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Abstract 

Differentiable models enable the efficient computation of parameter gradients for continuous functions, 

greatly expediting the optimization of high-dimensional systems. This makes them an asset for the design 

of nanostructured metasurfaces. The adjoint variable method (AVM) is the workhorse for photonic gradient 

computation but can be challenging to implement with Finite Difference Time Domain (FDTD) 

electromagnetic for certain optimization problems. Automatically differentiable (AD) platforms remove the 

need for manual constructions while retaining favorable computational scaling but high memory 

consumption limits their application to small systems. Here we introduce a method of gradient calculation 

based on the direct differentiation of the FDTD update equations by leveraging the time-reversible nature 

of Maxwell’s equations. We support open and closed systems by recording the time-dependent fields at 

lossy boundaries and playing them back during the time-reversed FDTD simulation. The method is 

generally applicable without the high memory consumption of AD by eliminating redundant memory 

operations performed at each timestep. We demonstrate this architecture in a three-dimensional FDTD 

simulation. Its computational cost is comparable to the adjoint method and it reduces memory requirements 

by 98% compared to an equivalent AD calculation for calculating a 900-element gradient vector. The 

differentiable simulator is applied to design two systems: a color sorter with a frequency-domain behavior 

and a resonant nanostructure array with a time-domain behavior. This approach to differentiate grid-based 

simulators is applicable to a broad range of physics simulators, thereby broadening the scope of inverse 

design topology optimization across fields. 

 

Keywords: automatic differentiation, metasurface inverse design, topology optimization, electromagnetic 

simulation, adjoint variable method 

 

Introduction 

Nanostructured surfaces have been utilized to sense and manipulate numerous degrees of freedom of light. 

Metalenses, for instance, control the transmitted wavefront through an intricately structured surface to 

achieve diffraction-limited and aberration-corrected focusing (1,2). Modern lithography enables the 

creation of features far smaller than the wavelength of visible light, resulting in a vast space of possible 

nanostructures. Identifying high-performing devices that can be fabricated within equipment constraints 
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from this massive set of possible structures is essential. The two main approaches to address this challenge 

are forward design and inverse design. 

 

Forward design involves constructing a large device from simpler components that have well-defined 

behavior. In flat optics, these components are discrete subwavelength nanostructures called meta-atoms. 

Each meta-atom in a “library” (i.e., a collection) consists of elementary shapes and has its optical behavior 

(e.g., transmitted phase delay) individually modeled with electromagnetic simulation techniques such as 

Finite Difference Time Domain (FDTD) (3) and finite element models (FEM). In a second step, these meta-

atoms are assembled to a macroscopic optic based on a precalculated spatial distribution. For example, 

when designing a lens, meta-atoms would be arranged to induce a hyperbolic phase profile. Forward design 

can systematically generate large nanophotonic devices for applications with requirements that can be met 

by a library of meta-atoms with a limited number of degrees of freedom.  

 

However, inverse design is required for applications without a well-defined desired spatial parameter 

distribution or those demanding wider-ranging behaviors. One example is designing different behaviors 

over a band of wavelengths, which requires control over the chromatic dispersion of the nanostructures and 

coverage of a much larger structure parameter space (2,4,5). Inverse design techniques such as topology 

optimization treat this as an optimization problem over a high-dimensional parameter space, i.e., they 

maximize or minimize an objective function which describes the desired behavior. There are several 

techniques available for photonic inverse design (6,7); most high-dimensional optimization problems 

employ gradient descent directly onto the design parameters or train neural network generators (8,9) to 

discover high performing solutions. Beyond simple gradient descent, the information in these gradients can 

be incorporated with deep learning-based algorithms to attain globally-optimal devices (10–12). In 

gradient-based approaches, the most computationally intensive step is the calculation of the gradient of the 

objective function itself. Finite difference approximations can achieve this, but their computational 

complexity scales poorly with respect to the number of degrees of freedom (at least one objective function 

call per degree of freedom). A physics-informed neural network for approximating forward simulation and 

gradients can provide excellent computational scaling but may trade-off accuracy and generalizability (13). 
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The adjoint variable method (AVM), also known as sensitivity analysis, is the most widely used and 

computationally efficient technique to optimize systems with many degrees of freedom: AVM calculates 

all gradients simultaneously, at the computational cost of just two objective function calls (i.e., two 

electromagnetic simulations in the photonics case). For the commonly-encountered case in photonics where 

the objective function is written in terms of frequency-domain complex-valued fields and the tunable 

parameters are dielectric permittivity distributions, AVM takes a simple form that can be easily 

implemented in existing FDTD suites (14–16). However, in situations that differ from the above case, such 

as systems with time-domain objective functions, time-varying materials, or tunable parameters that are 

associated with multiple pixels (e.g., characteristic dimensions (17,18) or the rotation angle of a structure), 

the AVM requires the derivation of complicated operators that often have no closed form. 

 

Automatic differentiation (AD) is another efficient technique for gradient calculation and thereby topology 

optimization (18–22). AD-based electromagnetic simulators based on rigorous coupled wave analysis 

(18,20) and finite difference frequency domain (FDFD) (23,24) are in the public domain. In its most 

common form, reverse mode (RM), AD maintains a record of all mathematical operations undertaken 

during a calculation and computes the exact numerical gradients using the chain rule. Therefore, the user 

does not need to perform analytical derivatives (21). However, applying AD to iterative grid-based 

simulation methods (e.g., FDTD) is limited to small problems or large computer clusters due to the memory 

requirements of saving all intermediate values at every iteration timestep and pixel position, along with 

every mathematical operation involved. 

