioration of the pulse quality as it is shown in Fig. 17b. 

 

Fig. 17. Interferometric autocorrelation traces (IACs) for modulation with AC amplitude m = 

5, and DC pumping level p = 1.1 a) for T1 = 50 ps and Tg = 10 ps b) for T1 = 5 ps and Tg = 2.5 

ps. Comparing the two figures with Fig. 13a we see that the structure is more pronounced in 

these figures due to the stronger SHB. 

6. Conclusion 

We have shown by numerical simulations the limitations in achieving stable short pulse 

generation from actively mode-locked QCLs, due to the limited upper state lifetime and 

spatial hole burning. A stable regime of modelocking only occurs for carefully adjusted DC 

pumping level close to threshold and strong modulation of the pump current in a short 

modulator section. SHB helps to reduce the pulse duration, but deteriorates pulse quality. 

Further increase in DC pumping results in pulse lengthening and deterioration of pulse quality 

both due to spatial hole burning and increased gain modulation due to gain saturation by the 

pulse and subsequent partial gain recovery. Simulations and experimental results show the 

same trend as DC pumping increases. 
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