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Recent years witnessed rapid progress of chip-scale integrated optical frequency comb sources.
Among them, two classes are particularly significant – semiconductor Fabry-Perót lasers and passive
ring Kerr microresonators. Here, we merge the two technologies in a ring semiconductor laser and
demonstrate a new paradigm for free-running soliton formation, called Nozaki-Bekki soliton. These
dissipative waveforms emerge in a family of traveling localized dark pulses, known within the famed
complex Ginzburg-Landau equation. We show that Nozaki-Bekki solitons are structurally-stable
in a ring laser and form spontaneously with tuning of the laser bias – eliminating the need for
an external optical pump. By combining conclusive experimental findings and a complementary
elaborate theoretical model, we reveal the salient characteristics of these solitons and provide a
guideline for their generation. Beyond the fundamental soliton circulating inside the ring laser, we
demonstrate multisoliton states as well, verifying their localized nature and offering an insight into
formation of soliton crystals. Our results consolidate a monolithic electrically-driven platform for
direct soliton generation and open a door for a new research field at the junction of laser multimode
dynamics and Kerr parametric processes.

Dissipative temporal solitons – stable solitary localized
pulses – emerge universally in extended nonlinear me-
dia, sustained by a dual balance between the nonlinear-
ity and dispersion/diffusion, as well as between the gain
and dissipation of the system [1]. Their prime examples
in optics came from passively mode-locked lasers [2], op-
tical fibers [3, 4], and passive high-Q microresonators [5–
7]. Being of special interest for integrated photonics
due to their compact size, microresonators have taken
the community by storm. Fine-tuning of the requisite
continuous-wave (CW) optical pump, combined with a
bulk Kerr nonlinearity, is necessary to provide the para-
metric gain that leads to bright or dark microresonator
solitons [8–11]. When outcoupled, the circulating soliton
results in a periodic train of short pulses, generating a
broad frequency comb in the spectral domain [12]. These
miniature Kerr combs have ever since been the vanguard
of microresonator technology, finding use in telecommu-
nication [13, 14], ultrafast ranging [15], high-precision
spectroscopy [16, 17], and frequency synthesis [18].

In this work, we demonstrate a new type of optical dis-
sipative solitons – named Nozaki-Bekki (NB) solitons –
in an electrically-driven mid-infrared (mid-IR) ring semi-
conductor laser. They arise as localized waveforms in
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a family of traveling dark pulses that satisfy ring peri-
odic boundary conditions. The active laser gain mate-
rial in our devices simultaneously provides a giant Kerr
nonlinearity and eliminates the external optical pump
and its challenging frequency tuning, which is a vital
ingredient for microresonator combs. The NB soliton
regime – first of its kind in a compact optical system
– emerges spontaneously and is directly accessed solely
by tuning the laser driving current, which we validate by
using a phase-sensitive measurement. The experimental
findings are corroborated by a complementary theoretical
Maxwell-Bloch formalism with numerical simulations, al-
lowing us to identify favourable dispersive and nonlinear
conditions for NB soliton formation and their coherent
control. Our initial prediction of their existence origi-
nated from the cubic complex Ginzburg-Landau equa-
tion (CGLE) – one of the most celebrated equations in
physics that describes spatially extended systems close
to bifurcations [19]. While their stability was long dis-
cussed within the CGLE framework, NB solitons have
so far been scarcely observed in experiments. Unequivo-
cal classification of NB solitons is made possible by their
striking salient characteristics – anti-phase synchroniza-
tion of the soliton with the primary mode and a 2π tem-
poral phase ramp across the soliton. The localized na-
ture of NB solitons is conclusively demonstrated by fur-
ther observing multisoliton states, both in theory and
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FIG. 1. Parameter space of the CGLE with corre-
sponding laser regimes. The unidirectional intracavity in-
tensities and the spectra are obtained from numerical sim-
ulations of the CGLE for different points indicated in the
parameter space. The left column shows two states triggered
by turbulence inside the CW linearly-unstable yellow region
of the parameter space (defined by 1 + cDcNL < 0), where a
single-mode field cannot exist as a steady state. Defect tur-
bulence occurs deep inside the unstable region (point P1) and
is aperiodic, exhibiting chaotic temporal evolution. Close to
the border of CW stability (point P2), phase turbulence leads
to narrowband homoclon frequency combs [20]. The right
column displays the coexistence (multistability) of a single-
mode regime and an NB soliton, both set in the CW linearly-
stable part of the parameter space (1 + cDcNL > 0). NB
solitons emerge as coherent, unidirectional propagating dark
pulses, characterized with a broad and smooth spectral enve-
lope. The visible pulse shoulder represents a shock, stabilizing
the waveform in ring periodic boundary conditions.

experiments. Our findings herald a new generation of
monolithically-integrated self-starting soliton generators
that lie at the intersection of semiconductor lasers and
Kerr microresonators.

To study NB solitons, we use quantum cascade lasers
(QCLs) – compact and efficient devices that emit in the
mid-IR and THz regions [21–23] – embedded in a ring
cavity. Ultrafast intersubband transitions of QCLs pro-
vide not only the optical gain, but also a giant Kerr non-
linearity [24, 25], which is several orders of magnitude
larger than in bulk III-V compounds [26]. This is already
exploited for frequency comb formation in Fabry-Pérot
(FP) QCLs [24, 27, 28]. There, the multimode opera-
tion originates from the spatial hole burning (SHB) [28],
which describes inhomogeneous gain saturation due to a
standing wave inside the cavity, caused by the counter-
propagating components of the electric field. Conversely,
a ring cavity has no reflection points and supports unidi-
rectional field propagation – preventing SHB. Neverthe-
less, recent work demonstrated multimode unidirectional
ring QCLs due to phase turbulence at low pumping levels,
making SHB nonessential [20]. Since then, substantial

efforts were put towards developing Kerr combs in ring
QCLs [29–32], leading even to bright pulses after spectral
filtering [33] and theoretically-predicted optically-driven
solitons [34–36] – already anticipating the potential of
these devices as an on-chip soliton platform.

We can interpret ring QCL multimode dynamics on
the grounds of the CGLE with periodic boundary condi-
tions [20]. Starting from the more general laser master
equation [28, 37], we derive the cubic CGLE

∂tE = E + (1 + icD)∂2zE − (1 + icNL)|E|2E, (1)

where E is the unidirectional electric field, t is time,
and z is the spatial coordinate along the ring cavity (see
derivation in the Supplementary material). The entire
parameter space is elegantly constricted to just two di-
mensions, which refer to the dispersive (cD) and non-
linear effects (cNL). In lasers, cD is partly determined

by the cavity group velocity dispersion (GVD) k
′′
. An-

other contribution to the total GVD originates from the
gain lineshape, defined with the linewidth enhancement
factor (LEF) – a crucial semiconductor laser parameter
which describes light amplitude-phase coupling [38, 39].
Moreover, the LEF also defines cNL and phenomenolog-
ically describes the giant resonant Kerr nonlinearity of
QCLs [24, 28]. A linear stability analysis of the CGLE
divides the cD − cNL space in two regions depending on
the stability of the single-mode CW solution under small
perturbations (Fig. 1) [19]. Deep within the unstable
region, defect turbulence occurs, characterized with a
broad, unlocked spectrum and chaotically-evolving in-
tracavity intensity (point P1). Closer to the stable re-
gion, the laser undergoes phase turbulence represented
by a narrower spectrum and shallow intensity variations
(point P2). Phase turbulence can eventually lead to fre-
quency combs in the form of localized coherent pulse-like
structures named homoclons [19, 20].