 

In this paper, we introduce an alternative method to AVM and AD for obtaining arbitrary objective function 

gradients in FDTD: Direct Differentiation (DD) of the FDTD update steps. That is, we analytically 

differentiate the FDTD update equations and propagate the objective function gradients in a manner akin 

to an FDTD simulation running in reverse. This technique maintains the efficient computational complexity 

scaling of AVM and AD where the gradient calculation time is independent of the number of tunable 

parameters, has orders of magnitude less memory complexity compared to AD, and provides a systematic 

approach to accumulating parameter gradients. Our method is generalizable to many time- and frequency 

domain objective functions and optimization parameters. Our method provides – without changes – 

optimization gradients for objective functions including time-domain field components and broadband 
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responses. In these cases, our method is advantageous to the AVM, as it does not require the 

(mathematically challenging and sometimes impossible) derivation of closed-form adjoint formulations. 

For frequency-domain objective functions defined in a narrow frequency band, the AVM reduces to its 

computationally efficient form (see section AVM for frequency-domain objectives), allowing a more 

straightforward implementation into existing simulation tools.  

 

Instead of storing intermediate parameter (field) values at each timestep, we perform backpropagation by 

running the FDTD simulation backwards, starting with the final system state and time-stepping in reverse 

towards the initial conditions. Since the backpropagation chain rule calculation proceeds in this same 

reverse direction, the intermediate parameter values are calculated precisely when they are needed at each 

timestep. This reverse simulation approach can also be separately applied in AVM adjoint simulations to 

remove the need for checkpointing (25,26). We then apply our architecture to design two devices: one that 

uses a frequency-domain objective function and another device with an objective function defined in the 

time-domain.  

 

Methods 

Overview of FDTD 

FDTD is a grid-based, time-stepping method for solving partial differential equations. When applied to 

Maxwell’s equations and electromagnetism, it is used to simulate light-matter interactions in the time-

domain. FDTD is highly generalizable, well-suited for systems with multiple frequencies, time-varying 

properties, nonlinear materials, and can be integrated into multiphysics simulations. The electric and 

magnetic fields 𝑬 and 𝑯 are updated iteratively and alternately over a discretized simulation volume on the 

Yee grid, typically until the excitation fields are absorbed or escape the simulation volume. The space (∇) 

and time $ !
!"
% derivatives in Maxwell’s equations (Equations 1-2 for the lossless case) are first order and 

estimated using centered finite difference approximations. 𝑱# is the electric current density, which typically 

acts as the input source for the simulation. 𝜇 is the permeability and 𝜖 is the permittivity. 

∇ × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡

(1) 

∇ × 𝑯 = 𝜖
𝜕𝑬
𝜕𝑡 + 𝑱# 	

(2) 
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For accuracy, FDTD requires a large number of spatial pixels and iteration timesteps. The spatial pixel size 

is typically chosen significantly smaller than the wavelength of interest λ (on the order of λ/10) (27). This 

directly constrains the maximum timestep through the Courant stability condition, which requires that the 

ratio between the timestep 𝑐Δ𝑡	and smallest spatial step Δ𝑥 is smaller than $
√&

 for the three-dimensional (3D) 

case with cubic pixels. The simulation then must be run for a sufficient time to let the excitation fields 

traverse the simulation volume or decay, which takes many calculation steps in the presence of resonances. 

The FDTD discretization and update equations used in this study are detailed in the Supplementary 

Information.  

 

The time and memory cost of a gradient calculation for an optimization problem is broadly characterized 

by their scaling with respect to the number of independent input (Ninput) and dependent output (Noutput) 

parameters. Most optimization problems have a large Ninput due the number of tunable parameters or fitting 

parameters, and a small Noutput for the objective function (in most cases, Noutput=1). It is thus ideal for a 

gradient calculation algorithm to have a time and memory cost that scales favorably with Ninput, preferably 

being independent of it. Two such algorithms are the AVM and AD.   

 

Overview of AVM 

Sensitivity analysis in electromagnetism has its roots in the optimal design of dynamic mechanical systems 

(28,29) and was applied to design waveguide structures in the late 1990s (30,31). While AVM was 

formulated for simulators that solve systems of equations captured by large system matrices like FEM 

simulations, Y.-S. Chung et al demonstrated that AVM could also be applied to FDTD, which does not use 

system matrices and is defined on a structured Yee grid (32–34). 

In this case, the AVM is employed to calculate the gradient '(
'𝒑

of an objective function 𝐺 =

∫ ∫ 𝑔[𝑬(𝒙, 𝑡), 𝑯(𝒙, 𝑡)]𝑑𝑡𝑑&𝒙*
+,  that is defined over a volume Ω and simulation time 𝑇, with respect to a 

vector of tunable parameters 𝒑. The derivation of AVM is described in literature (32–36), here, we will 

only summarize the implementation and associated challenges. The first step of AVM is to solve the 

forward problem in the time-domain: that is, to solve Maxwell’s equations for a nominal geometry and 

store the field results 𝑬(𝒙, 𝑡), 𝑯(𝒙, 𝑡) for the simulation time 𝑇, and for all positions that are either used in 

the objective function or associated with the tunable parameters 𝒑  (e.g., pixels over which a shape 
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derivative is desired). Although this may consume a large amount of memory, especially when there are 

many timesteps or grid positions for which 𝑔 is non-zero, this memory consumption can be alleviated by 

checkpointing (25), where a smaller subset of time-steps are stored, and the simulation is run from these 

stored checkpoints to the required time-step. The integrand 𝑔[𝑬(𝒙, 𝑡), 𝑯(𝒙, 𝑡)] is differentiated analytically 

to obtain 𝜕𝑔/𝜕𝑬(𝒙, 𝑡), 𝜕𝑔/𝜕𝑯(𝒙, 𝑡), which are time-dependent vector-valued functions evaluated using the 

time-varying stored field values from the forward simulation. These derivatives are then used as current 

sources for the adjoint simulation over the same geometry to get the adjoint electric and magnetic fields 

