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Abstract. Quantum fluctuations of the electromagnetic field give rise to a zero-
point energy that persists even in the absence of electromagnetic sources. One
striking consequence of the zero-point energy is manifested in the Casimir force,
which causes two electrically neutral metallic plates to attract in order to reduce
the zero-point energy. A second, less well-known, effect is a torque that arises
between two birefringent materials with in-plane optical anisotropy as a result of
the zero-point energy. In this paper, we discuss the influence of Brownian motion
on two birefringent plates undergoing quantum electrodynamical (QED) rotation
as a result of the system’s zero-point energy. Direct calculations for the torque
are presented, and preliminary experiments are discussed.
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1. Introduction

Even in the absence of electromagnetic sources, there exist quantum fluctuations of the
electromagnetic field that lead to a nonzero energy density, i.e. the zero-point energy, which
exists both in vacuum and in dielectric media. In 1948, Casimir predicted the existence of an
attractive force between two grounded metallic plates in vacuum as a result of this zero-point
energy density [1]. Confinement of these fluctuations by the boundary conditions at the plates
causes a modification of the zero-point energy that varies with distance and leads to this
attractive force. Lifshitz then generalized this theory to calculate the force between two isotropic
materials of arbitrary dielectric function immersed in a third medium also of arbitrary dielectric
function [2]. For small separations, the result provides a complete description of the van der
Waals interaction [3, 4]. For larger separations, when the two outer materials are taken to be
ideal metals and the intervening material is taken to be vacuum, Lifshitz’s result reduces to that
of Casimir. Experiments have since been performed and are in excellent agreement with this
theory [5]–[12] (see, however, comments on claimed precision in some experiments [13]–[17]).

The effect of the zero-point energy between two optically anisotropic materials, as shown in
figure 1, has also been considered [18]–[24]. In this case, the fluctuating electromagnetic fields
have boundary conditions that depend on the relative orientation of the optical axes of the mate-
rials; hence, the zero-point energy arising from these fields also has an angular dependence. This
leads to a torque that tends to align two of the principal axes of the materials in order to minimize
the system’s energy. We have recently shown that such torques should indeed be measurable
and have suggested an experimental configuration to perform these measurements [20].

In this paper, we consider some of the problematic features of this latter experiment and
suggest a modified experimental approach involving Brownian motion that should solve these
problems.

2. Theory of the quantum electrodynamical (QED) torque

In 1972, Parsegian and Weiss derived an expression for the short range, non-retarded van der
Waals interaction energy between two semi-infinite dielectrically anisotropic materials immersed
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Figure 1. Schematic of the system under investigation. Two birefringent plates
with in-plane optical anisotropy are placed at close proximity with angle θ between
their optical axes.

within a third material [18]. This result, obtained by the summation of the electromagnetic surface
mode fluctuations, showed that the interaction energy was inversely proportional to the separation
squared and depended on the angle between the optical axes of the two anisotropic materials.
In 1978, Barash independently derived an expression for the interaction energy between two
anisotropic materials using the Helmholtz free energy of the electromagnetic modes, which
included retardation effects [19]. In the non-retarded limit, Barash’s expression confirmed the
inverse square distance dependence of Parsegian and Weiss and that the torque, in this limit,
varies as sin(2θ), where θ is the angle between the optical axes of the materials.

The equations that govern the torque are quite cumbersome and are treated in detail
elsewhere [19, 20]. For brevity, we refer the reader to those papers for a more in-depth analysis
and simply state a few of the relevant results. Firstly, the torque is proportional to the surface
area of the interacting materials and decreases monotonically with increasing surface separation.
Secondly, to a good approximation, it is found that the QED torque at a given distance varies as:

M ∼= A sin(2θ), (1)

even in the retarded limit, where A is the value of the torque at θ = π/4. Figure 2(a) shows the
torque as a function of angle for a 2 µm diameter lithium niobate disk suspended in water above
a calcite plate at a distance of d = 50 nm. The details of this configuration will be described
shortly. The ◦ correspond to values of the torque calculated according to the procedure of [20],
while the solid line corresponds to a best fit of (1). It can easily be seen that (1) is indeed an
excellent fit to the calculated points.

