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Abstract: We introduce the concept ofmetafluids— liquid metamaterials
based on clusters of metallic nanoparticles which we will term Artificial
Plasmonic Molecules(APMs). APMs comprising four nanoparticles in a
tetrahedral arrangement have isotropic electric and magnetic responses and
are analyzed using the plasmon hybridization (PH) method, an electrostatic
eigenvalue equation, and vectorial finite element frequency domain (FEFD)
electromagnetic simulations. With the aid of group theory,we identify the
resonances that provide the strongest electric and magnetic response and
study them as a function of separation between spherical nanoparticles. It is
demonstrated that a colloidal solution of plasmonic tetrahedral nanoclusters
can act as an optical medium with very large, small, or even negative
effective permittivity,εeff, and substantial effective magnetic susceptibility,
χeff = µeff − 1, in the visible or near infrared bands. We suggest paths for
increasing the magnetic response, decreasing the damping,and developing
a metafluid with simultaneously negativeεeff andµeff.
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1. Introduction

The optical properties of metallic multi-nanoparticle structures have been of great theoreti-
cal and experimental interest in recent years due to biological and chemical sensing applica-
tions, including Surface Enhanced Raman Spectroscopy (SERS) and Localized Surface Plas-
mon (LSPR) sensing [1, 2, 3, 4, 5, 6, 7]. In the former, large electric field enhancements near the
surfaces of particles or in the gaps of nanoparticle clusters near the plasmon frequencies lead
to an increased Raman cross section. In the latter, a change of refractive index from a nearby
molecule causes a red-shift of the plasmon frequencies. Plasmonic nanostructures have also
attracted a great deal of attention as an approach to construct electromagnetic metamaterials —
media with optical properties previously unavailable in nature.

Here, we introduce a new concept called ametafluid— a liquid metamaterial containing
Artificial Plasmonic Molecules (APMs). APMs are geometrically ordered aggregates of plas-
monic nanoparticles that typically consist of 2-15 individual “atoms” [8, 9, 10, 11]. With the
flexibility to engineer APM geometries, the optical properties of APMs can differ tremendously
from those found in natural molecules. The size of an APM greatly exceeds that of a typical
molecule yet may be considerably smaller than the optical wavelength. Due to the small spa-
tial extent of the APMs compared to optical wavelengths, theresulting metafluid can still be
viewed as an effective medium and characterized by its effective coefficients such as, for exam-
ple, dielectric permittivity and magnetic permeability. By changing the size and arrangement of
the constituent plasmonic nanoparticles inside an APM, theAPM’s optical response at the fre-
quency of interest can be controlled in both magnitude (strong or weak) and character (electric
or magnetic, scattering or dissipative). Recent interest in liquid-liquid optical waveguides [12]
further motivates the development of metafluids.

The term “metafluid” in this paper is composed of two words: metamaterial and fluid. By
“metamaterial” we mean an artificially created composite ofregular materials that exhibits un-
usual electromagnetic properties, such as, for example, negative magnetic permeability or neg-
ative index of refraction. One can ascribe effective index of refraction to a composite medium,
for example, when the structure is periodic (regardless of the distances between particles and
their sizes). Such situation is known as theBloch-Floquet regimeor the photonic crystal regime.
Assignment of refractive index is also possible in theeffective medium regime, i. e. when the
size of individual scatterers is much smaller than the wavelength in immersion medium. These
two regimes are not mutually exclusive when the distance between particles is sub-wavelength;
in Section 4 we take advantage of periodic boundary conditions to characterize the optical prop-
erties of a dense nanoparticle colloid. Since optical parameters of an effective medium depend
mostly on the average distance between identical particlesin the ensemble, and little on the lo-
cations of individual particles, period-independent spectral features of periodic ensembles must
be shared by all random ensembles with the same particle number density.

In this paper we theoretically investigate an APM composed of four metallic nanospheres
situated equidistant from one another at the vertices of a regular tetrahedron, as the first candi-
date for optical metafluids. We refer to this structure as thetetramer. This structure has recently
attracted attention as a candidate for a coherently controlled nanorotor [13]. For electromag-
netic metafluids, APMs with tetrahedral symmetry are attractive because their single-particle
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polarizabilities are orientation-independent. The effective dielectric tensor,̂ε , of most fluids is
effectively a scalar because of the rapid rotation and high spatial density (∼ 1023 cm−3) of
the constituent molecules. However, when gigantic artificial plasmonic molecules described in
this paper are part of the metafluid, their rotational frequency and concentration in the solution
may not be sufficient to provide isotropization by temporal and spatial averaging. Therefore,
the isotropic polarizability of tetrahedral plasmonic molecules becomes crucial for ensuring
that the tensorŝε and µ̂ of a metafluid are spherical. Isotropy of particles also helps reduce
the effects of diffusive (Brownian) motion on the optical properties of a liquid. Dynamic light
scattering effects associated with fluctuations of particle positions [14] are not considered in
this paper.