The stable region of the parameter space sustains
single-mode operation. However, we show that multi-
mode emission can exist even here if we allow for large
perturbations that are beyond the scope of linear stabil-
ity analysis. The resulting frequency combs – known as
Nozaki-Bekki holes in the CGLE framework [19, 40, 41]
– have a smooth and broad spectral envelope. In the
temporal domain, they correspond to a family of travel-
ing, localized dark pulses that preserve their shape and
connect two stable CW fields, giving a constant back-
ground. These waveforms exist in a narrow region of the
parameter space, and have been so far related to dark
solitons [42] and experimentally observed in chemical sys-
tems [43], fluids [44], and long-cavity ring lasers [45]. In
numerical simulations imposing ring periodic boundary
conditions, states comprising an arranged hole and shock
pair are structurally-stable even with inclusion of higher-
order nonlinear terms that are not accounted for in the
cubic CGLE and that play a role in real physical sys-
tems e.g. lasers [40, 46, 47]. The coexistence of a stable
CW field and a hole-shock pair (point P3) is a prime ex-
ample of the phenomenon of multistability – stochastic



3

FIG. 2. Experimental and theoretical characterization of fundamental NB solitons in a monolithic ring laser.
a) Microscope image of the QCL ring and waveguide coupler, with separate electrical contacts. SEM images depict the ring-
waveguide coupling region. b) Output power of the device as a function of the ring and waveguide currents, JR and JWG

respectively. c) A narrow optical beatnote of the laser comb at the central frequency of 13.59 GHz, equal to the repetition
frequency. d) Experimentally-obtained intensity spectrum and the intermode phases of an NB soliton at bias currents of
JR =1.33 kA/cm2 and JWG =0.79 kA/cm2. Intermode phases between weaker sidemodes are synchronized in-phase, while the
phase of the primary mode is π-shifted. Detailed SWIFTS measured data is presented in the Supplementary material. e)
Temporal profiles of the intensity and phase of the emitted light. Within the width of the NB soliton, the phase changes its
value by 2π and remains linear during the remainder of the roundtrip, confirming that the NB soliton is surrounded by a
single-frequency constant CW field. f) Intensity spectrum obtained from numerical simulations of the master equation, and g)
zoomed-in top-portion within the same range of 35 dB as the experimental spectrum in d). The π jumps around the primary
mode – salient characteristic of NB solitons – are visible in the intermode phases. h) The simulated temporal waveforms
of the intensity and the phase over two roundtrips. Larger amplitude contrast compared to e) is attributed to the limited
dynamic range of detection in experiments, which results in a finite number of spectral modes used for the temporal waveform
reconstruction. The simulated NB soliton is obtained for LEF of 1.25, in agreement with typical values in QCLs [39]. The

cavity dispersion k
′′

was set to 800 fs2/mm, which together with the gain dispersion brings the total GVD value to about
-700 fs2/mm (see Supplementary material for a discussion on different contributions to the effective GVD and nonlinearity in
a laser).

dependence of the laser state on the starting conditions
– thus corroborating the solitonic nature of these dissi-
pative localized structures [1, 6], referred to hereafter as
NB solitons in our lasers.

A microscope image of the ring QCL is seen in Fig. 2a),
along with an integrated waveguide coupler. The waveg-
uide core is made from the same QCL material and has
separate contacts for independent electrical driving. This
allows to tune the mode indices, the Q-factor, the power
of the extracted light, and the coupling between the
waveguide and the ring – making this configuration an
ideal testbed for a plethora of resonant electromagnetic
phenomena [48]. The light outcoupling in previous ex-
periments relied on the minuscule ring bending losses,
thus limiting the extracted power to submilliwatt levels

at room temperature [20]. Using the waveguide coupler
to efficiently extract the light, our devices reach power
levels above 10 mW (Fig. 2b)), bringing them on par
with FP QCLs of a similar ridge length and width, fab-
ricated from the same wafer [48]. While the coupling
waveguide is biased below the lasing threshold, the ring
QCL is driven above it, where it operates in a unidirec-
tional regime after the symmetry-breaking point [33, 48].
We find that at currents partially higher than the las-
ing threshold Jth (around 1.2Jth), the ring laser emits a
multimode field with a narrow beatnote (Fig. 2c)). This
implies a high degree of coherence, typical of a frequency
comb.

To benchmark comb operation, we employ SWIFTS –
an experimental technique that extracts both the ampli-
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FIG. 3. Multisoliton states. a) Spectral behavior of an experimental multisoliton state, obtained for JR =1.28 kA/cm2 and
JWG =0.74 kA/cm2. The interference between two NB solitons causes spectral modulation, resulting in smooth lobes separated
by a spectral hole. The intermode phases indicate an additional π jump between the lobes. b) Two NB solitons appear in
the intensity waveform, surrounded by a CW background. The temporal phase sweeps 4π within the two-soliton region. c)
Zoomed top portion of the simulated spectrum and the intermode phases, in agreement with a). d) The intensity spectrum with
the indicated zoomed section, shown in c). The spectral modulation, caused by the interference of the two solitons, cascades
through the entire spectrum. e) Simulated temporal waveforms of the intensity and the phase. The larger dynamical range
compared to the experiment allowed us to distinguish two individual 2π ramps in the phase profile, one for each soliton. The

LEF was set to 1.35 and k
′′

to 600 fs2/mm (total GVD around -900 fs2/mm). f) Intracavity intensity profiles obtained for the
same laser parameters when starting from different random noise conditions, labeled with seed 1,2, and 3. The coexistence of
a CW single-mode field, a fundamental NB soliton, and a multisoliton state verifies multistability and the fact that the laser
operates in a linearly-stable parameter region. The distance between the NB solitons in a multisoliton state is time-invariant,
but it changes for different laser parameters or starting conditions, as is seen from two states in the bottom row. The state in
the bottom left is taken from e). Experimental evidence of a soliton crystal, which is a special case of multisoliton states where
all of the solitons are equidistant [49], is found in the Supplementary material.

tude and phase of spectral modes [50]. The measured
intensity spectrum (Fig. 2d)) consists of a strong pri-
mary mode surrounded by weaker sidemodes that form a
smooth envelope, strikingly reminiscent of soliton spec-
tra in microresonators [5–7, 9–11]. The intermode phases
– the phase differences between adjacent modes – are
shown below. They are all synchronized in-phase, except
around the primary mode, where π jumps indicate de-
structive interference due to anti-phase synchronization.
This is evident from the reconstructed intensity profile
(Fig. 2e)), where a single dark pulse circulates around the
cavity in an otherwise quasi-constant CW background –
consistent with the predicted fundamental NB soliton.
Residual intensity oscillations are due to the limited de-
tection bandwidth. Within the width of the NB soliton,
the temporal phase exhibits a steep ramp covering 2π and
remains linear everywhere else – proving that the CW
background around the soliton is constant and contains
a single optical frequency equal to that of the primary
mode.