Because the torque is obtained as an angular derivative of the potential energy, i.e
M = −dU(θ)/dθ, we can approximate the energy associated with this angular dependence as:

U(θ) = −
∫

Mdθ ∼= 1
2A cos(2θ). (2)

Figure 2(b) shows the angular dependence of the energy. Note that the minimum energy
occurs at zero and π, corresponding to the alignment of the optical axes, while the maximum
energy occurs at π/2, corresponding to the alignment of the optical axis of the disk with a second
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(a)

(b)

Figure 2. Calculations of the QED torque and energy between a LiNbO3

disk and a calcite plate. (a) Calculated torque (◦) and sinusoidal fit (line).
(b) Calculated energy from sine fit of panel (a).

principal axis of the plate. Also from the figure, it is apparent that there are stable equilibria
at zero and π, where the deviations from these angles result in torques rotating the disk back
to zero and π, respectively, and an unstable equilibrium at π/2, where angular deviations from
π/2 result in a torque driving the disk away from π/2.

It is now important to ask whether such an effect could be observable. Because the torque
is proportional to the area of interaction and increases for decreasing separations, we would
like to use large disks in close proximity. It may first be tempting to consider a torsional setup
where one disk is suspended from a thin rod above a birefringent plate in vacuum and is allowed
to rotate under the influence of this QED torque. However, at such short distances (�100 nm),
it is very difficult to keep two large surfaces (tens of microns) parallel, due to the attractive
Casimir–Lifshiftz force, and free of dust and other contaminants. If one could instead use a
repulsive force to balance a disk above a plate, this problem could be eliminated. We recently
suggested such an experiment, which should be capable of observing this phenomenon between
barium titanate (BaTiO3) and calcite or quartz in ethanol [20]. The main idea is as follows: the
Casimir–Lifshitz force is always attractive between two identical materials; however, the force
can become repulsive when two different materials are submerged in a third medium if their
dielectric functions, evaluated at imaginary frequency, obey the following relationship [3, 4]:

εPlate(iω) < εFluid(iω) < εDisk(iω) or εPlate(iω) > εFluid(iω) > εDisk(iω). (3)
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Two material combinations that satisfy this criterion are BaTiO3–ethanol–calcite and BaTiO3–
ethanol–quartz. These combinations will give rise to a repulsive Casimir–Lifshiftz force which
will counterbalance the weight of the disk and allow it to float at a predetermined distance above
the plate. For a 20 µm thick calcite disk with a 40 µm diameter above a BaTiO3 plate in ethanol,
the equilibrium separation was calculated to be approximately 100 nm with a maximum torque
of approx. 4 × 10−19 Nm [20]. For observation of this torque, it was suggested that the disk be
rotated to θ = π/4 between the optical axes of the two birefringent materials by means of the
transfer of angular momentum of light from a polarized beam. The laser could then be shuttered,
and one would visually observe the rotation of the disk back to its minimum energy orientation.
This motion is described by [20]

Irotθ̈ = A sin(2θ) − πηR4

2d
θ̇, (4)

where Irot = 1
2mR2 is the moment of inertia of a disk of radius R and mass m, η is the viscosity of

the fluid, d is the separation between the disk and the plate, and A sin(2θ) is the QED torque from
(1). For a calcite disk initially at θ = π/4, QED rotation of a few degrees should be observable
on the timescale of 10 min.