In effective medium regime, appropriate quantities to describe the propagation of a plane
wave are dielectric and diamagnetic susceptibilities of the compound medium. In general, for a
linear medium there are four such (tensor) quantities. In the so-called Tellegen representation,
they relate electric and magnetic induction with electric and magnetic field intensity [15]:

~D = ε̂~E+ ξ̂ ~H, (1)

~B = µ̂~H + ζ̂~E. (2)

In the most general case where magneto-electric susceptibilities ξ̂ , ζ̂ do not vanish, the medium
is calledbianisotropic[15]. While a bianisotropic medium may be interesting on itsown, in
this article we focus only onregular media, which can be described with an effective permit-
tivity ε̂ and permeabilitŷµ only. In Section 2.1, we prove that the tetrahedral groupTd of the
tetramer has sufficient symmetry to prohibit bianisotropy in the electromagnetic response of
sub-wavelength plasmonic particles.

Thus, an effective medium composed of tetramers is isotropic, non-chiral, and described by
two scalar quantities,εeff and µeff. It should be mentioned that the tetramer is not the only
metamolecule that forms metafluids with such properties. There are seven 3-dimensional point
groups which guarantee a second-rank tensor to be spherical: three chiral groups (T, O, I )
and 4 non-chiral groups (Td, Oh, Th, Ih). We note that, in general, magneto-electric coupling
termsξ̂ andζ̂ do not average to zero when accounting for the rotation of APMs. This means,
for example, that a medium consisting of chiral APMs is also chiral. The remaining 4 groups
can be utilized for the design of isotropic, non-bianisotropic optical metamaterials. The min-
imum number of identical spherical nanoparticles is 4 forTd symmetry (vertices of a regular
tetrahedron), 6 forOh (octahedron), 12 forIh (icosahedron) and 20 forTh (pyritohedron), as
summarized in Table 2. A tetramer is thus theminimalnon-bianisotropic, fully isotropic “meta-
molecule”.

Experimental routes exist to assemble colloidal nanoparticles into highly ordered clusters.
One experimental route to the assembly of tetramers and larger symmetric structures, including
isotropic 6-particle “octamers” and 12-particle “icosamers”, is particle clustering in an oil-
in-water emulsion process [8]. Particles are first functionalized to be hydrophobic and then
transferred to an oil solvent. The oil is then added to water with surfactant and sheared in a
homogenizer, which yields surfactant-stabilized oil droplets in water. Next, the oil is evapo-
rated from the emulsion, and particles are forced into clusters due to capillary forces and are
held solidly together by van der Waals forces. Tetrahedral clusters are separated from clusters
of other particle number by centrifugation in a density gradient. This technique for creating
clusters is versatile and applies to all types of particles ranging from silica to PMMA [9]. In
addition, clustering is possible for hydrophilic particles through a water-in-oil emulsion [11].

The remainder of the paper is organized as follows: in Section 2, we use the plasmon hy-
bridization method [16] and a new finite-element implementation of the Electrostatic Eigen-
value surface integral formalism [17, 18] to find the plasmonmodes of a tetramer. Using group
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theory, we classify the plasmon modes by their electric and magnetic properties. In Section 3,
we examine the optical absorption spectra in the tetramer system using finite element frequency
domain (FEFD) calculations. In Section 4, we characterize atetramer colloid as an effective
medium with isotropic dielectric permittivity and magnetic permeability, and discuss some ex-
perimental challenges concerned with the fabrication of negative index metafluids.

2. Quasi-static analysis of the plasmon modes of tetramers

The Plasmon Hybridization (PH) method [16], along with several other methods such as the
Electrostatic Eigenvalue (EE) approach [17, 18], providesexact solutions for the plasmon res-
onances of a complex nanostructure in the quasi-static (non-retarded) limit.

In the PH approach, the plasmon modes of a multi-nanoparticle systems are expressed as
a linear combination of the (primitive) plasmon modes of theindividual particles [19]. The
primitive plasmon modes interact with each other through the Coulomb forces induced by their
surface charges. An appealing feature of the PH approach is that its eigenvalue problem is very
similar to the eigenvalue problem for molecular orbitals inquantum chemistry. This analogy
gives an insight into the relationship between the plasmon modes of a composite structure
and the plasmons of its constituent particles, and encourages the use of the group theory for
symmetry classification of these modes [20]. In contrast with the coupled-dipole approach [21,
22], the PH method can account for the hybridization of primitive eigenmodes with arbitrary
multipole orderl .

The Electrostatic Eigenvalue approach [17, 18] is a generalmethod for computing electro-
static eigenfunctions of arbitrarily-shaped particles ortheir ensembles. The EE method does not
take advantage of the simplicity of primitive plasmon modes, which makes it applicable also to
structures with non-spherical particles [23, 24]. Our implementation of EE method is described
in Section 2.3.

2.1. Group theory analysis

There are two main components to understanding the plasmon modes of nanoparticle clusters
as linear combinations of individual particle plasmons: multipolar mixing and geometric sym-
metry. The former is elaborated upon in Section 2.2. Here, wediscuss the application of group
theory for the determination of specific linear combinations of individual particle plasmons that
make up the tetramer plasmon modes.