To corroborate the experimental findings, we employ

numerical simulations of the master equation derived
from the Maxwell-Bloch system (Eq. (S2) in the Supple-
mentary material) [24, 28]. The obtained comb spectrum,
shown in Fig. 2f), has a smooth spectral envelope engulf-
ing a strong primary mode and spanning over more than
100 cavity modes. Numerical simulations are not con-
strained by a small dynamical range as the experiment
(around 35 dB in Fig. 2d)). Hence, by concentrating on
the top part of the simulated spectrum within the same
range (Fig. 2g)), we show a clear agreement with the ex-
periment. The simulated intermode phases confirm the
π shift between the primary mode and the sidemodes, in-
dicating that this is a hallmark of NB solitons. The sim-
ulated temporal intensity in Fig. 2h) matches the struc-
tures predicted by the CGLE theory in Fig. 1. Higher-
order dispersion due to the laser gainshape is the likely
cause of the residual small ringing that trails the NB soli-
ton, as is well-known from microresonator solitons [6, 51–
53]. The combined simulated and experimental temporal
waveforms confirm that NB solitons are surrounded by a
CW background – providing a compelling proof of their
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FIG. 4. Coherent control of NB soliton regimes. a) Spectral shift of the soliton relative to the primary mode as
the ring current is swept. Similar behavior is exhibited if the waveguide current is tuned instead. b) Sketch of the coupled
ring-waveguide system. The bias alters the optical indices of the ring and the waveguide through carrier- and thermal-induced
changes, resulting in a mismatch (detailed analysis in the Supplementary material). c) Group delay dispersion, calculated with
a coupled mode theory analysis, as a function of the index mismatch between the ring and the waveguide. Compared to a
single ring cavity, our devices provide superior control of the dispersion. d) Simulated soliton spectra as the cavity dispersion

k
′′

is swept, demonstrating a spectral shift of the soliton similar to a). The gainshape contribution to the total GVD is
around -1500 fs2/mm. e) Experimentally-obtained intensity spectrum of a NB soliton at bias currents of JR =1.39 kA/cm2 and
JWG =0.85 kA/cm2 (red), which corresponds to a bright pulse in the intensity waveform. The soliton sidemodes are stronger
compared with the dark-pulse soliton from Fig. 2d) (replotted in blue). f) Illustration of the theoretical dependence of the
intensity waveform on the soliton spectrum. We assume ideal NB soliotn intermode phase distribution with π jumps around
the primary mode.

dissipative soliton nature.

Localization is another striking soliton feature, clearly
noticed in multisoliton states – spontaneously ordered en-
sembles of several co-propagating solitons [5, 9]. Multi-
soliton states can be indubitably identified by their ‘fin-
gerprint’ optical spectra, which have a modulated en-
velope due to the interference between individual soli-
tons. Fig. 3a) depicts one such spectrum, consisted of
smooth lobes with spectral holes in-between. The inter-
mode phases indicate that, besides the usual π jumps
around the primary mode, an additional π jump occurs
at the position of the spectral hole – providing another
telltale sign of a multisoliton state. The reconstructed in-
tensity (Fig. 3b)) displays two distinct dark pulses, dur-
ing which the phase changes by 4π – twice as much as for
a fundamental NB soliton. Master equation simulations
verify multisoliton states as well. The spectral behavior,
including the additional π intermode phase jump between
the lobes, is seen in Fig. 3c). Other than enabling large
amplitude contrast, the dynamic range of simulations al-

lows to resolve the 4π change of the temporal phase in
two steps – one for each soliton (Fig. 3e)). Multistability
is yet another crucial dissipative soliton trait predicted
in Fig. 1. To emulate laser starting from spontaneous
emission, weak noise from a random number generator
with a defined seed is fed as a starting condition into the
master equation. Changing the seed, while keeping other
laser parameters fixed, led to three states with different
number of solitons (Fig. 3f)). The coexistence of solitons
and a single-mode field proves that NB solitons are found
in the CW linearly-stable region of the parameter space,
as predicted by the CGLE.

Separate electrical contacts of the waveguide and the
ring provide two invaluable knobs for soliton control.
Demonstrating this, we shift the soliton spectral lobe
from red to the blue side of the primary mode purely by
tuning the ring current in Fig. 4a). Besides changing the
gain and the LEF [20, 24], altering the bias strongly im-
pacts the GVD, as confirmed by a coupled mode theory
analysis of the ring-waveguide configuration (Figs. 4b) &
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c)). A small current-induced index mismatch between
the ring and the waveguide induces large changes of the
GVD, covering both normal and anomalous values. The
key role of GVD is also obvious from numerical simula-
tions in Fig. 4d), where we swept the cavity dispersion.
Relative to the primary mode, the soliton is spectrally
shifted similarly to Fig. 4a), and in agreement with re-
cent observations in microresonators [11]. More anoma-
lous GVD sets the laser operating point in the linearly-
unstable parameter region in analogy to Fig. 1, where
neither single-mode nor NB soliton regime can exist. In-
stead, homoclons form via phase turbulence [20], which
we observe both in experiments and simulations (Supple-
mentary material).

Having the possibility to form bright pulses with high
peak power would open many doors for NB solitons to be
used in nonlinear processes, such as supercontinuum gen-
eration [54]. One way of achieving this relies on modify-
ing the phase of the primary mode to remove the destruc-
tive interference and induce an intense bright pulse. This
could be realized by a second active ring resonator cou-
pled with the waveguide, acting as a notch filter [55]. An-
other possibility in this direction is illustrated in Fig. 4e),
where we show an NB soliton spectrum (in red), obtained
at a larger bias compared to the soliton from Fig. 2 (re-
plotted in blue). Astonishingly, temporal intensity of the
former unveils a low-contrast bright pulse. A comparison
between the two soliton spectra reveals that the bright
one has stronger sidemodes. To gain an intuitive under-
standing, Fig. 4f) conceptually studies the dependence of
the temporal intensity on the corresponding spectrum,
while assuming the characteristic intermode phase dis-
tribution of NB solitons (see Supplementary material for
the full analysis). Whereas the primary mode is fixed, the
soliton lobe is gradually increased, with the color coding
representing the two states from Fig. 4e). The initial in-
crease of the soliton sidemodes enhances the amplitude
contrast of a starting dark pulse, until an intensity equi-
librium between the primary mode and the sidemodes
is reached. At this point, destructive interference be-
tween the background and the soliton is complete and
the dark pulse reaches zero at its minimum. Further
enhancement of the sidemodes causes a decrease of the
pulse amplitude contrast, eventually reaching a quasi-
constant waveform despite a broad spectrum, as is also
experimentally observed (Supplementary material). Fi-
nally, additional sidemode amplification causes the pulse
to ’flip over’ – resulting in a bright coherent pulse. Both
the CGLE and the master equation predict the emer-
gence of NB solitons as dark pulses, however neither of
the two treatments takes into account the delayed car-
rier population response to amplitude modulations [56].
A better understanding of the link between the carrier
dynamics and the parametric gain, that is necessary for
multimode emission, could allow us to optimize active
ring resonators for the emission of high-contrast bright
pulses.

In this work, we have demonstrated a new way of di-

rect spontaneous soliton generation by utilizing a mid-IR
semiconductor laser active material implemented in an
on-chip integrated ring cavity with a coupler waveguide.
The waveguide coupler has an independent bias, en-
suring not only higher output powers, but also provid-
ing a powerful knob to control the total dispersion of
the system. Paired with the giant resonant Kerr non-
linearity of the active material, this solidifies the cou-
pled waveguide-ring configuration as a very fruitful play-
ground for nonlinear phenomena – including the direct
generation of electrically-driven NB solitons. The soliton
regime is demonstrated by combining both experimental
and theoretical results. The number of solitons within
one roundtrip varies stochastically with the initial condi-
tions of the lasers. This is indicative of a multistability
phenomenon, typical for dissipative solitons in extended
systems, and paves the way for independent soliton ad-
dressing [1]. Moreover, we predict that NB solitons are
not platform-dependent and anticipate their demonstra-
tion in other semiconductor laser types, such as the inter-
band cascade- or quantum dot lasers. The spontaneous
formation of NB solitons with current tuning, without the
need of an external optical pump, makes our QCL rings
with coupled waveguides ideal candidates for monolithic
soliton generators specifically targeting mid-IR applica-
tions.