Experimentally, this scheme has proven somewhat difficult. Firstly, it relies on a long-range
QED repulsion which has not been accurately measured, in general, or even shown to exist for
these particular materials5. This makes it hard to determine the direct cause of floatation or the
distance between the disk and the plate. Secondly, disks can easily encounter contaminants when
the timescale is tens of minutes, which causes the disks to stop floating. Thirdly, alignment of
laser optics in real time as the disk moves provides a further complication. While these issues are
not insurmountable, it is worth asking whether there is an alternative measurement and detection
scheme that could also be pursued. In the next section, we will describe an alternative set-up that
alleviates many of the previously mentioned difficulties and should lead to a direct measurement
of the orientation dependence of the QED energy.

3. A statistical approach and influence of Brownian motion

As stated previously, the driving QED torque is proportional to the surface area of the disk;
however, the damping torque due to the viscosity of the fluid between the disk and the plate,
given by the last term in (4), goes as R4. Thus, in order to reduce the time evolution of the
disk to shorter timescales, the surface area of the disks should be reduced. However, because
this reduces the torque as well, the energy scale of the torque will become comparable to or
less than the thermal energy, kBT ∼= 4.14 × 10−21 J. Brownian motion will therefore become
increasingly important as the diameter of the disk decreases. The timescale of the Brownian
rotation is set by the rotational diffusion coefficient. For a thin disk of radius R = 1 µm far away
from any surfaces, the rotation diffusion coefficient is Dr

∼= 3kBT/32ηR3 ≈ 0.39 rad s−1 [26] for
η = 1.0 × 10−3 N s m−2. For a disk near a wall this value will be further reduced; however, by
modifying the radius, different regimes can be explored.

When Brownian rotations become comparable to the QED rotation, the disk will no longer
rotate smoothly to its minimum energy configuration. Instead the angle between the optical axes

5 A few less precise measurements of repulsive close range (approx a few nanometres) van der Waals forces have
been reported in [25].
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will fluctuate to sample all angles. The probability distribution for the observation of the angle
θ between the two optical axes is:

p(θ) = α exp [−U(θ)/kBT ], (5)

where U (θ) is the potential energy of the QED orientation interaction, i.e. the energy associated
with the torque, and α is a normalization constant such that

∫
p(θ) dθ = 1. By observing the

angle between the axes as a function of time, one can deduce the probability distribution via a
histogram of the angular orientations. This is similar to the way in which potential energy as a
function of distance is determined in total internal reflection microscopy (TIRM) experiments
[27, 28].

In the next section we describe an experimental apparatus to observe this phenomenon.

4. Experimental configuration

To observe this effect, we need to levitate a birefringent disk above a birefringent plate at short
range and be able to detect the orientation of the axes. We will address both of these issues in
order in the next two subsections. Finally, we will describe the experimental configuration being
used to detect the QED toque and show initial measurements with non-birefringent particles.

4.1. Levitation scheme

In the previously described experimental configuration [20], a repulsive Casimir–Lifshitz force
was the mechanism for levitation; however, as mentioned, such an interaction has not been
carefully studied through experiment, and it is worthwhile to consider alternative methods. A
more well-characterized and adjustable levitation scheme is that of the double layer repulsion
[4]. By adding a surfactant (e.g. sodium dodecylsulfate, which is commonly known as SDS)
to an aqueous solution containing particles or disks, an electrostatic repulsion is achieved as
the hydrophobic ends of the surfactant molecules attach to the interacting surfaces. This causes
charge buildup on both surfaces (plate and disk) of the same sign and leads to a repulsion, which
is often used in colloidal suspensions [4, 29]. By adding an electrolyte (e.g. NaCl), we can adjust
the Debye screening length of the charged surfaces and hence modify the equilibrium separation
between the disk and the plate. The equilibrium separation occurs when the sum of the forces
(Casimir–Lifshitz, double layer and weight) acting on the particle is zero:

∑
F = FCL(d) + D × exp [−d/l] − πR2h�ρg = 0, (6)

where FCL (d) is the Casimir–Lifshitz force at distance d, D is a constant related to the Poisson–
Boltzmann potential evaluated at the surface due to charging, l is the Debye length, R is the radius
of the disk, h is the thickness of the disk, �ρ is the density difference between the disk and the
solution, and g is the acceleration due to gravity. Both the Casimir–Lifshitz force and the weight
of the disks are set by the geometry of the system and the materials chosen; however, the double
layer force can be modified by changing the electrolytic concentration. Thus, the floatation height
can be adjusted in this way. For the remainder of this discussion, we will focus on a setup which
consists of a circular LiNbO3 disk with R = 1 µm and h = 0. 5 µm in an aqueous solution with
SDS and NaCl chosen for a levitation height of 50 nm above a calcite plate. Figure 3 shows the
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Figure 3. Energy as a function of separation between a LiNbO3 disk and a calcite
plate including contributions from the double layer interaction (dominant at close
range), the Casimir–Lifshitz interaction (dominant at longer range) and gravity
(negligible). Equilibrium is obtained around 50 nm.

approximate interaction energy following from the forces of (6), where we have assumed that
the double layer interaction can roughly be modelled using the weak overlap approximation [4]
with similar surface potentials of 100 mV on each surface and an NaCl concentration of 5 mM.
Further, the Casimir–Lifshitz interaction was modelled using a composite dielectric function for
each birefringent material by averaging the dielectric functions of the three principal axes. The
equilibrium separation is found to be 46 nm with deviations of a few nanometres due to thermal
energy of the order kBT .

4.2. Determination of the angular orientation θ

In order to track the motion of the disk above the plate, we use a video microscopy set-up similar
to the one described in [30]. The disk’s motion is tracked and recorded as is the intensity of
the transmitted light. The orientation of the disk is determined by placing it between crossed
polarizers (or a similar combination of optical components), so that the intensity of the transmitted
light can be related to the orientation of the optical axis. In order to determine the expected optical
intensity at the output as a function of θ , we use the Jones matrix representation of the optical
elements to determine the exiting E-field from which the intensity is calculated [31, 32]. For
a polarized beam travelling in the z-direction which goes through a single optical element, the
exiting E-field is given by:

Eout = MEin =
[
m11 m12

m21 m22

] [
Ex

Ey

]
, (7)

where the values of mij depend on the chosen optical component. The simplest setup one might
think to use could consist of a birefringent disk free to rotate above a birefringent plate, which is
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Figure 4. A sketch of the experimental setup used to determine the angular
dependence of the zero-point energy between birefringent plates.

placed between crossed polarizers. By putting the two birefringent materials between the crossed
polarizers, the intensity of transmitted light will depend on the angular orientation of the two
materials. However, a detailed calculation of the intensity profile as a function of θ, shows that
the intensities corresponding to the minimum and maximum energy configurations of the plate
and disk are the same, i.e. the orientation cannot be determined by the intensity measurement
alone. To solve this problem, we use the following configuration, as shown in figure 4: left hand
circularly polarized light incident on a birefringent half-wave plate and suspended disk, which
is free to rotate, followed by a linear polarizer with transmission axis at 45◦ with respect to the
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optical axis of the birefringent plate. The output field is then given by:

Eout = Mlinear45︸ ︷︷ ︸
final polarizer


rotation matrix︷︸︸︷

R(θ) MDisk

rotation matrix︷ ︸︸ ︷
R(−θ)︸ ︷︷ ︸

disk at arbitrary


 MHWP︸ ︷︷ ︸

birefringent plate

indent left circularly
polarixed light︷︸︸︷

Ein , (8)

where

Mlinear45 = 1

2

[
1 1
1 1

]
, R (θ) =

[
cos (θ) − sin (θ)

sin (θ) cos (θ)

]
,

MDisk =
[

e−iφ/2 0
0 eiφ/2

]
, MHWP =

[−i 0
0 i

]
, Ein = 1√

2

[
1
i

]
.