The plasmon modes of nanoparticle clusters have previouslybeen shown to map onto the
irreducible representations of a point group corresponding to the underlying symmetry of the
cluster [25]. The plasmon modes of a planar equilateral trimer and quadrumer were classified
according to the irreducible representations that make up the dipole representation of the point
groupsD3h (trimer) andD4h (quadrumer). A symmetry adapted basis for each representation
could be generated using projection operators for each point-group, and the linear combinations
of individual plasmons that compose a physical trimer or quadrumer plasmon mode could be
expressed in these bases. The symmetry adapted linear combinations allowed for the separation
of cluster plasmon modes into those polarized either in-plane or out-of-plane and were used to
identify the modes that could be excited by light for each polarization. In this paper, we use this
approach to analyze the plasmon modes of the tetramer.

The symmetry of the tetramer corresponds to the point groupTd. It can be shown that a
product of four dipole representations of the rotation groupO(3) (which describes hybridization
of four dipoles arranged tetrahedrally) splits into the following irreducible representations of
Td group:

Γ4
dip = A1 +E+T1 +2T2. (3)
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This expansion is illustrated by Fig. 1. We note that all irreducible representations ofTd, except
A2, can be found amongst linear combinations of the single-particle dipoles (l = 1) arranged at
the vertices of tetrahedron. Modes withA2 symmetry occur only in decompositions of higher
order multipoles, e.g. withl = 3. Note that each irreducible representation corresponds to ann-
fold degenerate plasmon energy wheren is the dimension of the representation. Thus,A1, a one-
dimensional representation, corresponds to one non-degenerate plasmon energy, while each
instance ofT2, a three-dimensional representation, corresponds to a separate, triple-degenerate
energy.

Visualization (side) Visualization (corner)Irreducible 

representation 

A
1

E

T
1

T
2

Fig. 1. (Color online) Irreducible representations and symmetry adapted linear combina-
tions of the hybridized-dipole plasmon modes of the tetramer.

In the quasi-static limit, the strongest coupling of light is to the dipole modes. Therefore, we
will focus mostly on the linear combinations of dipole modes. Projection operators may be used
on the irreducible representations to obtain the dipolar symmetry adapted basis set associated
with each representation in Eq. (3). The resulting linear combinations are shown in Fig. 1. Of
these basis functions, onlyT2 has a non-vanishing net electric dipole moment.

To prove this fact and to provide additional insight into theelectromagnetic properties of
tetrahedral clusters, we perform a systematic decomposition of all plasmon modes into electric
and magnetic multipoles based on their rotational properties and inversion parity. Such decom-
position arises from the observation that all 3-dimensional point groups, including the point
groupTd of tetrahedron, are subgroups of the full group of the sphereO(3) = SO(3)

⊗

Ci . Ir-
reducible representations of the latter group are well-known [26]; they are characterized by the
angular momentumJ = 0,1,2, . . . and inversion parityP = ±1. An electric 2J-pole is a rank-J
tensor with inversion parity(−1)J. For example, the electric dipole is a vector that changes
sign upon inversion. A magnetic 2J-pole is a rank-J tensor of parity(−1)J+1. For instance,
the magnetic dipole does not change sign upon inversion and is a pseudovector. This identifies
all irreducible representations ofO(3) as either electric or magnetic multipoles. The complete
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multipolar decomposition ofTd group is presented in Table 1. Its electric multipole part isfound
in a variety of books on point groups, e. g. [26].

Td Example function Electric multipoles Magnetic multipoles

A1 1; x2 +y2+z2; xyz 1+8+16+64+ ... 64+29+210+212+ ...
A2 RxRyRz 64+29+210+212+ ... (1)+8+16+64+ ...
E {2z2−x2−y2,x2−y2} 4+16+... 4+16+...
T1 {Rx,Ry,Rz} 8+... 2+...
T2 {x,y,z} 2+... 8+...

Table 1. Multipolar decomposition of irreducible representations of the symmetry group
Td. Dots (+...) denote all multipoles higher than the last listed.Rα is the rotation operator.
The non-physical magnetic monopole (pseudoscalar representation) given in parentheses
cannot be constructed from electric charges. Dipoles are shown in bold face.

The most important conclusion of this analysis is that onlyT2 (T1) modes of tetramers can
have non-zero electric (respectively, magnetic) dipole moment. Additionally, Table 1 proves
that Td symmetry does not allow plasmon modes to have both electric and magnetic dipole
moment; therefore, magneto-electric coupling termsξ ,ζ vanish in tetramer colloids. Consid-
ering that clusters of other highly symmetric shapes, ranging from octamers to icosamers, have
already been synthesized from various dielectric materials [8], we have performed a similar
multipolar analysis for all non-chiral cubic groups. Results that are relevant to electromagnetic
homogenization of colloids are condensed in Table 2. We emphasize here that even though
magnetism of plasmon resonance is a phenomenon of orderη ≡ ω2R2/c2 [27], it would be
incorrect to assume that it is always associated with electric quadrupole resonances. Though
the latter is generally true for lower-symmetry particles [28, 29], higher symmetry groups may
enforce nullification of electric quadrupole moment of magnetic dipole modes. For example,
magnetically active eigenmodes of a tetramer are electric octupoles. Another example of this
sort was reported earlier for square-lattice (C4v) plasmonic crystals, where optical magnetism
was apparently caused by two-dimensional octupole (MJ = 4) resonances [30, 31].