METHODS

Device fabrication and operation. The lasers emit
at around 8.2µm and consist of GaInAs/AlInAs layers
on an InP substrate, with the band structure design
based on a standard single-phonon continuum depopu-
lation scheme. The waveguides and the narrow gap in
the coupling region are etched using the standard fabrica-
tion recipe employing optical lithography. The waveguide
width is 10 mm, the curved section of the racetrack is a
semicircle with a radius of 500µm, and the length of the
straight section is 1.5 mm. The ring circumference defines
the cavity repetition rate of around 13.6 GHz. The heat
sink temperature was kept at 14◦C in all experiments.
Experimental setup and characterisation of the

soliton states. The measurement of the spectral am-
plitudes and phases, that are used for the reconstruc-
tion of the temporal waveform, is done by utilizing the
SWIFTS technique [50]. An overview of the measure-
ment procedure is in the Supplementary material. In
order to record the laser output modulation at the repe-
tition frequency, we employ a fast quantum well infrared
photodetector in a cryostat, cooled with liquid nitrogen.
The setup uses a custom-built high-resolution Fourier
transform infrared (FTIR) spectrometer (∼500 MHz). A
Zurich Instruments HF2LI lock-in amplifier is used for
the acquisition of both the intensity and SWIFTS inter-
ferograms. In order to stabilize the repetition frequency
of the comb, we rely on electrical injection locking via
a radio-frequency (RF) source. However, caution is re-
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quired since using a too large injection power will perturb
the soliton spectrum and its intermode phases, as can be
seen in the Supplementary material.

Numerical simulations. Simulations of the CGLE
are implemented using a pseudo-spectral algorithm cou-
pled with an exponential time-differencing scheme. The
master equation of a unidirectional field is discretized
with a first-order forward finite difference method. This
method hugely benefits from parallel implementation on
a graphics processing unit (GPU), cutting down the ex-
ecution time by 3 orders of magnitude compared to a
standard implementation on the central processing unit.
As an example, we simulate tens of millions of time steps
within a minute using a NVIDIA GeForce RTX 3070
GPU (tens of thousands of simulated cavity roundtrips
are necessary to ensure that a steady state is reached). To
emulate a laser starting from spontaneous emission, the
numerical simulations are run with random weak noise as
a starting condition. The latter is obtained from a ran-
dom number generator by defining an integer seed value.
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quency metrology, Nature 416, 233 (2002).

[13] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts,
J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch,
M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude,
T. J. Kippenberg, and C. Koos, Microresonator-based
solitons for massively parallel coherent optical communi-
cations, Nature 546, 274 (2017).
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N. Opačak, Y. Wang, S. Jha, J. Hillbrand, M. Ta-
magnone, W. T. Chen, A. Y. Zhu, L. L. Columbo,
A. Belyanin, and F. Capasso, Frequency combs induced
by phase turbulence, Nature 582, 360 (2020).

[21] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L.
Hutchinson, and A. Y. Cho, Quantum cascade laser, Sci-
ence 264, 553 (1994).

[22] Y. Yao, A. J. Hoffman, and C. F. Gmachl, Mid-infrared
quantum cascade lasers, Nature Photonics 6, 432 (2012).

[23] B. S. Williams, Terahertz quantum-cascade lasers, Na-
ture Photonics 1, 517 (2007).
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rioli, M. Frankié, J. Faist, M. Beck, and G. Scalari, Thz
optical solitons from dispersion-compensated antenna-
coupled planarized ring quantum cascade lasers (2022).

[33] B. Meng, M. Singleton, J. Hillbrand, M. Franckié,
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B. Schwarz, and F. Capasso, Unifying frequency combs
in active and passive cavities: Temporal solitons in ex-
ternally driven ring lasers, Physical Review Letters 126,
10.1103/physrevlett.126.173903 (2021).

[35] F. Prati, M. Brambilla, M. Piccardo, L. L. Columbo,
C. Silvestri, M. Gioannini, A. Gatti, L. A. Lugiato, and
F. Capasso, Soliton dynamics of ring quantum cascade
lasers with injected signal, Nanophotonics 10, 195 (2020).

[36] F. Prati, L. Lugiato, A. Gatti, L. Columbo, C. Silvestri,
M. Gioannini, M. Brambilla, M. Piccardo, and F. Ca-
passo, Global and localised temporal structures in driven
ring quantum cascade lasers, Chaos, Solitons & Fractals
153, 111537 (2021).
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Supplementary material A: Master equation for lasers with a fast gain medium

Modeling of semiconductor laser multimode dynamics is typically done by employing the Maxwell-Bloch equations.
This method, obtained by coupling the density matrix formalism with Maxwell’s equations, is fully capable of describ-
ing the coherence and the spatio-temporal evolution of the laser light inside the cavity. Within the slowly varying
envelope approximation and the rotating wave approximation, which are two commonly-made approximations, the
Maxwell-Bloch equations for an open two-level laser system read

∂nl
∂t

= Jt +
nu
Tlu
− nl
Tgl
− µ

~
Im{Eσ∗},

∂nu
∂t

= J −
( 1

Tlu
+

1

Tgu

)
nu +

µ

~
Im{Eσ∗},

∂σ

∂t
= −1 + iα

T2
σ + i

µ

2~
(1 + iα)2E(nu − nl),(nr

c

∂

∂t
+

∂

∂z

)
E = −i Γµω0

nrε0cLp
σ − αw

2
E.

(S1)

In the system above, nu and nl are the surface carrier densities of the upper and lower laser levels, and σ and E stand
for the complex slowly-varying envelopes of the off-diagonal density matrix element and the electric field, respectively.
Temporal and spatial coordinates are given with t and z, and lifetime Tji represents nonradiative transitions from
level i to level j (between the ground, the lower, and the upper level). The coherence lifetime is labeled as T2, Γ is the
light confinement factor of the laser cavity, µ is the dipole matrix element, ω0 is the optical frequency of the resonant
transition, nr is the real refractive index, Lp is the thickness of the laser active region, αw gives the waveguide power
losses, the current density J represents the pumping rate to the upper laser level and Jt models the thermal excitation
of carriers to the lower lasing level, where both J and Jt are normalized to the elementary charge. Parameter α is
the LEF at the gain peak and it describes the coupling between the amplitude and the phase of the light, which is
crucial for semiconductor laser dynamics [28, 38].

The set of equations (S1) quantitatively describes the spatio-temporal evolution of the laser field. However, following
the formalism from [28], it is possible to replace the entire system of Maxwell-Bloch equations with a single master
equation, thus greatly simplifying the theoretical model an allowing to draw analogies with the CGLE. The master
equation is valid for lasers with a fast gain medium, such as the QCL, where the gain recovery time is much shorter
than the cavity roundtrip time. The master equation, written for a unidirectional field inside a ring cavity, reads

nr
c

∂E

∂t
+
∂E

∂z
=
g(I)

2
(1 + iα)

(
E − T̃2

∂E

∂t
+ T̃ 2

2

∂2E

∂t2

)
− αw

2
E + iβ|E|2E + i

k
′′

2

∂2E

∂t2
, (S2)

where T̃2 = T2/(1 + iα), k
′′

is the cavity GVD that originates from the material and waveguide geometry, and β is
the bulk Kerr nonlinearity coefficient, which we set to zero in this work (a much larger effective Kerr nonlinearity
originates from the gain medium of the laser itself). Further, I = |E|2 is the intensity, and g(I) is the saturated gain
defined by

g(I) =
g0

1 + I
Is

, (S3)

where the unsaturated gain is g0 = Γµ2ω0T1T2J/(~nrcε0Lp), the saturation intensity is Is = 2~2/(µ2T1T2), and the

carrier recombination time is T1 = (T−1
lu + T−1

gu )−1 (approximately equal to the gain recovery time). The complete
derivation, starting from the Maxwell-Bloch system, can be found in detail in [37].

