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ABSTRACT
Cluster synchronization is a general phenomenon in a network of non-locally coupled oscillators. Here, we show that cluster synchronization
occurs in semiconductor lasers, where the beat notes between the pairs of adjacent longitudinal modes of the laser cavity constitute a collection
of coupled phase oscillators. Non-local coupling arises from the standing-wave nature of the cavity with finite mirror reflectivities, which we
can actively control. Varying the coupling, we can bring the laser into a state of cluster synchronization where the two beat note families
oscillate at two distinct collective frequencies. Using a coherent beat note detection technique, we show that the beat notes within the two
families are synchronized in the opposite configurations—in-phase and antiphase.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187078

Several animals sleep with half of their brain awake.1 In this
unihemispheric sleep phase, the neurons in the two halves of the
brain show drastically different electrical activity.2 Such a state
of desynchronization is a general phenomenon in a collection of
coupled identical oscillators, where the coupling strength between
all possible oscillator pairs is not uniform, whereas the function
describing the coupling to the neighbors—the so-called coupling
kernel—is the same for each given oscillator. Contrary to the case
of global coupling, where equal interaction strengths between all
oscillator pairs lead to the global synchronization of the entire pop-
ulation, in such a non-locally coupled system, the oscillators may
synchronize in clusters. An ultimate example of cluster synchro-
nization is a chimera state.3 A chimera state is characterized by
the presence of two sub-populations within the coupled oscillator
array, whereby one subpopulation is perfectly in synchrony and
oscillates as a whole, while the other is desynchronized. Cluster syn-
chronization and chimera states are encountered in mechanical,4,5

chemical,6 and biological systems.7 Understanding of the uni-
versal dynamics and the causes of the formation of such states
is essential for the mitigation of catastrophic outages in power
grid networks,8 the prevention of partial seizures in brain,9 and

the treatment of cardiac arrests caused by ventricular fibrillation
due to the desynchronization of the pacemaker cells in the heart
muscle.10

In photonic systems, chimeras, or cluster states, may exist in
spaces spanned by the coordinates, associated with various degrees
of freedom of the electromagnetic wave. The most straightfor-
ward example is that of an array of coupled waveguide resonators,
where the clustering manifests itself in the space-dependent inten-
sity values at the output plane of the array along the lateral spatial
dimension.11 In passive nonlinear optical resonators, on the other
hand, individual coupled oscillators, constituted by the values of the
optical field intensity along the cavity coordinate, have been shown
to produce regions of random intensity oscillations bounded in time
by regions of constant intensity.12 In active laser cavities, where
multiple longitudinal modes can be above the threshold simulta-
neously, giving rise to an optical frequency comb, clustering can
manifest itself in a wavelength-dependent linewidth of the individual
comb teeth.13 There, the oscillators are arranged along a synthetic
frequency (or wavelength) dimension in the reciprocal space.14

Here, we show that in a semiconductor laser, the non-locally
coupled oscillators constituted by the radio frequency intermode
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beatings, and arranged along the optical frequency dimension, may
synchronize in clusters. To conceptually introduce the phenomenon
of cluster synchronization and its key properties, we first con-
sider the Kuramoto model of a family of coupled phase oscillators
[Fig. 1(a)].15 The Kuramoto model has widely been applied to study
systems featuring a spontaneous onset of synchrony, e.g., in ensem-
bles of fireflies,16 neuronal cell networks,17 human crowds,18 and
mechanical oscillators.5 Later, we consider a full laser model, which
can also be regarded as a coupled oscillator model but departs
substantially from the Kuramoto model. Nevertheless, the key qual-
itative evidence of cluster synchronization pertains to both systems.
In the Kuramoto model, the dynamics of a collection of N phase
oscillators (i.e., all oscillators swinging with the same amplitude) is
traced by the temporal evolution of the phases θi of these oscillators,

FIG. 1. (a) Initially randomly distributed phases of N = 64 oscillators (filled
turquoise dots) with identical natural frequencies ω1 attain the state of complete
synchronization in case of global coupling (all N oscillator phases become identical
as represented by the unfilled turquoise dots), or split into clusters under non-
local coupling (the completely synchronized cluster composed of N/2 oscillators
is represented by the unfilled turquoise dots). (b) Various functional shapes of the
coupling kernel that defines the coupling strength of each possible oscillator pair.
(c) (Top) Simulated phase trajectories of N = 64 oscillators for κ − K = 0.1. (Bot-
tom) Spectrogram of the time-evolving collective oscillation. (d) Kuramoto order
parameter r , for a range of coupling disparities. (e) Phase trajectories of the N = 64
oscillators for κ − K = 0.25 and the collective spectrogram of the cluster state.