Group Minimal polyhedron ED MD LOEM of MD

Td tetrahedron (4) T2 T1 octupole (2J = 8)
Th pyritohedron (20) Tu Tg quadrupole (2J = 4)
Oh octahedron (6) T1u T1g hexadecapole (2J = 16)
Ih icosahedron (12) T1u T1g hexacontatetrapole (2J = 64)

Table 2. Non-chiral cubic groups, their vector and pseudovector irreducible representations
related to electric dipole (ED) and magnetic dipole (MD) resonances, and the Lowest-Order
Electric Multipole (LOEM) of magnetic dipole resonances. All listed minimum-vertex
polyhedra except the pyritohedron (Th) have been observed in colloidal sphere clusters [8].

2.2. Plasmon energies from PH model

In this section, we use plasmon hybridization to calculate the plasmon modes of the tetramer
in the quasi-static limit as a function of the distance between spheres. The metals are implic-
itly described by a Drude form of the dielectric function,εp(ω) = ε∞ −ω2

B/ω2, whereε∞ is

the background permittivity of the metal and the bulk plasmon frequency isωB =
√

4πn2
0/me.

Theoretical calculations are presented here for tetramerscomposed of gold nanospheres, and
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Fig. 2. The plasmon modes up tol = 3 (at infinite separation) of a tetramer composed of
10 nm radius gold nanospheres in a dielectric medium ofεs = 1.96 versus the distance
between their centers. The modes are separated according tothe irreducible representation
to which they correspond.

multipolar orders of up tolmax = 24 are used. Gold is simulated usingωB = 8.95 eV and a
frequency independentε∞ = 9.5. This parameterization provides an accurate descriptionof the
dielectric properties of Au above 500 nm. To simplify the problem a bit, we have assumed that
the solvent and dielectric coating of nanospheres have the same permittivityεs = n2

s, where
ns = 1.4. Organic solvents with such index are readily available; for instance, ethanol has in-
dex of refractionn = 1.36 that matches almost perfectly the index of chemically grown silica
(nSiO2 ≈ 1.39) shells. Solvents with higher molecular weight (e.g., iso-octane withns = 1.39)
can provide even better index matching with silica when necessary; in our calculations the in-
dex matching assumption is a good approximation but not a condition of applicability. This
setup is assumed throughout the rest of the paper.

Fig. 2 shows the plasmon modes of a tetramer as a function of the distance between spheres
separated according to the irreducible representation of the tetramer point group. Only the low-
est multipolar plasmonsl = 1,2,3 are included in the graph. For large separations, the interac-
tion between the spheres is weak, and the plasmon energies are essentially the 4(2l + 1)-fold
degenerate energies of the 2l -polar plasmons of a single sphere. As the separation decreases, the
primary interaction that determines splitting between themodes is the electric dipolar (1/r3) in-
teraction. As the spheres move closer, interactions of the electric dipole and higher order (l ≥ 2)
multipoles with other higher order multipoles (1/r l+l ′+1) become more important.

2.3. First-principle electrostatic simulations of Artificial Plasmonic Molecules

The surge of recent interest in the optical properties of plasmonic nanoparticles originates from
the unique property of negative-permittivity interfaces to support source-free excitations known
as surface plasmons. These excitations exist even for particle sizes much smaller than the wave-
length of light at which they occur, which suggests that theyare electrostatic in nature. Conse-
quently, they can be found as solutions of the electrostaticLaplace equation with no external
field or charge:

~∇ · ε(x)~∇φ = 0. (4)
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For homogeneous negative permittivity particles (εp < 0) in a uniform transparent immersion
medium (εs > 0), this equation can be recast as a linear generalized eigenvalue problem [17] in
which the electrostatic permittivity of plasmonic particles plays the role of an eigenvalue:

~∇ ·θ (x)~∇φ = s∇2φ , (5)

whereθ (x) equals 1 inside the particle(s) and zero elsewhere, ands= 1/(1− εp/εs).
If the boundary of plasmonic particles is sufficiently smooth, differential equation (5) can be

reduced to a linear integral equation [18] for electrostatic surface chargesσ :

σ(x) =
λ
2π

∮

dSx′σ(x′)~n(x) ·~∇xG(x,x′), (6)

whereG(x,x′) is the electrostatic Green’s function,~n(x) is the outward normal to the surface of
plasmonic particle, andλ = (εp− εs)/(εp + εs) is the electrostatic eigenvalue [18].

Numerical discretization of both versions of the Electrostatic Eigenvalue (EE) method is
straightforward and was implemented using FEM software package COMSOL Multiphysics.
The differential equation (5) method may be preferable for periodic systems [23, 24], where
periodicity is easily imposed as boundary conditions for potential φ , whereas in the surface
integral approach (6) periodic boundary conditions must beembedded into the Green’s function
G(x,x′). On the other hand, the volumetric equation (5) has many moredegrees of freedom for
the same number of mesh elements on the particle surface thanthe equivalent equation (6).
In general, this leads to a large number of unphysical solutions. The surface integral approach
does not suffer from this problem, at least for very smooth surfaces such as spheres.