1. The total GVD and Kerr nonlinearity in the laser

It is noteworthy to underline that the total GVD in the laser consists of two major contributions. The first,
proportional to the coefficient k

′′
in the model, describes the dispersion that comes from the bulk material of choice

and also the mode dispersion due to the resonator geometry. We refer to it as the cavity dispersion and, as an
approximation, it is considered to be a constant pure second-order dispersion. The second major contribution to the
dispersion originates from the the resonant optical transition itself, and we refer to it as the gain dispersion. It is
inherently included in the Maxwell-Bloch system of equations (S1) in the equation for the off-diagonal matrix σ. This
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Symbol Description Value
Tlu Upper-lower level transition lifetime 1.15 ps
Tgu Upper-ground level transition lifetime 6 ps
Tgl Lower-ground level transition lifetime 80 fs
T2 Dephasing time 125 fs
nr Refractive index 3.37
αw Waveguide power losses 4 cm−1

µ Dipole matrix element 1.8 nm × e

TABLE S1. Parameter values used in the master equation.

equation describes the response of the material to the electric field, captured by the complex susceptibility in the
spectral domain

χ(ω) =
µ2(nu − nl)

ε~Lp
(1 + iα)2

ω − ω0 − i
T2

, (S4)

where Im{χ} models the modified Lorentzian spectral lineshape of the gain (ideal Lorentzian shape for vanishing
LEF α = 0). Moreover, the complex susceptibility also describes the spectral dependence of the refractive index

nr(ω) ≈
√

1 + χbulk + Re{χ(ω)}. Keeping in mind the definition GVD(ω) = 2
c
∂nr

∂ω + ω
c
∂2nr

∂ω2 , it becomes obvious how
the resonant optical transition induces an additional gain dispersion. This contribution to the total GVD includes
also higher-order terms besides the second-order dispersion, however, its approximate value at position of the gain
peak is given in relation (S6).

The LEF physically models the coupling between the amplitude and phase of the light, and it is mathematically
defined as the ratio of the carrier-induced changes of the refractive index and the optical gain [38]. As such, the
LEF describes how the asymmetric spectral shape of Im{χ} alters the value of Re{χ} at the gain peak and shifts
it away from zero (Re{χ} has a zero-crossing at the gain peak for an ideal symmetric Lorentzian shape of Im{χ}).
This physically means that whenever the carrier population changes, a corresponding variation of not only the gain,
but also of the refractive index is induced. In a laser system, the carriers are modulated by the propagating light
inside the cavity, which results in population pulsations due to dynamic gain saturation [56]. As a result, any change
of the light intensity indirectly modifies the refractive index of the medium through these population pulsations.
This is tightly related to the appearance of a Kerr nonlinearity [24, 28]. Its origin is resonant, as it comes from the
gain medium itself and is relevant for optical frequencies within the gainwidth of the laser. This contrasts with the
broadband bulk nonlinearity, which is proportional to the coefficient β in the model. The above-presented arguments
are valid assuming that the population pulsations can follow the speed of the intensity modulations, which occur at
the cavity repetition frequency. In other words, in media with fast gain recovery times, a finite value of the LEF
phenomenologically induces a giant resonant Kerr nonlinearity, whose value is approximately given by equation (S7).

Supplementary material B: Complex Ginzburg-Landau equation for ring semiconductor lasers

The dynamics of ring semiconductor lasers with a fast gain medium close to the lasing threshold are well captured
by the the CGLE [19, 20]. Here we will start from the more general master equation (S2) and derive the CGLE,

similarly to the procedure in Refs. [20, 34]. In the first step, the term proportional to T̃2∂E/∂t on the right hand side
of the master equation (S2) is neglected. This is justified, as its main effect is to introduce a constant shift of the
value of the refractive index nr. Additionally, substituting the second time derivative ∂2/∂t2 with the second spatial
derivative (c/nr)

2∂2/∂z2 is an excellent approximation, as the equation deals with slowly varying envelopes in the
rotating wave approximation. Moreover, the system is switched to a frame of reference that moves together with the
propagating field by applying coordinate transformations z → z − c

nr
t and t→ t. Equation (S2) then transforms to

nr
c

∂E

∂t
=
g(I)

2
(1 + iα)

(
E + T̃ 2

2

c2

n2r

∂2E

∂z2

)
− αw

2
E + iβ|E|2E + i

k
′′

2

c2

n2r

∂2E

∂z2
. (S1)

We can use the Taylor expansion to approximate the saturated gain g(I) in the vicinity of the stationary intensity
I0 = Is(

g0
αw
− 1)

g(I) =
g0

1 + I
Is

≈ g(I0) +
∂g(I)

∂I

∣∣
I=I0

(I − I0) ≈ g1 − g2
I

Is
, (S2)
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where g1 = αw

g0
(2g0−αw) and g2 =

α2
w

g0
. Inserting relation (S2) into equation (S1) and neglecting the term proportional

to ∼ |E|2∂2E/∂z2 results in

∂E

∂t
= (η + iωs)E + (dR + idI)

∂2E

∂z2
− (nR + inI)|E|2E, (S3)

where the following functions have been introduced

η =
g1 − αw

2

c

nr
, ωs =

g1α

2

c

nr
,

dR =
g1T

2
2

2(1 + α2)

c3

n3r
, dI =

(k′′

2
− αg1T

2
2

2(1 + α2)

) c3
n3r

nR =
g2
2Is

c

nr
, nI = −

(
β − αg2

2Is

) c

nr
.

(S4)

Here, the laser net gain is described with the coefficient η, and ωs represents the frequency shift due to the gain
asymmetry quantified by α (value of LEF at the gain peak). The complex diffusion coefficient, given with dR + idI ,
dampens variations of the field E. Its complex value can be easily understood as it will work towards smoothing any
spatial gradient of both the amplitude and phase. Physically, it emerges from the curvature of the gain (due to its
finite bandwidth), asymmetric gainshape, and the GVD. Lastly, the nonlinearity is described with nR + inI . The
real part nR arises from the gain saturation in the laser and dampens amplitude fluctuations. The imaginary part nI
describes the phase modulation due to the bulk Kerr nonlinearity and a finite LEF.

Equation (S4) can be written in a more elegant way. To do so, the temporal, spatial variable, and the electric

field need to be rescaled t→ t
η , z →

(
dR
η

)1/2
z, and E →

(
η
nR

)1/2
eiωst/ηE . Moreover, the dispersive and nonlinear

parameters are introduced as cD and cNL in the following way

cD = −α+ k
′′ g0(1 + α2)

αw(2g0 − αw)T 2
2

,

cNL = α− β 2Isg0
α2
w

.