𝑬-(𝒙, 𝑡), 𝑯-(𝒙, 𝑡) with the modified Maxwell equations (37) in Equations 3-4, with the initial conditions 

being 𝑬-(𝒙, 𝜏 = 0) = 𝟎,𝑯-(𝒙, 𝜏 = 0) = 𝟎 in terms of the reverse time 𝜏 = 𝑇 − 𝑡. 

𝛁 × 𝑬𝑨(𝒙, 𝑻 − 𝒕) = −𝝁
𝝏𝑯𝑨(𝒙, 𝑻 − 𝒕)

𝝏𝒕
+

𝝏𝒈
𝝏𝑯(𝒙, 𝑻 − 𝒕)

(𝟑) 

∇ × 𝑯-(𝒙, 𝑇 − 𝑡) = 𝜖
𝜕𝑬-(𝒙, 𝑇 − 𝑡)

𝜕𝑡
+

𝜕𝑔
𝜕𝑬(𝒙, 𝑇 − 𝑡)

(4) 

The integrand derivatives !/
!𝑬(𝒙,4)

, − $
6

!/
!𝑯(𝒙,4)

 thus play the role of time-varying electric and magnetic current 

density sources, respectively.  

The final step of AVM is the combination of the forward and adjoint fields 𝑬,𝑯, 𝑬-, 𝑯- to obtain the 

gradient 𝑑𝐺/𝑑𝒑. Equation 5 shows the gradient element for the 𝑖-th tunable parameter 𝑝8.  

𝑑𝐺
𝑑𝑝8

=
𝜕𝐺
𝜕𝑝8

−P𝑑&𝒙
,

P 𝑑𝑡
*

+
Q𝑬-(𝒙, 𝑡) ⋅

𝜕𝑹#[𝑬(𝒙, 𝑡)]
𝜕𝑝8

+𝑯-(𝒙, 𝑡) ⋅
𝜕𝑹9[𝑯(𝒙, 𝑡)]

𝜕𝑝8
T (5) 

In FDTD, 𝑹#  and 𝑹9  are operators that must be derived manually for each specific system geometry, 

boundary condition, and tunable parameter. 𝜕𝑹#,9/𝜕𝑝8  can be well approximated for photonic shape 

optimization (37–40). However, for arbitrary optimizations, 𝑹# and 𝑹9 may not have an analytic form and 

require careful mapping onto the FDTD results, see (36,38,41) and the Supplementary Information. 

 

AVM for frequency-domain objectives  

When the objective function 𝐺 = ∫ ∫ 𝑔[𝑬(𝒙, 𝜔),𝑯(𝒙, 𝜔), 𝑬∗(𝒙, 𝜔),𝑯∗(𝒙, 𝜔)]𝑑𝜔𝑑&𝒙;<,  is only written in 

terms of the electromagnetic fields in the frequency-domain (i.e., the complex fields 𝑬(𝒙,𝜔),𝑯(𝒙, 𝜔) and 

their complex conjugates 𝑬∗(𝒙, 𝜔),𝑯∗(𝒙, 𝜔)) over a frequency bandwidth Δ𝜔 of positive frequencies, and 

when the parameter vector 𝒑 represents the dielectric permittivities or permeabilities over a subset of pixels, 
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the adjoint system reduces to a much simpler form that can also be derived by exploiting Lorentz reciprocity 

symmetry between time-harmonic current sources and their fields (14). 

∇ × 𝑬-(𝒙, 𝑇 − 𝑡) = −𝜇
𝜕𝑯-(𝒙, 𝑇 − 𝑡)

𝜕𝑡 + 2ReP
𝜕𝑔

𝜕𝑯(𝒙,𝜔);<
exp[𝑖𝜔(𝑇 − 𝑡)\ 𝑑𝜔, (6) 

∇ × 𝑯-(𝒙, 𝑇 − 𝑡) = 𝜖
𝜕𝑬-(𝒙, 𝑇 − 𝑡)

𝜕𝑡 + 2ReP
𝜕𝑔

𝜕𝑬(𝒙, 𝜔);<
exp(𝑖𝜔(𝑇 − 𝑡)) 𝑑𝜔. (7) 

Furthermore, the objective function gradient with respect to the permittivity 𝜖8 at grid point 𝑖 at position 𝒙8 

simplifies to 

𝑑𝐺
𝑑𝜖8

=
1
𝜋
ReP 𝜔=𝑬-(𝒙8 , 𝜔) ⋅ 𝑬∗(𝒙8 , 𝜔)𝑑𝜔

;<
. (8) 

Such conditions are well-suited for nanophotonic inverse design, in which dielectric distributions are 

designed to achieve specific optical functions at well-defined frequencies and frequency bands (7,14–16), 

and is therefore the form that is broadly employed. From an implementation point of view, the source terms 

in Equations (6) and (7) have a straightforward interpretation: for every discretized frequency 𝜔 ∈ Δ𝜔 of 

interest, one has to place a point electric dipole with an amplitude of 𝜕𝑔/𝜕𝑬 and a point magnetic dipole 

with an amplitude of −(1/𝜇)𝜕𝑔/𝜕𝑯 at every position 𝒙 ∈ Ω (15). Because the dipole sources are time-

harmonic, one does not need to record the full time-domain field during the forward simulation – it suffices 

to accumulate the frequency-domain complex fields at the intended dipole source positions and frequencies 

of interest (42,43). This greatly reduces the memory requirements compared to that of the adjoint procedure 

for a time-domain objective function. The full derivation of AVM for frequency-domain objectives is 

included in the Supplementary Information. 