θ̇i = ω1 −
N

∑
j=1

f (∣ j − i∣) sin (θj − θi + ϕ), (1)

where θ̇i is the time derivative of the phase of the ith oscillator—or its
instantaneous frequency, ω1 is its natural angular frequency, iden-
tical for all oscillators, ϕ is a collective phase delay, and f (∣ j − i∣)
is the coupling kernel that defines the distance-dependent coupling
strength between the jth and the ith oscillators. In the simulations
of the Kuramoto model, we assume a periodic boundary condition
and a symmetric coupling kernel—oscillators are arranged on a ring
such that oscillator i = N is coupled equally strongly to oscillators j
= N − 1 and j = 1. Under the condition of global coupling f (∣ j − i∣)
= κ, where κ ≤ 1 is a scalar [Fig. 1(b)], complete synchronization
occurs, signified by the phase locking of the initially randomly dis-
tributed oscillator phases [Fig. 1(a)]. The temporal evolution of the
individual oscillator phase angles θi, once in synchrony after an
initial transient, is linear in time with a slope equal to the collec-
tive oscillation frequency: θ1 = ω1t [Fig. 1(c)]. One way to visualize
the state of synchronization is to construct the collective spectro-
gram of the oscillators by summing the instantaneous angles of all
oscillators E(t) = ∑N

j cos (θ j(t)) and taking a short-time Fourier
transform of E(t). In case of complete synchronization, such a spec-
trogram features a single narrow peak at the collective frequency ω1
[Fig. 1(c)].

Cluster synchronization, on the other hand, can occur in a non-
locally coupled system. Non-local coupling can be introduced in
Eq. (1) using a boxcar kernel [Fig. 1(b)],

f (∣j − i∣) =
⎧⎪⎪⎨⎪⎪⎩

κ if ∣ j − i∣ ≤ N/2,

K if ∣ j − i∣ > N/2.

The functional form of f (∣ j − i∣) can vary: other types of the
coupling kernel, such as cosine f (∣ j − i∣) = K + (κ − K) cos (∣ j − i∣)
or exponential f (∣ j − i∣) = K + (κ − K) exp (∣ j − i∣), lead to the same
synchronization dynamics [Fig. 1(b)].3 The key parameter that
defines the type of the synchronization state is the coupling disparity
κ − K. For κ − K small, when the oscillators can still be seen as glob-
ally coupled, as well as for κ − K large, when the system is effectively
locally coupled, it attains the state of complete synchronization,
which is characterized by a high degree of mutual phase coherence
between the oscillators. The degree of phase coherence in the steady
state can be quantified with the Kuramoto order parameter,

r = 1
N

RRRRRRRRRRR

N

∑
j=1

exp (iθj)
RRRRRRRRRRR
. (2)

Complete in-phase synchronization is signified with r = 1
[Fig. 1(d)]. For an intermediate range of values of κ − K, the sys-
tem is coupled non-locally and splits into two clusters, resulting
in the reduction of the order parameter: r < 1 [Fig. 1(d)]. The col-
lective frequencies of the oscillator clusters are not the same, as
seen from the different slopes of phase evolution of the oscillators
[Fig. 1(e)]. Moreover, while the oscillators in the first cluster are
completely synchronized, after the initial transient, the oscillators in
the second cluster, despite moving at a well-defined mean frequency,
have a lower mutual coherence, i.e., they are not phase-locked to
each other [Fig. 1(e)]. The spectrogram in the cluster synchroniza-
tion state features two distinct tones—one narrow centered at the
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mean frequency of the fully synchronized cluster and the other
broad centered at the frequency of the partially synchronized cluster
[Fig. 1(e)]. Such a state of a system where the fully coherent cluster
and an incoherent cluster coexist in a population of identical oscil-
lators is also known as a chimera state.3 However, the fact that the
collective frequencies are distinct and well-separated is not obvious
and is an important corollary of this simulation that is not given its
due in the literature.15,19 While, intuitively, the collective frequency
of the first, coherent, cluster ω1 coincides with the natural frequency
of the oscillators, the frequencies of the oscillators in the incoher-
ent cluster are not spread around the natural frequency but rather
around the mean value of ω2 ≠ ω1. This separation of the collective
frequencies will be one of the defining features of cluster synchro-
nization in a semiconductor laser.13 In a laser cavity where multiple
longitudinal modes can simultaneously be above the threshold, the
oscillators are the beat notes between the pairs of neighboring cav-
ity resonances [Fig. 2(a)].20 One mode of their synchronization is
the so-called splayed phase (or antiphase) state, when the phases
between the intermode beat notes across the laser spectrum cover
the range from 0 to 2π, such that for each intermode beat note, there
is another one that is π out of phase with it. Such a state leads to
frequency-modulated (FM) comb emission in free-running semi-
conductor laser of various types: quantum dot,21 quantum dash,22,23

quantum well,24,25 interband cascade,26 and quantum cascade lasers
(QCLs).27–29 On the contrary, in actively and passively mode-locked
semiconductor lasers, all intermode beat notes can have the same

phase, and the laser generates a pulsed amplitude-modulated (AM)
frequency comb.21