A1

A2

E

Fig. 3. (Color online) Examples of electrostatic resonances of a tetrahedral plasmonic
molecule. Left column: potential on the surface. Right: potential (color) and electric field
(arrows) in cross-sections. The lowest-lying resonance ofeach irreducible representation
(see Table 1) except triplets (T1, T2) is presented. Gap-to-diameter ratio in the cluster is
1/10. Triplets are shown separately in Fig. 4.
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Fig. 4. (Color online) Positions of the two lowest-lying electrostatic resonances as a func-
tion of the gap-to-diameter ratio. Left vertical axis: resonant permittivity of a plasmonic
particle relative to that of solvent (εp/εs); the plots are applicable universally to any metal
and solvent. Right axis: resonant wavelength for gold silica-coated tetramers in the index-
matching solvent withns = 1.4, assuming dielectric function of gold from [32]. Insets:
electrostatic potential and electric field profiles of theseT1 andT2 modes in clusters with
gap/diameter=0.1.

Using the surface charge equation (6), we have performed finite element method (FEM)
calculations using experimentally relevant parameters. The lowest-lying resonances of each
symmetry type are plotted in Fig. 3. Since the electrostaticspectrum is scale-invariant, the only
dimensionless structural parameter in the problem is the ratio of a sphere diameterD to the gap
h between their surfaces. Another dimensionless parameter,the dielectric contrast defined as
the ratio of the dielectric constant of the particles (εp) and the dielectric constant of the solvent
(εs). The dielectric contrast influences the energies of all electrostatic resonances. The vacuum
wavelengthλvac is not a parameter, but rather a label, related unambiguously to the dielectric
contrastεp/εs.

To understand how electrostatic resonances are excited by incident radiation and how they
contribute to optical extinction and absorption spectra, one may start with the quasi-static ap-
proximation, as suggested by the sub-wavelength nature of electrostatic resonances.

In the quasi-static approximation, the strongest interaction between incident light and parti-
cles is the coupling of a nearly uniform electric field with the induced electric dipole moment of
the particles. The strength of this interaction is characterized by the normalized dipole moment
of an eigenmode [33, 24, 34]:

~pn =

∮

~x(−∂φn/∂n)dS

(Vp
∮

φn∂φn/∂ndS)1/2
=

∫

(−~∇φn)θ dV
(

Vp
∫

(~∇φn)2 θ dV
)1/2

, (7)

whereσn(x) is the charge eigenfunction ofnth resonance,φn(x) is its potential,∂/∂n is the
normal derivative evaluated on the plasmonic side of the surface, andVp =

∫

θdV is the volume
of metal in a cluster.

In addition to the strong excitation of electric dipole resonances, which remain strong even
in the non-retarded limit, weakly inhomogeneous electric and magnetic fields of an incident
electromagnetic wave also induce various electric and magnetic multipoles. Though lots of
non-dipolar modes are excited by inhomogeneous fields, onlysome of them carry a magnetic
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dipole moment. This induced magnetic moment can be calculated in quasi-static approximation
from the total currentJ = Jc + ∂~P/∂ t ≡ ε−1

4π ∂~E/∂ t in plasmonic particles:

~M =
1
2c

∫

[~x× ~J]θ dV =
iω
8πc

(ε −1)
∫

[~x× (−~∇φ)]θ dV. (8)

After simple transformations, the energy-normalized magnetic dipole moment of an eigenmode
can be expressed in terms of surface integrals [34]:

~mn =

∮

[~n×~x]φndS
(

Vp
∮

φn
∂φn
∂n dS

)1/2
. (9)

Expression (9) demonstrates that only eigenmodes that transform as apseudovectormay
have a non-vanishing magnetic dipole moment in the lowest order to retardation parameterη .
According to Table 1, pseudovectors (such as the rotation operatorRα) transform under theT1

representation of the groupTd.
Resonant magnetic response due to a plasmon eigenmode is a product of two factors: (i)

the resonantly enhanced coupling coefficient between the incident electromagnetic field and
the field of a plasmon eigenmode, and (ii) the magnetic dipolemoment carried by the mode.
Though calculation of the first factor is out of the scope of this paper, our estimate of the second
factor rules out all non-T1 modes from analysis of optical magnetism. The electrostatic nature of
surface plasmons suggests that magnetically active plasmon modes are predominantly excited
by an inhomogeneous electric field as electric octupoles. The magnetic response of tetramers
can be seen as a consequence of the fact that they possess bothan electric octupole and a
magnetic dipole moment.

In the remainder of this article, we pay attention only to theT2 andT1 modes of tetramers.
Amongst allT2 (or T1) modes, the ones with the lowest negative resonant permittivity eigen-
value (thus, the lowest frequency) should have the strongest electric (respectively, magnetic)
response. This is because higher eigenmodes of a particularsymmetry type have additional
sign changes in their surface charge eigenfunction,σn, resulting in a smaller coupling to the in-
cident electromagnetic field. In addition, the higher-frequency resonances experience stronger
damping due to the increase of resistive losses in metal.