 

If the objective function or optimization parameters do not fall in this category, the full AVM described in 

Equation (5) must be used, which requires deep knowledge of its implementation and significant 

mathematical manipulation, limiting its application to specialists. 

 

Methods 

Overview of reverse mode automatic differentiation 

Although AD has two modes of operation, forward and reverse mode, it is largely synonymous with the 

latter since RM AD scales linearly with Noutput and is independent of Ninput. Conversely, the forward mode 



 9 

computational cost is independent of Noutput but scales linearly with Ninput. Therefore, we will focus on RM 

AD here. An intuitive explanation of RM AD’s operation and scaling behavior is detailed in the 

Supplementary Information. 

 

RM AD relies on the computation tree, also known as a tape or Wengert list (44). It contains all 

mathematical operations involved from the inputs to the outputs. Each node in the tree represents an 

intermediate elementary operation with a well-defined derivative associated with its own inputs and output. 

There are two passes in RM AD. The forward pass traverses the computational tree from the inputs to the 

outputs, storing all the intermediate values obtained. The backward pass, also known as backpropagation, 

performs the chain rule for differentiation from the outputs back towards the inputs, drawing upon the stored 

intermediate values. Backpropagation is the foundation of modern machine learning, as it provides the 

objective function gradients with respect to many tunable parameters (e.g., weights and biases in neural 

networks) for iterative model training and refinement.  

 
Figure 1: Comparison between conventional reverse mode automatic differentiation (AD) and direct differentiation (DD) | 

Both gradient calculation methods, which involve differentiating through FDTD update equations, are applied to the simulation of 

a structure (parametrized by vector p) in a simulation volume comprising NV pixels and NT timesteps. In both cases, the desired 

output is the objective function gradient with respect to the structure vector 𝑑𝐺/𝑑𝒑. This is a simplified depiction: generally, the 

objective function is dependent on the fields at multiple timesteps and the parameter vector affects field behavior across multiple 

timesteps. a Conventional reverse mode AD has two steps: the forward pass and backpropagation. During the forward pass, all the 

electromagnetic field values F need to be stored (double box outline) for every space-time position so that they can be re-used 

during the backpropagation process, leading to substantial memory consumption. b For direct differentiation, only the fields at one 
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time step need to be stored. During backpropagation, a reverse simulation is run simultaneously to provide the necessary field 

values in the order required in backpropagation. 

 

Consider the computation tree corresponding to an optimization calculation with an embedded FDTD 

calculation (Figure 1a). For ease of reading, from now on, we concatenate the electromagnetic fields 𝑬,𝑯 

to F. The calculation proceeds from a parameter vector 𝒑, which can be the vector of pixel fill factors, to 

the electromagnetic fields over the NV spatial pixels at zero time F(0), through NT timestep updates to the 

electromagnetic fields F(T) at the end time T, and finally to the objective function value G. The FDTD tree 

is simultaneously wide (due to the number of spatial pixels) and deep (due to the number of iteration 

timesteps). During the forward pass, every mathematical operation and intermediate field value is stored at 

considerable memory cost. This memory consumption peaks just after the objective value is computed. 

During backpropagation, the AD platform computes the derivative of the objective function G with respect 

to every intermediate parameter. This process proceeds in reverse order from the objective value back 

towards the structure vector at the root of the tree, and, importantly, draws upon the stored operations and 

intermediate field values in reverse order. 

 

This layer-by-layer depiction of FDTD is a simplification but is valid even for objective functions that do 

not just depend on the fields at the final timestep F(T). In particular, to extract spectrally-resolved properties 

from FDTD, one explicitly accumulates partial sums of the discrete Fourier transform during the time-

stepping updates (43). Thus, F can capture not only the electromagnetic fields over the simulation volume, 

but also partial Fourier transform sums, and it is valid to write the FDTD as a cascaded set of layers (each 

layer being associated with one timestep) with the same update equations between each layer. 

 

Memory challenges in FDTD gradient calculations 

Gradient calculation mode Time complexity Memory complexity 

Finite difference 𝑂[𝑁8>?@"𝑁A𝑁*𝑁B\ 𝑂[𝑁C@"?@"𝑁A𝑁B\ ∗ 

Adjoint Variable Method 𝑂[𝑁C@"?@"𝑁A𝑁*𝑁B\ ∗ 𝑂[𝑁C@"?@"𝑁A𝑁B\ ∗ 

Forward Mode AD 𝑂[𝑁8>?@"𝑁A𝑁*𝑁B\ 𝑂[𝑁8>?@"𝑁A𝑁B\ ∗ 

Reverse Mode AD 𝑂[𝑁C@"?@"𝑁A𝑁*𝑁B\ ∗ 𝑂[𝑁C@"?@"𝑁A𝑁*𝑁B\ 
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Direct Differentiation 𝑂[𝑁C@"?@"𝑁A𝑁*𝑁B\ ∗ 𝑂[𝑁C@"?@"𝑁A𝑁B +𝑁*𝜕𝑁A\ ∗ 

Table 1: Time and memory scaling complexities for gradient calculation modes in FDTD simulations. Asterisks (*) indicate 

favorable scaling for high-dimensional inverse design, relative to the other gradient calculation modes. Ninput and Noutput represent 

the number of input and output parameters, respectively. NV is the number of spatial pixels, NT is the number of timesteps, and Nf 

is the number of frequency points. ∂NV is the number of pixels on the recording layer at the spatial boundary of the simulation. 