Here, we show that both synchronization states—FM and
AM—occur simultaneously in a Fabry–Pérot quantum cascade laser
(QCL). Such a state is a cluster synchronization state and is attained
in the regime when the intermode beat notes are coupled non-
locally within the standing-wave laser cavity. A qualitative analogy
with the oscillators in the Kuramoto model is as follows: In a QCL,
once multiple longitudinal cavity modes are simultaneously above
the lasing threshold, the pairwise beating between each pair of
neighboring cavity modes will create a temporal modulation of the
population inversion at frequencies close to the cavity round trip
frequency—several tens of GHz for a typical cavity length of few
millimeters [Fig. 2(a)]. Each of these intermode beat notes can be
seen as an individual microwave oscillator, and as a whole, they form
a collection of oscillators that are coupled by the very same laser
gain medium that generates them (see Sec. I of the supplementary
material).30 Due to the frequency dependence of the effective refrac-
tive index (i.e., the cavity dispersion), the natural frequencies of these
oscillators are not identical; however, they can synchronize via χ(3)

four-wave mixing nonlinear interactions inside the gain medium,
which corresponds to the action of the forcing term sin (θ j − θi) in
Eq. (1).31–33

The coupling disparity between different beat note pairs arises
as follows: In a standing-wave cavity, the coupling strength between

FIG. 2. (a) Spatial profiles of the intermode beat notes between the longitudinal laser modes inside the laser cavity. R1 and R2 are the end facet mirror reflectivities. (b)
Coupling strength as a function of spectral separation, calculated as an overlap integral between the spatial profiles of the corresponding beat notes. Increasing R2 results
in a transition from global coupling (R2 = 0.01) to non-local coupling (R2 = 0.28). (c) Power spectral density (PSD) and beat note phase of the simulated laser in a steady
state with R1 = 1 and R2 = 0.3. (d) PSD and beat note phase of the simulated laser in a steady state with R1 = 1 and R2 = 0.05.
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two intermode beat notes is proportional to the overlap of their
spatial profiles.20,30 The analog of the coupling kernel can then be
defined by computing the spatial overlap integral along the cavity
axis for each pair of intermode beat notes [Fig. 2(a)]. This over-
lap is high for the beat notes generated by the neighboring mode
pairs and is lower for the beat notes of more distant mode pairs.
In this picture, the beat notes are the oscillators that are arranged
along a synthetic optical frequency axis, and the coupling strength
fades away the larger the distance is between the points on the fre-
quency axis [Fig. 2(a)]. As a result, each intermode beat note is
coupled stronger to its nearest neighbors than to the more distant
ones, giving rise to an effectively non-local coupling kernel as in the
Kuramoto model [Fig. 1(b)]. The coupling disparity can be tuned
by changing the reflectivity of one of the end facet mirrors: a highly
asymmetric cavity results in global mode coupling, whereas a sym-
metric cavity results in non-local coupling [Fig. 2(b)]. To elucidate
the effect of the coupling disparity induced by the asymmetry of the
cavity, we show the result of the spatiotemporal simulation of the
Maxwell–Bloch model of QCLs for the cases of two different facet
reflectivities. The model and the simulation tool are adapted from
Ref. 34. In both simulated cases, the left facet reflectivity is R1 = 1.
For the right facet reflectivity R2 = 0.3, the laser modes synchronize
completely with a well-defined and constant splayed phase relation-
ship among the intermode beatings [Fig. 2(c)]. In case of R2 = 0.05,
the laser spectrum splits into two clusters, whereby the beatings in
the first cluster are synchronized in a splayed phase configuration,
whereas the beatings in the second cluster are less coherent—they
assume a uniform phase spread around a well-defined mean value.
This state is not a transient one and persists for the entire duration of
the simulation. Due to the coexistence of coherence and incoherence
within the beat note family, this state of the laser indicates similarity
to a chimera state [Fig. 2(d)].