(S5)

From the previous relation, it is clear how the cavity dispersion k
′′

influences cD and the bulk Kerr nonlinearity coef-
ficient β influences cNL, while the LEF influences both of them, providing a physical contribution to both the ive and
nonlinear effects. Equation (S5) provides also a straightforward way to quantify gain dispersion (see subsection A 1)
as

GVDgain = − α

1 + α2

(2g0 − αw)αwT
2
2

g0
, (S6)

and also a giant resonant Kerr nonlinearity that arises from the gain, phenomenologically described with LEF as

βgain = α
α2
w

2g0Is
. (S7)

Implementing relation (S5) into equation (S4) allows us to obtain the conventional form of the CGLE often found in
literature [19]

∂E

∂t
= E + (1 + icD)

∂2E

∂z2
− (1 + icNL)|E|2E. (S8)

In comparison with the laser master equation (S2), the entire parameter space of CGLE has been reduced to just
two dimensions defined by the cD − cNL plane. The CGLE represents one of the most known nonlinear equations in
physics. It generally describes the dynamics of oscillating, spatially extended systems going through phase transitions
– covering a vast amount of nonlinear phenomena on a qualitative, and often on a quantitative level.

Supplementary material C: SWIFTS measurement and experimental characterization of the NB soliton

Here we explain briefly the working principle of the Shifted-Wave Interference Fourier Transform Spectroscopy
(SWIFTS) [50], which is used to experimentally characterize NB solitons. SWIFTS uses a linear optical intensity
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detector with a large electrical bandwidth to detect the phase and amplitude of the intermode beatings of the frequency
comb equidistant modes. The optical frequency and phase of a comb mode n is given by fn = nfrep + fceo and φn,
respectively (fceo is the carrier envelope offset frequency, and frep is the repetition frequency). Each pair of adjacent
modes beats at their difference frequency, which is equal to frep. In order to stabilize frep against fluctuations or
drifting, we employ electrical injection locking to an external radio-frequency (RF) source. The phase of the intermode
beating is equal to the phase difference of the adjacent modes φn − φn−1. The temporal waveform of the frequency
comb can be reconstructed by extracting its intensity spectrum and the phases of all intermode beatings. In order
to measure the phases of the individual intermode beatings, a method to isolate pairs of adjacent comb lines, i.e. a
frequency discriminator, is required. SWIFTS implements this function in the following way: the light emitted by
the frequency comb passes through a Fourier transform infrared (FTIR) spectrometer as the delay arm is swept and
is subsequently detected by a fast quantum well infrared photodetector (QWIP). Here, the FTIR spectrometer acts
as a frequency discriminator in the spectral domain. The beatnote signal at the repetition frequency, detected by the
QWIP after the FTIR spectrometer, is downmixed to about 10 MHz with a local oscillator (LO). The quadratures of
the downmixed beatnote signal, X and Y , are recorded by a lock-in amplifier as function of the FTIR interferometer
path difference. The reference signal for the lock-in amplifier is provided by the RF source, to which the comb
repetition rate is locked. This allows to record the so-called SWIFTS interferograms for both quadratures. The DC
signal of the QWIP yields the intensity interferogram from which the intensity spectrum of the laser output is obtained
via Fourier transform. A Fourier transform of the SWIFTS interferograms yields the complex SWIFTS spectrum,
where the amplitude of the mode Sn is equal to the geometric average of the amplitudes of adjacent modes in the
intensity spectrum

√
InIn−1, provided that the characterized state is a coherent frequency comb. If phase noise is

present in the part of the spectrum, or the modes are not equidistant, then that part of the SWIFTS spectrum will
be substantially weaker. As a conclusion, comparing the envelopes of the SWIFTS and intensity spectra allows to
assess the phase coherence of the multimode field and benchmark frequency comb operation.

FIG. S5. Experimental characterization of a NB soliton. a) Intensity and quadrature X and Y SWIFTS interferograms.
b) Intensity spectrum (top), SWIFTS spectrum (middle), and the corresponding intermode phases (bottom). The agreement
between the SWIFTS modal amplitudes and the geometric average of neighboring intensity modes (black markers) indicates
that the characterized state is coherent and that the laser emits a frequency comb. Intermodal phases show that all of the
intermode beatings are synchronized in-phase, except for the two beatings between the primary mode and its neighboring
sidemodes, meaning that there is a π shift in the phase of the primary mode. c) The reconstructed temporal profiles of the
intensity (top), instantaneous wavenumber (middle), and the phase (bottom). The instantaneous wavenumber changes only
within the region of the dark pulse, where the phase exhibits a steep ramp covering the value of 2π. The phase is perfectly
linear elsewhere, which corresponds to a constant instantaneous wavevector of around 1233.5 cm−1.

Fig. S5 displays in detail the measured SWIFTS data and the characterization of the NB soliton from Fig. 2 of the
main manuscript (obtained at bias currents of JR =1.33 kA/cm

2
and JWG =0.79 kA/cm

2
). The intensity interferogram

and both of SWIFTS quadrature interferograms can be seen in Fig. S5a) as the delay arm of the FTIR spectrometer
is swept. The intensity interferogram has a unique shape characteristic to pulsed laser emission where a strong
CW background is present. This can be recognized from the interferogram envelope that exhibits pulse-like shapes
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superimposed on a constant background. The pulses occur approximately every 2.25 cm in the path delay, which
corresponds to the distance that the light traverses in air during one laser cavity roundtrip. The information about
the spectral intermode phases is contained in the X and Y SWIFTS interferograms. Both of them have minima at the
zero path delay (where the intensity interferogram exhibits pulses), strongly indicating that not all of the intermode
beatings are synchronized in-phase. We show the spectral behavior of the NB soliton in Fig. S5b). The intensity
spectrum (top) displays a strong primary mode surrounded by a multitutde of weaker sidemodes that form a smooth
bell-shaped envelope, akin to typical dissipative soliton spectra found in passive microresonators or fibers [3–11]. The
modes of the SWIFTS spectrum Sn (middle) correspond to the intermode beatings between adjacent optical modes
n and n− 1. The markers indicate the geometric average of the intensity of these neighboring modes, mathematically
written as

√
InIn−1. From the figure, we can see that the SWIFTS modal amplitudes match the values given by the

markers, thus proving coherent frequency comb operation. The phases of the complex modes in the SWIFTS spectrum
correspond to the intermode phases between adjacent modes of the intensity spectrum (φn − φn−1). The intermode
phase distribution, shown in the bottom of Fig. S5b), indicates that all of the intermode beatings are synchronized
in-phase, except for the two beatings between the strong primary mode and its neighbors, which are π-shifted. If
translated to the modal phases φn, the phases of the sidemodes are approximately identical (in the general case, an
arbitrary linear distribution), with the exception of the primary mode, which is π out of phase. Intuitively, this means
that the sidemodes interfere constructively in a localized portion of the cavity roundtrip, while the strong primary
mode destructively interferes with them. The knowledge of the intermode phases allows us to extract the phases
of the individual modes φn via a cumulative sum. Together with the modal amplitudes, this enables the temporal
reconstruction of the electric field as

E(t) =
∑
n

√
Incos(2πfnt+ φn). (S1)

We show the temporal intensity of the NB soliton in the top of Fig. S5c). It demonstrates a clear dark pulse,
which is a consequence of the above-mentioned destructive interference. The pulse is surrounded by a quasi-constant
intensity which exhibits residual smaller oscillations. These arise due to a finite number of elements in the Fourier
sum in equation (S1), which is a consequence of a limited dynamic range of detection of the QWIP. Examining
the plotted instantaneous frequency of the output (proportional to the instantaneous wavenumber) is beneficial for
understanding the salient properties of these waveforms. It is observed that the frequency is swept only within the
region of the dark pulse, indicating that all of the optical modes contribute only within this portion of the roundtrip.
The instantaneous frequency is constant everywhere else and equal to the optical frequency of the primary mode
(wavenumber ∼ 1233.5 cm−1). This means that the constant portion of the intensity is indeed comprised of a single-
frequency CW field – indicating the localized soliton nature of the pulse. From the point of view of the one-dimensional
CGLE, the dark pulses can be viewed as sources that connect two plane waves with identical wavenumbers, consistent
with periodic ring boundary conditions [19, 40, 41]. These structures are found to be dynamically stable solutions
of the CGLE in a finite, but narrow region of the cD–cNL parameter space. In the case when higher-order terms are
included, e.g. in a quintic CGLE with a fifth-order nonlinearity, a co-propagating hole-shock solutions still persist as
stable structures in the waveform under ring boundary conditions [46, 47].