Figure 4 shows a plot of plasmon resonance positions of the lowest two modes of the tetramer,
which happen to beT1 andT2, plotted against the gap-to-diameter ratio of gold tetramers in a
dielectric environment of indexns = 1.4. Gold is assumed as the plasmonic material through the
remainder of this article; the dielectric function of gold is modeled using interpolation of optical
constants measured by various authors and compiled in reference [32]. The right vertical axis
is labeled by vacuum wavelengthλvac corresponding to the real part of this dielectric function.
The graphical insets of Fig. 4 show electric fields in cross-sections of these resonances. We note
that these plasmon modes can also be constructed as linear superpositions of the modes in the
bases for the irreducible representations of theT1 andT2 modes in Fig. 1.

3. Electromagnetic spectra of tetramer colloids

In the previous section we provided some insight into the electromagnetic properties of sym-
metric tetrahedral clusters using the quasi-static plasmon hybridization and electrostatic eigen-
value theories. In particular, we described plasmonic resonances that may have the right proper-
ties to provide enhanced electric and magnetic susceptibilities. However, in finite-sized clusters
(not too small compared with the wavelength of lightλ ≡ 2πc/ω), retardation effects become
important. These include a shift in the resonant frequencies [18] and the excitation of reso-
nant modes that do not possess an electric dipole moment. To predict the exact frequencies of
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these resonances and their strength, we have made finite-element frequency-domain (FEFD)
electromagnetic simulations of tetramers using the commercial software package COMSOL.

Extinction and absorption cross-section are measured as functions of frequency in the follow-
ing fashion. A single tetramer is placed in a rectangular domain, on lateral sides of which either
periodic or mirror-symmetry boundary conditions are applied. In effect, a doubly-periodic rect-
angular array (with periodsLy,Lz) of identical tetramers is simulated. As long as individual
tetramers interact only weakly via their near-field, and far-field interactions are not resonantly
enhanced [21, 22], spectra of ordered arrays are close to those of randomly distributed/oriented
tetrahedral clusters. These conditions are fulfilled by allowing sufficient separation between
tetramers, and by using wavelengths sufficiently longer than the largest of the two periods,
ruling out Wood’s anomalies. The array is illuminated by a monochromatic, linearly polarized
plane wave of unit intensity, with~E||ŷ and~H||ẑ, incident normally (~k = kx̂) on theyz-plane of
the array.
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Fig. 5. (Color online) Extinction (solid curve) and absorption (dashed curve) cross-sections
of a tetramer consisting of solid gold particles withD = 90 nm, gap 2 nm, in solvent with
refractive indexns = 1.4.

Complex amplitudes of transmitted (t) and reflected (r) waves are measured in the far field
and interpreted as forward and backward scattering amplitudes, respectively. This allows one to
define extinctionσext = (1−T)S0 and absorptionσabs= (1−T −R)S0 cross-sections, where
S0 = LyLz is the cross-sectional area of one unit cell andT = |t|2 and R = |r|2 are energy
transmission and reflection coefficients respectively. In the limit of small extinction,σext is
related to the decay constantκ (with dimensions of inverse length) through the usual formula
κ = σextn0, wheren0 = 1/V0 is the number density of tetramers, andV0 = S0Lx ≡ LxLyLz is
the specific volume per cluster. Indeed, if the distance between consecutive layers of scatterers
is Lx, then the wave intensity is damped by factorT = exp(−κLx) ≈ 1−κLx, which implies
κ ≈ (1−T)/Lx ≡ σext/(S0Lx).

Optical spectra of tetramers made of 90 nm and 120 nm gold spheres are presented in Fig. 5
and 6. In both cases, two strong resonances are observed in the extinction and absorption spec-
tra. The positions of these resonances are in rough agreement with electrostatic predictions (see
Fig. 4) with the gap-to-diameter ratios extrapolated to 2/90 and 2/120, although red-shifted
notably. This electromagnetic red shift phenomenon is wellunderstood in terms of the sur-
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Fig. 6. (Color online) Extinction (solid curve) and absorption (dashed curve) cross-sections
of a tetramer consisting of solid gold particles withD = 120 nm, gap 2 nm, in solvent with
refractive indexns = 1.4.

face plasmon dispersion relation [23, 24]; for sub-wavelength particles it can be quantified as a
correction to electrostatic eigenvalues [18]. Inspectionof the field pictures in these resonances
(Fig. 3) confirms identification of these two lowest-frequency resonances as electric-dipole and
magnetic-dipole. For our choice of tetramer orientation, depicted in Fig. 3, the electric dipole
resonance is associated mostly with the electric polarization of the two frontal spheres which
form a dimer with an axis parallel to the incident electric field ~E0 = E0ŷ.