The intensity is proportional to the sum of the squared E-field components and is given by:

I ∝ 1
2 [1 − cos (2θ)] sin (φ) , (9)

where φ = 2 πh �n/λ is the phase retardation due to the birefringent disk of thickness h with a
difference in indices between principal axes of �n for light of wavelength λ. Note that the
intensity profile is multiplied by sin (φ), which is independent of θ, so that the details of
the birefringence and incident wavelength of light do not modify the θ dependence of the intensity
profile.6 Now we are prepared to discuss the detection of the probability distribution of (5). Figure
5(a) shows the probability distribution as a function of angle as calculated from (5) for both cases:
QED interaction between two birefringent materials, U(θ) ∼= 1

2 A cos (2θ), and no angular QED
interaction, U(θ) = 0. As expected, the anisotropic disk has a higher probability of being found
with an orientation θ = 0 or π and a lower probability of being found at θ = π/2. Figure 5(b)
shows the transmitted intensity as a function of θ. Comparing figures 5(a) and (b), it is clear
that lower intensities (occurring at θ = 0 and π) should be detected more frequently than larger
intensities (occurring θ = π/2). Figure 5(c) shows the probability distribution as a function of
intensity by combining (5) and (9), and shows the signal that would be detected in an experiment
via a histogram of the intensities. By performing the experiment with both an isotropic plate
and an anisotropic plate, both of the probability distributions shown in figure 5(c) should be
obtainable.

4.3. Implementation

This experiment is currently being pursued in our laboratory at Harvard University. For an
initial trial, we used 10 µm diameter polystyrene spheres (Duke Scientific) prepared in a
tris (hydroxymethyl) aminomethane buffer solution with SDS added to obtain a double layer
repulsion. The thermal fluctuations of the spheres were then recorded via a CCD camera attached
to an upright microscope as shown in figure 4. The particles’centres were determined and tracked
by the method of [30] with a standard deviation of less than 1/10 pixel. Figure 6 shows both

6 Because φ simply scales the intensity function, our discussion in not limited to a single wavelength and can
be generalized for white light. We also note that the incident intensity should be kept low in order to avoid any
measurable transfer of angular momentum from the photons used for illumination.
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Figure 5. Probability distributions. (a) Probability of detecting a rotation θ.
(b) Intensity transmitted through the experimental set-up as a function of θ.
(c) Probability as a function of recorded intensity.

the tracking and intensity fluctuations recorded for one particle. Because the particle is non-
birefringent, intensity fluctuations are due to scattering from imperfections in the sphere as a
particle undergoes Brownian motion.

In order to study this QED torque, we want to use disks rather than spheres. Such disks are
currently being fabricated using a combination of mechanical polishing and focused ion beam
(FIB) sculpting for both birefringent and isotropic materials. Figure 7 shows a LiNbO3 disk
fabricated by crystal ion slicing [33] to produce thin LiNbO3 sheets followed by FIB carving to
form circular disks. Disks similar to the one shown in figure 7 are too large to undergo Brownian
rotation in reasonable time frames, so smaller disks are currently being fabricated. Experiments
with these disks are expected in the coming months.
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Figure 6. Computerized tracking and intensity fluctuations for 10µm
polystyrene spheres from early calibration procedures. (a) CCD image and
determination of particle centres. (b) Tracking of one sphere over 5 s. (c) Intensity
fluctuations of scattered light.
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Figure 7. LiNbO3 disks fabricated by crystal ion slicing and FIB sculpting.

5. Conclusions

We have considered the influence of quantum fluctuations of the electromagnetic field on a
birefringent disk suspended above a birefringent plate immersed in a fluid and have proposed
an experiment capable of detecting this influence. For large plates, a macroscopic QED torque
should result causing two of the principal axes of the materials to align; however, as the size
of the disk is reduced, Brownian motion becomes important and can disrupt observation of this
phenomenon. By performing a statistical analysis of the orientation behaviour of a small disk
under the influence of Brownian rotation, we can map out the potential energy profile of the disk
as a function of angle to show the angular dependence of the energy associated with the quantum
fluctuations of the electromagnetic field. Experiments are currently underway in our laboratory
to explore such effects.
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