The temporal phase profile in Fig. S5c) exhibits a steep ramp that covers the value of 2π within the width of the
pulse, as discussed in the main manuscript. Together with the π jumps of the intermode phases around the primary
mode, this represents a ’fingerprint’ trait of NB solitons that can be used for their unequivocal classification.

1. Spectrally shifted NB solitons

Here we present experimental states with the NB soliton spectral envelope shifted relative to the position of the
primary mode, as reported in Fig. 4a) from the main manuscript.

The shift of the soliton spectral envelope in Fig. S6 happens as the currents of the ring and the waveguide are
changed. The main reason for this likely lies in the large change of the total GVD, as discussed in the main manuscript,
and recently observed experimentally in passive microresonators [11]. Although the soliton envelope may be positioned
differently relative to the primary mode, the expected two π jumps of the intermode phases around the primary mode
are still present – indicating that this is indeed a salient feature of NB solitons.

The temporal profile of the phase exhibits the familiar 2π ramp within the width of the soliton. We can observe
that the direction of the ramp depends on whether the soliton spectral envelope is on the red or on the blue side
relative to the primary mode. In a hypothetical state where the soliton envelope would be perfectly symmetric relative
to the primary mode (if the soliton spectral center of mass coincides with the position of the primary mode), the 2π
phase ramp would comprise two separate π ramps with an opposite direction. However, this state does not represent
a stable fixed point, and is likely never to occur experimentally.
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FIG. S6. Shifting of the soliton spectral envelope relative to the primary mode. Experimental characterization of
two NB solitons where the tuning of the bias current results in a shift of the spectral soliton envelope from the red to the blue
side of the primary mode (a) and b) respectively). The intermode phases display the expected two π jumps around the primary
mode. The temporal phase profile sweeps over 2π during the soliton width. However, the direction of the sweep depends where
the soliton envelope is positioned relative to the primary mode.

FIG. S7. Experimental evidence suggesting an NB soliton crystal. Intensity spectrum of a probable fifth harmonic
frequency comb, where the intermode spacing equals 5 FSRs. The soliton crystal regime is suggested by the smooth bell-shaped
envelope of the spectrum.

Supplementary material D: Experimental evidence of an NB soliton crystal

In the Fig. 3 of the main manuscript, we have shown an experimental and theoretical characterization of a mul-
tisoliton state comprised of two co-propagating NB solitons in a single roundtrip. A special case of multisolitonic
states, where all of the solitons within one roundtrip are equidistant, is called a soliton crystal [49]. In the frequency
domain, these waveforms correspond to a harmonic frequency comb whose spacing between adjacent comb modes is
equal to an integer multiple of the free spectral range (FSR): N × FSR, where N is the number of solitons in the
soliton crystal.

A ring resonator employing a laser active region can provide a platform for studying soliton crystal dynamics as
well. In Fig. S7, we report a state with an intensity spectrum whose intermode spacing is equal to 5 FSRs, potentially
corresponding to five equidistant co-propagating NB solitons inside the ring cavity. The coherence of the state is
suggested by the high suppression ratio of the fundamental modes that fall beneath the noise floor, leaving only the
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harmonic equidistant modes. Furthermore, the modes form a smooth bell-shaped spectral envelope that indicates the
soliton nature of the state. The high frequency of the intermode beatnote (around 68 GHz) lies well above the cutoff
frequency of our optical detector, thus prohibiting SWIFTS characterization to truly assess the coherence of the state.
This begs for the future use of another coherent technique to study soliton crystal dynamics in active ring resonators.

Supplementary material E: Impact of strong radio-frequency injection

In order to stabilize the fundamental frequency comb repetition frequency (around 13.6 GHz) and perform the
SWIFTS measurement, we employ electrical injection locking via an RF source. To do so, injected power below
0 dBm is sufficient for our devices. Going beyond that level and injecting stronger power, although beneficial for
locking the comb repetition frequency to the external source, perturbs the salient characteristics of free-running NB
solitons. For that reason, we avoid using large RF injection powers.

FIG. S8. Influence of strong RF injection on the NB soliton. Measured a) intensity and SWIFTS interferograms, and
b) the intensity spectrum, SWIFTS spectrum, and the intermode phases. The intensity interferogram exhibits a modulation
of the envelope due to the strong RF injection. The intermode phases are affected and the two π jumps around the primary
mode cannot be seen.

The influence of strong RF injection on an NB soliton can be seen in Fig. S8. The first indication that the
electrical injection perturbs the free-running soliton can be observed from the intensity interferogram. Unlike the flat
interferogram envelope in Fig. S5, we can see that strong RF injection causes approximately sinusoidal modulation of
the interferogram envelope due to the fact that the strong primary mode develops modulation sidebands. Furthermore,
the intermode phase distribution is affected around the primary mode, and the ’fingerprint’ two π jumps are not present
anymore.

Supplementary material F: Homoclons in the theory and experiment

In this section, we present theoretical and experimental results of homoclons in our lasers, with the aim of distin-
guishing these states from NB solitons. Homoclons represent stable frequency combs, characterized by the formation
of localized patterns in the waveform [19]. They arise due to phase turbulence and have been observed in Ref. [20],
which triggered the subsequent research of ring QCL comb dynamics. They have been observed in ring QCLs, where
they arise due to phase turbulence [20].

Fig. S9 displays four different homoclon states obtained from numerical simulations of the master equation. The
temporal intensity profile exhibits localized patterns that comprise different number of pulse-like structures. Their
number depends on the laser parameters, but also on the laser starting condition (phenomenon of multistability).
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FIG. S9. Simulated homoclon states. a) - d) Exemplary homoclons obtained with numerical simulations of the master
equation (S2). Homoclons are characterized as localized states that comprise several pulse-like features in the temporal intensity.
The number of these features depends on the parameters, but also on the starting conditions of the laser. The intermode phases
are distributed in two clusters, separated by π. The case of one pulse-like feature in column d), cannot be mistaken with an
NB soliton, as the latter always has two π jumps around the primary mode.

Typical values of LEF that are used to obtain homoclons are in the range of 1.1-1.3. The cavity dispersion k
′′

falls
between -1000 and -1500 fs2/mm, which puts the value of the total GVD between -2500 and -3000 fs2/mm, once the

gain dispersion is included (defined by LEF). In sharp contrast to this, NB solitons are typically obtained for k
′′

values
between 500 and 1200 fs2/mm – meaning that homoclons and NB solitons are found in different regions of the laser
parameter space. In fact, NB solitons coexist with a CW single-mode operation inside the CW linearly-stable region
of the parameter space, while homoclons can appear only inside the CW linearly-unstable region where turbulence
destabilizes the single-mode field.