 

Table 1 displays the time and memory scaling behavior for various methods of gradient calculation applied 

to an FDTD system with Ninput tunable parameters, Noutput objective functions, NV pixels, NT timesteps, and 

Nf frequency points. Scaling behaviors that are favorable for high-dimensional inverse design (with its large 

Ninput, NV, NT, small Noutput) are labelled with asterisks (*). The scaling derivations are detailed in the 

Supplementary Information. The simplest gradient calculation, finite differences, exhibits poor time 

complexity as it scales linearly with Ninput, but uses very little memory as it only needs to store the 

electromagnetic field values at the current timestep. Forward mode AD (45) has favorable memory scaling 

that is independent of the number of timesteps. However, it also suffers from poor Ninput time complexity. 

RM AD has favorable time complexity independent of Ninput, but has unfavorable memory complexity due 

to the large number of space-time pixels 𝑁A𝑁* for which the field values must be stored during the forward 

pass. For example, we find that a small (𝑁A = 252 × 180 × 180 pixels) 3D FDTD simulation based on the 

FDTD framework by Hughes et al (45) running on RM AD consumes 196 MB of memory per timestep 

when using the open-source AD tool Autograd (46). Typical FDTD simulations run beyond 1000 time steps, 

quickly raising memory needs into the hundreds of Gigabytes.  

 

Summarizing, the adjoint method yields favorable time and memory complexity but requires significant 

mathematical manipulation for non-standard objective functions, as discussed earlier. Reverse mode 

automatic differentiation can be generally deployed by non-specialists, but requires access to the simulation 

source code at runtime (for knowledge of every mathematical operation) and is restricted to small problem 

sizes. In the following, we present Direct Differentiation, which offers simplified deployment and 

reasonable memory use. 
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Description of Direct Differentiation Operation 

The structure of the FDTD computational tree motivates two key changes that can substantially reduce the 

memory cost of a gradient calculation relative to the RM AD architecture, forming the core of our Direct 

Differentiation (DD) platform (Figure 1b). First, the mathematical operations that update the field 

𝑭(𝑡), 1 ≤ 𝑡 ≤ 𝑁* 	 from one timestep to the next are the same at every timestep. Similarly, the 

backpropagation operations which propagate the parameter gradients from 𝑑𝐺/𝑑𝑭(𝑡) to 𝑑𝐺/𝑑𝑭(𝑡 − 1/2) 

using the chain rule are time-independent. Instead of storing an individual copy of the update equations 

(and backpropagation operations) for every timestep, it suffices to store them once. This leads to a factor 

of NT reduction in memory usage for storing the information encoded in the computation tree. 

 

Second, we observe that Maxwell’s equations are time-reversible (47) and that backpropagation during 

gradient calculation proceeds backwards from the objective function. The time-reversibility of Maxwell’s 

equations (not to be confused with time inversion symmetry 𝑡 → −𝑡) arises from the conservation of 

information under time evolution. This implies that the FDTD update equations can be rearranged to 

timestep fields in reverse, computing 𝑭$𝑡	 − $
=
% from 𝑭(𝑡). Although FDTD on a finite domain does not 

conserve information due to the presence of lossy boundary conditions like Perfectly Matched Layers 

(PMLs), local information loss at boundaries can be prevented, as described below.  

 

In DD, instead of storing all electromagnetic fields during the forward pass, we only store the fields at the 

final timestep 𝑭(𝑇), reducing the peak memory required during the forward pass to that of a regular FDTD 

simulation. During backpropagation, we run a time-reversed simulation of the same FDTD domain (using 

𝑭(𝑇) as the initial conditions) in parallel with the chain rule gradient calculations, beginning at the final 

timestep t = T and proceeding backwards in time. This time-reversed simulation supplies the required field 

values to the chain rule calculations at every timestep. Specifically, after a time-reversed simulation from 

𝑭(𝑡) to 𝑭(𝑡 − 1/2), we can use 𝑭(𝑡 − 1/2)	to calculate !𝑭(")

!𝑭E"	G	!"H
 and find '(

'𝑭E"	G	!"H
 using the chain rule 

'(
'𝑭E"	G	!"H

= '(
'𝑭(")

!𝑭(")

!𝑭E"	G	!"H
+ !(

!𝑭E"G!"H
. The !(

!𝑭E"G!"H
 term arises from the functional form of the objective 

function and changes for different simulations, though it can be performed using conventional RM AD if 

the objective function G is a complex functional of the field. This method of generating the intermediate 
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fields on-demand accounts for the bulk of the memory saving in DD relative to RM AD. The explicit 

equations for FDTD time stepping, time reversal, and gradient propagation for nondispersive media are 

detailed in the Supplementary Information. These time-reversal techniques can be generalized to 

dispersive media using techniques which parametrize frequency-dependent behavior using local variables 

that are updated at each timestep, such as the recursive convolution method (3). 