Fig. 7. (Color online) Field profiles at the two resonances ofa tetramer characterized in
Figure 6. Left: electric dipole resonance atλ = 756 nm; right: magnetic dipole resonance
at λ = 935 nm. Color shows intensity of the out-of-plane magnetic field Hz in the plane
containing centers of 3 spheres; arrows — in-plane electricinduction(Dx,Dy) in the same
plane. Horizontal axis:x, vertical:y.

The magnetic dipole resonance is related predominantly to the sextupole(if viewed two-
dimensionally) resonance of the three spheres lying in the plane orthogonal to the incident
magnetic field~H0 = H0ẑ. This mode is similar to theA2 plasmon of the trimer studied in a
previous paper using plasmon hybridization [25]. The electric field in this resonance circulates
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around the center of the trimer, causing a non-vanishing magnetic fluxΦ =
∫

Bzdxdythrough
thez= const plane. Since sextupolar symmetry corresponds to an azimuthal number ofMJ = 3,
it is clear that this resonance is also an electricoctupole(J = 3,MJ = 3) in three dimensions.
The field picture of the electrostaticT1-symmetric resonance in the inset of Fig. 4 supports our
conclusion that the lowest-frequency resonance in opticalspectra (Fig. 5, 6) is related to the
lowestT1 resonance.

4. Effective permittivity and permeability of tetramer col loids

Periodically-arranged cluster arrays are easier to characterize in electromagnetic simulations
than random suspensions, because a simple procedure existsfor retrieving effective medium
parameters from the amplitude and phase of reflected and transmitted waves scattered off a
metamaterial slab [35, 36, 37]. Yet, in effective medium regime and for sub-wavelength inter-
particle distances we expect that spectral features related to single-cluster resonances are com-
mon for random and periodic ensembles. To complete our identification of electric and magnetic
resonances of a tetramer, we have applied that standard procedure and evaluatedεeff andµeff of
a cluster array.

A slightly different orientation of a tetramer has been chosen for these calculations: it was
determined that orienting the two opposite, orthogonal edges of a tetrahedron along the ma-
jor axes of rectangular cluster array minimizes splitting of single-cluster resonances due to the
nearest-neighbor interactions between clusters of the lattice. Such choice of orientation makes
two of the tetramer symmetry planes compatible with those ofrectangular lattice. Since a tetra-
hedron does not have three mutually orthogonal planes, thisarray lacks a central symmetry
plane. Fortunately, homogenization methods for asymmetric structures have been recently de-
veloped [36].
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Fig. 8. (Color online) Effective permittivityεeff of a solution with uniformly distributed
tetramers (solid gold spheres,D = 90 nm, gap 1 nm, index of solventns = 1.4, volume per
clusterV0 = 0.0115 µm3). Electric-dipole resonance (λ = 810 nm) and magnetic-dipole
(λ = 890 nm) anti-resonance are identified by peaks in Imεeff.

Effective medium parameters of slabs of periodic metamaterials, extracted using the standard
homogenization method, are known to exhibit some unusual (non-Lorentzian) behavior [37],
the origin of which had caused some debate in the past [38]. This behavior is believed to be
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associated with spatial dispersion in periodic structures[38]; examples of non-Lorentzian be-
havior include bands with negative Imεeff in the vicinity of a magnetic resonance, or nega-
tive Im µeff around an electric resonance. In addition, real parts ofεeff (µeff) show “reversed”
Lorentz-shaped kinks in magnetic (electric) resonances. These “anti-resonances” do not violate
any laws of physics: for example, the overall medium response remains passive [38]. Another
consequence of dealing with a periodic array is the fact thatthe effective permeability deter-
mined using the scattering procedure [35] is forced to go to zero near an electric resonance [37].
Indeed, the refractive indexneff =

√
εeff

√µeff equalskBlochc/ω , butkBloch is limited by the size
of the Brillouin zone [37]. A large rise ofεeff (see Fig. 8) near electric resonance thus inevitably
causesµeff to go down, as seen in Fig. 9. For the purpose of demonstratingoptical magnetism
in metafluids, we focus on the vicinity of the magnetic resonance frequency and disregard the
above-mentioned artifacts.
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Fig. 9. (Color online) Effective magnetic permeabilityµeff of a tetramer colloid described in
Figure 8. Electric-dipole anti-resonance (λ = 810 nm) and magnetic-dipole (λ = 890 nm)
resonance are identified by peaks in Imµeff. Inset: local magnetic field enhancement,
max|H/H0|.

For illustration purposes, we have made numerical simulations with an extremely small (1
nm) gap between spheres. Such a small gap serves to maximize the frequency separation of
the electric and magnetic resonances and to minimize the effect of the former on the weak
magnetic resonance. From Fig. 9, it is clear that there is a regular, Lorentz-shaped magnetic
resonance atλ = 890 nm, somewhat distorted by an adjacent anti-resonance band associated
with the strong electric dipole resonance, which begins at 850 nm. To make this magnetic
resonance perfectly clear, we have also done these simulations with losses in gold reduced ten-
fold with respect to their true values. The dash-dotted curve on Fig. 9 demonstrates that with
low losses, negative permeability would be possible in a metafluid with the cluster number
density of 1/(0.0115µm3), in which clusters occupy 13% of the volume.