Homoclons can be classified easily by observing their intermode phase distribution. As is seen from Fig. S9, the
intermode phases form two clusters separated by π. In the extreme case where the homoclon exhibits only one
pulse-like feature per roundtrip (Fig S9d)), there is a single π jump located at the position of the strongest mode.
NB solitons, on the other hand, always exhibit two π jumps in the intermode phases around the primary mode.
Furthermore, the spectral bandwidth of homoclons is narrower compared to NB soliotns, which is why the amplitude
variations in their temporal waveform are shallow.

Experimental evidence of a homoclon is shown in Fig. S10. The state is obtained for bias currents of
JR =1.39 kA/cm

2
and JWG =0.86 kA/cm

2
, from the same device which emits the NB solitons shown in the main

manuscript. This indicates that bias tuning of our devices provides a powerful knob that controls the GVD over a
large range of values, enabled by the separate electrical contacts of the ring and the waveguide coupler.

Supplementary material G: Coupled mode theory for laser dispersion analysis

The experimental verification of homoclon states (section F) and also the spectral shift of NB solitons (section (C 1)
provide two persuasive arguments that we are able to tune the GVD over a vast range of values purely by changing
the ring and/or waveguide current. In this section, we will corroborate this hypothesis with theoretical evidence as
well.

Mode interactions between the ring and waveguide are well described by the coupled mode theory (CMT). Using
CMT, we can estimate how much the electric field leaks from one resonator (the ring) to the other resonator (the
waveguide) when the two are in close proximity to one another. For devices reported in this work, the ring and
waveguide are separated by a narrow air gap (∼ 0.8µm) across an interaction length Lint (∼ 1500µm). Bearing in
mind that all of the light is generated in the ring, we write mathematical expressions for the electric field in the ring
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FIG. S10. Experimental homoclon state. The intensity spectrum is shown on top. The corresponding intermode phases
are grouped in two clusters separated by π.

(ER), and the electric field localized in the waveguide (EWG), after a propagation length z [48]

ER(z) = E0

[
cos (ψz) +

iδ

ψ
sin (ψz)

]
exp (−iδz) (S1)

EWG(z) = −E0
iκ

ψ
sin (ψz) exp (iδz), (S2)

where E0 is the initial electric field amplitude, δ is the difference of the propagation constants in the ring and the
waveguide, κ is the difference in propagation constants of the two even/odd super-modes formed in the coupled

resonators, and ψ =
√
κ2 + δ2. ER(Lint) is then used to calculate the group delay dispersion (GDD) of the ring as

function of frequency ω, which is given by

GDDR(ω) =
∂2φR
∂ω2

, (S3)

where φR is phase angle of ER(Lint).
The propagation constants of the ring and waveguide drift from one another when the two sections are biased at

different pumping levels. By measuring the transmission of a weak probe laser through the ring-waveguide system
while varying their pumping below threshold and fitting the resultant signal to a transfer matrix model, we extract how
the refractive indices (and therefore, propagation constants) change as a function of injection current. We estimate
the change in the refractive index as a function of pumping to be of the order ∼ 0.01 cm2 kA−1 [48], corresponding
to δn ∼ 0.001− 0.010 for practical pumping levels and typical device geometries. Furthermore, we use a commercial
eigenmode solver to calculate the even and odd super-mode indices for a typical laser cross-section, estimating their
difference to be ∼ 0.007 for an air gap of 0.8 µm.

Fig. S11(a) shows a calculated two-dimensional heat-map for GDDR as a function of both frequency and refrac-
tive index difference, spanning from 1200 cm−1 to 1250 cm−1 in frequency, and 0.000 to 0.020 in index difference.
Fig.S11(b) shows a cut of the heat-map at 1235 cm−1 – the center of the laser gain bandwidth, for different values
of super-mode index differences (0.006, 0.007, and 0.008). Note that regardless of the super-mode index difference,
the dispersion changes from normal (negative GDD) to anomalous (positive GDD) as δn is swept. Therefore, slight
pumping differences between the ring and waveguide can have drastic effects on device dispersion. As a conclusion, our
cavity geometry, comprising a coupled ring-waveguide system with separate electrical contacts, provides a powerful
knob to control the total mode dispersion – far superior compared to a single ring or waveguide cavity.

Supplementary material H: Dark- and bright-pulse NB solitons

The detailed experimental characterization of the state from Fig. 4e) in the main manuscript can be seen in Fig. S12.
As was explained in the main manuscript, the obtained state looks similar to the dark NB soliton state from Fig. S5
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FIG. S11. Coupled mode theory analysis of the dispersion. a) A two-dimensional heat-map of the GDD in the ring
as a function of frequency ω and refractive index difference δn (ne − no = 0.007). b) A cut of the heat-map at ω = 1235 cm−1

for different values of ne − no (0.006, 0.007, and 0.008).

FIG. S12. Experimental evidence of a coherent bright pulse. Detailed experimental characterization of a state from
Fig. 4e) in the main manuscript, obtained at bias currents of JR =1.39 kA/cm2 and JWG =0.85 kA/cm2.

(Fig. 2 of the main manuscript), with the temporal intensity being the exception as it strikingly shows a formation of
a bright coherent pulse. It was argued that this is due to the different intensity of the soliton sidemodes relative to
the primary mode, where this ratio is higher in the case of a bright pulse than in the case of the dark pulse. Here we
will elaborate more on this.

The theoretical analysis from Fig. 4f) in the main manuscript is displayed in detail in Fig. S13. Two cases are
investigated, when the primary mode is in the center of the spectral soliton envelope, and shifted from it, which
corresponds more to the experimental spectra. Both cases agree with the analysis from the main manuscript. Initial
weak soliton sidemodes correspond to a shallow dark pulse in the intensity waveform, whose contrast grows if we
increase the sidemode amplitudes relative to the primary mode. At one point (second row in Fig. S13), the destructive
interference between the primary mode, which defines the CW background, and the sidemodes is complete, resulting
in zero intensity at the pulse minima. Further increase of the sidemode amplitudes results in the spectral soliton
envelope having a larger intensity compared to the primary mode, at which point the dark pulse would effectively
’flip over’. This is especially evident from the evolution in Fig. S13a), where the intensity reaches zero before the
pulse ’flips over’. Further increase of the sidemode amplitudes decreases the amplitude contrast of the dark pulse
(third row), until a quasi-constant intenisty is obtained (fourth row). Additionally amplifying the sidemodes above
this point results in the potential emission of high-contrast bright pulses.
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FIG. S13. Theoretical analysis of the dependence of the intensity waveform on the evolution of the soliton
spectrum. The primary mode is positioned a) at the center of the soliton spectral envelope, b) away from the center of
the soliton spectral envelope. We define the soliton sidemodes using a sech2 distribution, whose choice is purely arbitrary
and only serves to illustrate a trend. The intermode phases are assumed to have π jumps around the primary mode and be
identical everywhere else. Blue line represents the intensity waveform reconstructed from the modes that are visible in the
corresponding displayed spectrum, while the grey line is reconstructed using the weaker modes as well. The blue line exhibits
residual oscillations, just like experimentally-recorded intensity waveforms, which is a consequence of the limited number of
terms in the Fourier series used for the temporal waveform reconstruction in equation (S1). The behavior in both cases is
similar, except that for a symmetric spectrum, the intensity reaches zero value at certain point where the dark pulse effectively
’flips over’ and becomes bright.
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