 

In order to implement DD,  the analytical !/
!𝑬(𝒙,")

, !/
!𝑯(𝒙,")

, !𝑬(𝒙,")
!𝒑

, !𝑯(𝒙,")
!𝒑

	 derivatives must be known as a 

function of the fields at each timestep. This is similar to AVM which requires the analytical form of the 

objective function gradients !/
!𝑬(𝒙,")

, !/
!𝑯(𝒙,")

 and the operator derivatives !𝑹
#

!𝒑
, !𝑹

$

!𝒑
 to be known.  

 

Handling lossy boundaries with a recording layer 

In an infinitely large or periodically continued system the information content is conserved under the 

evolution dictated by Maxwell’s equations. It is possible to start at the final system configuration and 

perform reverse time-stepping to perfectly re-attain the initial conditions. However, electromagnetic 

simulations are finite and use idealizations to capture the essential behavior without unnecessary 

computational cost. After the light-matter interaction of interest, the source fields are absorbed by infinitely 

lossy boundary conditions such as PMLs, which serve as an approximation of fields exiting to free space. 

At first glance, such an “empty” final configuration cannot be time-reversed, as the field information 

incident at these infinitely lossy boundaries is lost when the field amplitude decreases below machine 

precision. To address this issue, we introduce a single-pixel-thick recording layer at the surface of these 

infinitely lossy boundaries to capture the escaping time-dependent field. We therefore encode the system’s 

3D spatial initial state in the two-dimensional simulation boundary and one time dimension. During the 

time-reversal simulation, we replay these recorded fields as field sources from the recording layers. Full 

details of the recording layer implementation are found in the Supplementary Information. Non-infinitely 

lossy dispersive or absorptive media do not need a recording layer as long as the field amplitude remains 

larger than the machine precision.  

 

Table 1 exhibits the time and memory complexity of DD, demonstrating that it has the same time 

complexity as RM AD and AVM but substantially less memory consumption than RM AD. In the limit of 
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large NT, the peak memory usage of DD calculations scales linearly with the number of simulation time 

steps. This memory consumption arises from the storage operation of the recording boundary. Since the 

number of field positions associated with the recording boundary ∂NV scales with the surface area of the 

simulation volume, the additional memory consumption per timestep scales with the square of the 

simulation box side length, instead of the cube as in conventional RM AD. The memory saving relative to 

RM AD thus becomes more pronounced for larger simulation volumes.  

 

While undergoing peer review, we identified a patent application which describes a similar approach to 

propagating adjoint gradients through an FDTD system by exploiting time reversal, however, we did not 

find a related scientific publication (48).  

Results 

Validation of approach in 3D FDTD and Performance 
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Figure 2: Implementation of 3D differentiable FDTD for Direct Differentiation | a 3D FDTD simulation geometry: The 

252 × 180 × 180	pixel domain (6.5𝜆 × 4.7𝜆 × 4.7𝜆) is partitioned into a glass volume (blue) and air volume (yellow). A single 

mode plane wave with central wavelength λ = 532 nm (yellow plane) is generated inside the glass medium. It is incident on a 

volume of pillars volume (gray volume) with permittivities 𝜖%(𝑦, 𝑧), and the zeroth order phase 𝜙 of the transmitted field is 

recorded (orange plane). The simulation volume is surrounded by a Total Field Scattered Field (TFSF) boundary and perfectly 

matched layers. b Validation of the computed gradients &'
&(!

 from DD against that of finite difference calculations, for different 

pillar positions on the y-z plane. c Conventional reverse mode AD and DD do not have significant runtime differences when run 

on the same single-core Python platform. A speedup is obtained when DD is run on a compiled platform (C++), also on a single 

core, which has comparable runtime scaling with the adjoint variable method (AVM) run on a commercial FDTD suite (Lumerical 

FDTD, Ansys Inc.). d DD yields a 98% reduction in peak memory consumption per timestep compared to conventional reverse 

mode AD, when run on the same single core Python platform. AVM on a commercial FDTD simulation uses less memory as far 

fewer field locations need to be stored. The runtime and memory scaling with respect to the number of FDTD time steps are 

obtained by linear regression. 

 

We validate the DD approach by differentiating a 3D FDTD and evaluating its gradient calculation accuracy, 

runtime, and memory scaling. Without loss of generality, we choose a 3D simulation region of 

252×180×180 pixels and spatial pixel size ∆𝑥	 = 	∆𝑦	 = 	∆𝑧	 = 	13.75	nm (Figure 2a, size 6.5𝜆 × 4.7𝜆 ×

4.7𝜆, 𝜆 = 532 nm). The structure under test is a 30 × 30 = 900 square pillar array (660 nm tall) on the y-

z plane. Each of the 900 pillars has an individual real-valued relative permittivity (normalized to the 

permittivity of free space 𝜖+) and the 30 × 30-element matrix of the relative permittivities 𝜖J(𝒙) serves as 

the structure vector of tunable parameters. The pillars are positioned on a glass substrate (n=1.44) in the y-

z plane and are surrounded by air (n=1). The source field is a plane wave located within the glass substrate 

(vacuum wavelength 𝜆 = 532	nm, z-polarized, x-propagating). The objective function is the frequency-

domain phase 𝜙 = arg∑ 𝐸, 	of the complex electric field averaged over a 149 × 149 pixel monitor plane 

located 770 nm above the 900 pillars, which corresponds to the zeroth-order transmitted phase of the 

nanostructures. The objective function gradient is thus 'K
'L)(𝒙)

. The source plane, nanostructures, and monitor 

plane are surrounded by Total Field Scattered Field boundaries (49), which are in turn surrounded by PMLs 

on all sides. The recording boundary is coincident with the PML boundaries. We validated the accuracy of 

the FDTD simulation against a commercial FDTD suite (Lumerical FDTD, Ansys Inc.); details of this 

comparison are in the Supplementary Information. 
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We validate the gradients obtained through the DD approach using 900 single-sided finite difference 

calculations for a structure with random permittivity (Figure 2b) and find that the root-mean-squared 

absolute difference of the objective function gradient is negligible. 