Although suspensions of solid gold particles in water or ethanol aggregate due to strong
van der Waals forces at much lower concentrations, typically 0.001− 0.01% vol., colloids
with ∼ 100 nm-sized silica particles are stable with volume fractions∼ 10% and even up to
50% [39, 40], which is close to the liquid-solid phase transition in a hard-sphere system [41].
We expect that silica-covered gold nanoshells can be concentrated to 1% vol. and above. Ex-
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perimental studies of such nanoclusters, their formation and stability, are being conducted and
will be reported elsewhere. Note that if fluidity of a negative permeability metamaterial is not
a requirement, one can simply condense tetrahedral APMs to densities approaching the close-
packing density (≈ 64% for random packing,≈ 74% for hexagonal or cubic packing) to create
a solid metamaterial with isotropic permittivity and permeability. Achievingµeff < 0 orεeff < 0
at such high volume fractions is a much easier task than in liquid form. Thereupon plasmonic
metafluids can be used as precursors to isotropic doubly-negative metamaterials operating in
effective medium regime; fabrication of photonic crystalsand other non-subwavelength meta-
materials using colloid condensation has been previously demonstrated [40, 10].

Potentially, the strength of the magnetic resonance, characterized by the normalized magnetic
moment, (9), can be increased by utilizing nanoparticles with more complicated shapes, includ-
ing, for instance, non-concentric and non-spherical nanoshells [20]. In addition, recent progress
in fabrication of crystalline SiC nanoparticles [42] provides hope that negative-ε nanoparticles
with losses an order of magnitude smaller than those in gold [43, 44, 45, 24] can be utilized
to create metafluids with optical magnetism in the mid-infrared range. We observe from Fig. 9
that this 10-fold reduction of losses is sufficient for achieving µeff < 0 even without further en-
hancement of the magnetic response through particle shape engineering or demanding higher
cluster density.

Resistive damping and colloid stability are not the only problems that an experimental
demonstration of negative permeability in metafluids will face. Additional challenge comes
from strong sensitivity of resonant frequencies to the gapsbetween particles comprising an
APM. The width of plasmon resonances in plasmonic nanostructures is typically on the
∆λE ∼ 100 nm scale for electric and∆λM ∼ 10 nm scale for magnetic resonances, as seen
from Figures 8,9. From Fig. 4 we can now estimate the allowed width of gap distribution in
weakly polydisperse colloids. For example, if the gap-to-diameter distribution is centered at
0.06 (which corresponds to a magnetic resonance atλ ∼ 650 nm if retardation red-shift can be
ignored), then in order to have magnetic resonances of most particles within the±10 nm range
around that wavelength, the gap/diameter ratios must be contained in the 0.05−0.07 interval.
For 100 nm spheres, this translates into a±1 nm requirement for gap distributions. Although
such unprecedented uniformity of gaps is almost impossibleto achieve with solid gold parti-
cles, it may be possible if thin gold nanoshells are grown on silica nanoparticles, which can
be created in almost perfectly spherical shapes and with very smooth surfaces [9]. Numerical
simulations indicate that effective medium parameters of metafluids with gold nanoshells differ
very little from those with solid spheres, as long as the shell is thicker than the skin depth in
metal (∼ 20−25 nm).

In this Section, we have shown theoretically that colloidalsolutions of plasmonic nanoclus-
ters can have both negative dielectric permittivity and negative magnetic permeability. How-
ever, the most exciting applications, such as the negative index metafluid, demandεeff andµeff

simultaneously negative. Achievingεeff < 0 andµeff < 0 at some frequency requires one more
design step: the positions of the strongest electric (ED) and magnetic dipole (MD) resonances
must be engineered such thatωMD > ωED. In that case, MD resonance could be placed within
the narrowεeff < 0 band aboveωED. This could be accomplished by adding to the metafluid
plasmonic core-shell particles that have been shown [16] toexhibit red-shifted ED resonance.
Alternatively, re-ordering of ED and MD resonances in a tetramer can be accomplished by let-
ting plasmonic spheres touch each other in the cluster. Moresophisticated choices of particle
and cluster geometry and topology are possible and may be utilized in negative-index metafluid
engineering.
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5. Conclusions

The concept of metafluids has been introduced. Metafluids consist of Artificial Plasmonic
Molecules (APMs) suspended in a fluid. We have concentrated on APMs in the shape of tetrahe-
dral plasmonic nanoclusters. We have investigated the properties of plasmonic tetramers using
electrostatic methods aided by group theory and fully electromagnetic finite-element simula-
tions. We found that in the quasi-static approximation, electric response is dictated only by
T2-symmetric plasmons and magnetic response only byT1 plasmon states, which are excited
by electric field as electric octupoles due to retardation effects. The electric and magnetic re-
sponse of the tetramer allows one to construct an effective medium with a completely isotropic
electric and magnetic response. Electromagnetic simulations indicate that achievingεeff < 0
andµeff < 0 in colloidal solutions of “artificial molecules” should bepossible using either suf-
ficiently high concentrations of gold clusters or materialswith low-loss negative permittivity.
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