We generate such cluster states experimentally in a Fabry–Pérot
QCL with an active region based on the so-called bifunctional
design,35 grown on an InP substrate and processed as a buried
heterostructure. The bifunctional design allows for active control
of absorption within the gain region. To enable the tuning of the
coupling kernel, we realize a mirror with adjustable reflectivity by
splitting the top laser contact into a long gain section (3.3 mm)
and a short mirror section (0.4 mm), which can be biased indepen-
dently, inducing variable absorption at the cavity facet (see Sec. II
of the supplementary material). At a low bias, absorption results in
effective lower end facet reflectivity, and at a high bias, when the
absorption is lower, the effective reflectivity increases. This variable
mirror section enables active control of the coupling disparity. Fur-
thermore, the short section allows for efficient microwave extraction
and injection into the laser by bringing a ground-signal (GS) radio
frequency probe in contact with it.36

By tuning the biases of the gain and the mirror sections, we can
selectively bring the laser in one of the two possible synchronization
states. In one of them—the antiphase synchronization state—the
laser spectrum consists of a strong carrier with two sidebands
[Fig. 3(a)], which are π out of phase (see Sec. II of the supplementary
material on the details of the experimental phase retrieval). The
RF spectrum of the laser output around the cavity repetition fre-
quency shows one narrow (sub-kHz linewidth) and weak tone—the
result of incomplete destructive interference of the two out of phase
intermode beatings.

FIG. 3. (a) Power spectral density (PSD), intermode beat note phases, and inter-
mode beat note intensities of the laser operating in an antiphase synchronization
regime. FSR, free spectral range. The laser spectrum is centered at 1256.6 cm−1

(7.96 μm). (b) PSD, intermode beat note phases, and intermode beat note inten-
sities for the laser in a cluster synchronization regime. (c) Phase diagram of the
laser state as a function of two parameters—a long gain section DC bias current
density and a short mirror section DC bias current density.

Increasing the bias on the short laser section, we can bring
the laser to a cluster synchronization state. In this state, the laser
spectrum consists of two mode families synchronized at two dif-
ferent collective frequencies [Fig. 3(b)]. Notably, the RF tone at
12.24 GHz is more broad than its lower frequency counterpart at
12.20 GHz, which signifies the reduced coherence of the collec-
tion oscillating at 12.24 GHz, in correspondence with simulations
[Fig. 2(d)]. Power spectrum of the laser emission alone does not
allow to ascribe each of the RF tones to a particular mode clus-
ter. However, from parallel demodulation at these two collective
frequencies (RF1 and RF2), we unambiguously show the correspon-
dence between the two distinct mode clusters visible in the laser
spectrum and the two RF beat notes visible in the spectrogram. In
the red detuned cluster, the beat notes are synchronized in antiphase,
and in the blue detuned cluster—in-phase [Fig. 3(b)]. Continuous
sweeping of the two parameters—currents in the gain and the mir-
ror laser sections—results in sharp transitions between the antiphase
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and cluster states that are signified by the appearance and disap-
pearance of the respective tones in the RF spectrum. The two bias
controls span a two-dimensional phase space, in which the states
of the laser live [Fig. 3(c)]. As in the case of the Kuramoto model,
cluster synchronization occurs in the intermediate range of coupling
disparities, controlled by the mirror section bias.

Cluster state is a remarkable manifestation of the generality
of the synchronization phenomena. In laser systems, cluster syn-
chronization should not be restricted to QCL gain media: it could
potentially be attainable in any laser where multiple longitudinal
modes can oscillate simultaneously. The recent observation of in-
phase and antiphase synchronization modes in a quantum dot laser
suggests that cluster state is another possible mode of operation
of these lasers.21 Furthermore, in solid-state laser cavities that sup-
port a large number of transverse modes where non-local coupling
can be implemented with specially designed intracavity optical ele-
ments, synchronization and clustering can potentially occur among
the spatially coherent structures in the beam cross section.37 In semi-
conductor lasers, mode clusters are as well known to arise due to
the presence of higher order dispersion in the laser cavities. In case
of QCLs, such clustering, due to higher order dispersion, does not
lead to the synchronization state of the type presented here. Instead,
the modes in two clusters remain fully in synchrony throughout the
spectral bandwidth.38,39

If viewed as a regime to avoid, the cluster state, seemingly inher-
ent to Fabry–Pérot cavities, should not appear in traveling-wave
ring cavities, where the spatial beat note profiles are uniform and
the coupling is global. From this perspective, recently demonstrated
ring QCL frequency combs could have a superior noise and stability
performance.40–44

Description of experiments and theoretical model.
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