 

Although DD performs an additional time-reversal simulation during backpropagation compared to RM 

AD, runtime comparisons on a single CPU core using the same platform (Python) as a function of the 

number of FDTD timesteps shows similar scaling (Figure 2c), 19 s/timestep and 13 s/timestep for DD and 

RM AD, respectively. In terms of peak memory consumption, DD achieves a 98% memory usage reduction 

from 196 MB/timestep to 3.5 MB/timestep when compared to RM AD (Figure 2d). We demonstrate further 

gradient calculation speed-up with similar peak memory consumption by implementing DD on a compiled 

language (C++) instead of an interpreted language (Python), even for single CPU core computations (1.4 

s/timestep and 3.6 MB/timestep). This two order-of-magnitude improvement in memory consumption in 

moving from RM AD to DD is consistent with the number of pixels along one spatial dimension of the 3D 

simulation volume. 

 

We further compare the time and memory scaling of these differentiable platforms to AVM (run on a 

commercially optimized FDTD – Ansys Lumerical on a single CPU core) and derive the adjoint equations 

for the total field phase objective function using the Lorentz reciprocity approach in the Supplementary 

Information. The adjoint system is an array of dipoles at each of the phase measurement monitor pixels, 

each with a complex amplitude of (∑ #* )∗

|∑ #* |". The objective function derivative 'K
'L)(𝒙)

	for pixels with volume 

Δ𝑉 is obtained from the electric fields there from the forward simulation 𝐸(𝒙) and the adjoint simulation 

𝐸-(𝒙): 

𝑑𝜙
𝑑𝜖(𝒙)

= Δ𝑉	Im[𝐸-(𝒙)𝐸(𝒙)] (9) 

To reduce the required 149 × 149 = 22201 dipole sources at the monitor plane, which would take several 

hours for the software just to set up the simulation, we down-sampled the dipole source array to a 30 × 30 
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array. AVM achieves quicker runtime scaling by a factor of 2.3 (0.6 s/timestep vs 1.4 s/timestep) of the 

C++ implementation of DD (Figure 2c) and less memory consumption (4 kB/timestep vs 3.6 MB/timestep, 

Figure 2d). AVM for frequency-domain objective functions does not need to store values for each timestep 

and can accumulate partial sums, thus using very little additional memory with incremental timesteps.  

Application to the inverse design of nanophotonic devices 

 
 
Figure 3: Design and performance of simple color sorter using frequency-domain optimization | a Schematic of color sorting 

function: incident illumination comprising a mixture of 488 nm and 633 nm wavelengths is spatially split into two distinct regions 

by a compact 30x60 array of pillars. The permittivity distribution over the pillar array is determined by inverse-design using the 

3D direct differentiable FDTD. b Optimized binary titanium dioxide distribution over the 30x60 pillar array. c Intensity distribution 

|Ex|2+|Ey|2+|Ez|2 at the monitor plane placed 50 pixels (687.5 nm) above the pillar array, under two illumination wavelengths, 

showing how the different wavelengths are deflected to two different regions. The intensity profiles are individually normalized to 

the maximum intensity on each plane.  

 

With the performance and accuracy of DD established for FDTD, we deploy the direct differentiation model 

to inverse design multifunctional nanophotonic devices. We do this for two systems: one with frequency-

domain behavior and another in the time-domain. While time-domain optical behavior can be equivalently 
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represented in the frequency-domain, it can capture dynamics across a wide frequency range without 

employing a large number of discrete frequency points (50).  

 

For frequency-domain optimization, we aim to design an isolated passive structure that sorts incident 

illumination at two different wavelengths 𝜆$ = 488	nm, 𝜆= = 633	nm	into two distinct spatial regions, i.e., 

it could act as a meta-optical color sorter that redirects incident light to different photodetector pixels placed 

close to the device (51). The desired behavior of the device is illustrated in Figure 3a: x-directed, z-

polarized illumination is incident on a glass substrate on which a compact 30 × 60 pixel array of pillars 

lies in the y-z plane. The tunable parameters are the dielectric permittivities of the pixelated pillar array, 

and the objective function to be maximized for each wavelength is the overlap integral of the transmitted 

electric field profile with a target Gaussian field profile. We chose the target field profiles to ensure that 

488 nm and 633 nm light are deflected in opposite z-directions, allowing the device to act as a near-field 

color sorter for these two wavelengths when evaluated in a plane placed 688 nm (50 pixels) above the 

pillars. The total system objective function to be maximized is the minimum of the two individual 

wavelength objective functions (see above), which ensures that the performance of the device at the two 

wavelengths remains comparable. We compute the objective function gradient with respect to the dielectric 

permittivity in the pixelated pillar array using the DD FDTD simulator and perform gradient descent 

optimization at a fixed learning rate. We apply a binarization term in the second half of the optimization to 

push the permittivities to the upper and lower bounds, which correspond to titanium dioxide and air, 

respectively. The optimized titanium dioxide profile is plotted in Figure 3b. Due to the proximity of the 

target plane to the top of the pillar array (around one wavelength away), the optimized permittivity profile 

reflects the left/right partitioning of the target plane. The transmitted intensity profiles for both wavelengths 

are plotted in Figure 3c, which demonstrates that the incident illumination is sorted into two spatial regions 

based on the wavelength. The optimization details are described in the Supplementary Information. 
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Figure 4: Design and performance of a resonator array using time-domain optimization. A unit cell resonator within a periodic 

array can be inverse-designed based on the time-domain profile of its transmitted field. a Schematic of the system to be optimized. 

z-polarized light with a central wavelength of 532 nm is incident on a block of dimensions 880 × 300 × 300	nm (44 × 15 × 15 

pixels) with periodic boundary conditions in the transverse plane. The objective function to be maximized is the transmitted field 

across the transverse plane, integrated over a subset of timesteps. b Rendering of unit cell optimized design, where the red solid 

blocks represent pixels filled with titanium dioxide. c Time-domain variation of the z-polarized field placed 500 nm from the array 

surface, averaged over the transverse plane, for the situation with and without the optimized structure, on the same normalized axis 

scale. The subset of timesteps used for objective function maximization is shaded, and is displaced 39 fs from the envelope peak 

of the nominal field without the structure. d Phase and e transmission intensity profiles of the optimized design based on Fourier 

transformation of the transmitted fields. The group delay (GD) and group delay dispersion (GDD) values over a 100 THz bandwidth 

is obtained by fitting the phase to a quadratic polynomial.  

 

To demonstrate that DD can be straightforwardly extended to objective functions beyond the conventional 

frequency domain AVM, we perform a time-domain optimization. We design an array of resonators that 

impose a group delay on an incident pulse. Nanostructures with spatially-variant group delays are frequently 

employed in meta-optics to engineer behavior over a frequency band, such as achromatic metalenses which 

focus light within a given frequency range to a single focal point (52). Such nanostructures are designed 

through dispersion engineering, in which the transmission phase is designed to have a specific dependence 

on the illumination frequency, a process which typically entails simulation of nanostructure behavior over 

a dense set of frequencies, followed by polynomial regression on the transmitted spectral phase profile 
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(2,5,53). A linear phase dependence in the spectral phase represents a group delay on the pulse envelope, 

enabling such behavior to be engineered more directly in the time-domain. To our knowledge, such time-

domain group delay topology optimization has only been done in the context of metasurfaces by Yasuda 

and Nishiwaki (54). To simulate an array of nanostructures, we replace the TFSF and PML boundary 

conditions in the transverse y-z directions with periodic boundary conditions (Figure 4a). Since these 

periodic boundary conditions are not lossy, they do not require recording layers. We define a time-domain 

objective function written in terms of the average z-polarized transmitted electric field across the transverse 

cross-section, which corresponds to the on-axis far-field projection of the transmitted fields. The objective 

value to be maximized is the average electric field for timesteps delayed between 37.4 to 39.9 fs from the 

peak of the nominal field without any nanostructure present (Figure 4c shaded area) and the tunable 

parameters are the dielectric permittivities for a 880 × 300 × 300	nm block (44 × 15 × 15 = 9900 pixels, 

20 nm pixel size) in the periodic unit cell. This temporal delay is chosen to be substantially larger than the 

4.1 fs that obtained by a uniform slab of titanium dioxide (n=2.404) of the same thickness. The total 

simulation domain is 2560 × 500 × 500	nm (128 × 25 × 25 pixels). The illumination source used is a 

pulse with central wavelength of 532 nm and a 13 fs full-width-at-half-maximum of the field amplitude 

envelope. The objective function gradients are used to update the pixel permittivities in the latent space 

using a fixed step size, with 3D gaussian blurring performed periodically to eliminate isolated pixels. 

Optimization details are in the Supplementary Information and the optimized structure is visualized in 

Figure 4b. The optimized structure successfully delays the incident pulse (Figure 4c) and the frequency-

domain phase and amplitude profiles of the structure are plotted in Figure 4d-e, respectively. The phase 

exhibits the desired linear decrease over a 100 THz bandwidth with an estimated group delay of 39.7 fs and 

group delay dispersion of 1.25 fs2. The transmission intensity profile indicates the existence of several 

resonances in the frequency band that are responsible for the large group delay.  

 

The inverse design framework presented here is an initial proof-of-concept and can be augmented using 

other topology optimization tactics such as the incorporation of fabrication tolerances and level-set 

representations for curved structures (7,9,55,56). These modifications will remove features that are difficult 

to fabricate using conventional lithography techniques, such as the small L-shaped island in the lower center 

region of Figure 3b. 
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Conclusion 

The DD FDTD architecture enables nanophotonic devices to be modelled differentiably at substantially 

lower memory cost compared to conventional RM AD. This potentially allows these computations to be 

performed rapidly and in parallel on a single graphics processing unit (GPU) instead of dedicated large-

memory enterprise computing clusters. The DD architecture can be more generally applied to any grid-like 

simulator that can be reverse time-stepped, such as quantum mechanical wavefunctions in space, low 

Reynolds number fluid dynamics, and dissipationless solid mechanics. DD paves the way for the creation 

of differentiable simulators incorporating multiple coupled physical influences and performing high-

dimensional optimization over the control parameters governing these dynamics. 

 

Supporting Information 

Residual operators in AVM, AVM for frequency-domain objectives, Reverse mode automatic 

differentiation description, Time and memory scaling derivations for gradient calculation methods, Direct 

Differentiation Key equations, Recording layer implementation, Validation against commercial FDTD 

software suite, Adjoint method derivations for field phase, Design of color sorter, Design of resonator array.  
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