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Unifying Frequency Combs in Active and Passive Cavities: Temporal Solitons in
Externally Driven Ring Lasers
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Frequency combs have become a prominent research area in optics. Of particular interest as integrated
comb technology are chip-scale sources, such as semiconductor lasers and microresonators, which consist
of resonators embedding a nonlinear medium either with or without population inversion. Such active and
passive cavities were so far treated distinctly. Here we propose a formal unification by introducing a general
equation that describes both types of cavities. The equation also captures the physics of a hybrid device—a
semiconductor ring laser with an external optical drive—in which we show the existence of temporal
solitons, previously identified only in microresonators, thanks to symmetry breaking and self-localization
phenomena typical of spatially extended dissipative systems.
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Introduction.—The discovery of optical frequency
combs [1,2] (OFCs) in high-Q ring microresonators filled
with a Kerr medium, such as SiO,, Si;N,, and diamond [3],
and driven by an external laser beam activated worldwide
attention on Kerr frequency combs (KFCs), because this
avenue offers substantial potential for miniaturization and
chip-scale photonic integration [4,5]. This technology has
been applied to numerous areas, including coherent tele-
communications and laser ranging [6,7]. It was recognized
later [8,9] that the physics of KFCs corresponds very
accurately to the model formulated in 1987 by the Lugiato-
Lefever equation (LLE) [10]. This is a one-dimensional
nonlinear Schrodinger equation in the presence of an
external driving, linear damping, and detuning. The spon-
taneous formation of spatial patterns traveling along the
cavity, described in the LLE, is the spatiotemporal equiv-
alent of the frequency combs and governs their features
[11]. By varying the frequency detuning @ of the pump laser
injecting the microresonator a variety of spatial patterns can
form [Fig. 1(a)], such as Turing rolls, breather solitons, and
stable temporal solitons. A common feature of these spectra
is that their envelope is bell shaped and can be approxi-
mated by a hyperbolic-secant function (sech) [3,12].

Recently, frequency comb spectra with sech-type
envelope were also observed in ring quantum cascade
lasers [QCLs, Fig. 1(c)] [13,14]. These are unipolar semi-
conductor lasers, first realized in 1994 [15,16], emitting in
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the midinfrared and terahertz regions of the electromagnetic
spectrum. QCLs have attracted much attention, especially
in midinfrared spectroscopy and sensing [17,18], thanks to
their tunability via band-gap engineering and unique
physical properties [19], such as ultrafast gain dynamics
and strong resonant third-order nonlinearity. The study of
ring QCLs operating in a unidirectional regime revealed a
number of similarities with KFCs. It was found that the
multimode laser instability is produced by the interplay of
dispersive and nonlinear effects, as in the modulational
instability (MI) of passive microresonators, and the number
of localized structures appearing in the spatial patterns
varies stochastically with the initial conditions [13]—a
phenomenon known as multistability, also occurring in
KFCs [3].

The similarity between the behaviors of these two
disparate sources can be traced back to a precise formal
analogy between their model equations, outlined by the
scheme of Fig. 1. Indeed, it has been shown [13] that, under
conditions of fast material dynamics and near-threshold
operation, the dynamics of the ring QCL is well described
by a complex Ginzburg-Landau equation (CGLE), where
the two coefficients of the equation [Fig. 1(c)] are deter-
mined by the linewidth enhancement factor [20] (LEF or «
factor) of the laser and by its group velocity dispersion
(GVD) [21]. A CGLE was also formulated in Ref. [22], and
analyzed in Ref. [23], in order to describe the 2D patterns

© 2021 American Physical Society
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Active and passive frequency comb sources: unification. (a) Schematic of a passive microresonator described by the LLE. The

intracavity power depends on the pump laser detuning 6 resulting in regions with different patterns: Turing rolls (blue), breather solitons
(yellow), and stable temporal solitons (red). An example of different intensity distributions along the cavity and corresponding comb
spectrum is given in each case. L denotes the cavity length. Images adapted from Ref. [9]. (b) Schematic of an intermediate system
between the active and passive case consisting of a ring quantum cascade laser (QCL) injected by an external optical signal, which is
described by a forced complex Ginzburg-Landau equation (CGLE). (c) Schematic of a unidirectional ring QCL described by the CGLE,
which depends on two coefficients, related to the linewidth enhancement factor and group velocity dispersion of the laser. The ring laser
can undergo a multimode transition in the red regions of the parameter space. The resulting dynamic behavior can be characterized by

phase (PT) or amplitude (AT) turbulence.

arising in the transverse plane of the resonator due to the
interplay of nonlinearity and diffraction. Such an equation
can be regarded as the active counterpart of the LLE, which
describes patterns in a driven passive resonator. Since the
LLE, restricted to one dimension, also describes pulses
traveling along the longitudinal axis of the resonator
[24,25], it is natural to think of a similar equation for
the active case.

These considerations led us to unify the two contexts of
frequency combs in passive and active systems by for-
mulating a generalized LLE, defined as the simplest
equation that includes the passive and the active LLE as
special cases. In turn, this step quite naturally leads to
envisage a novel configuration; namely, a ring QCL with
injected signal [Fig. 1(b)], which is studied in this work.

Generalized longitudinal LLE.—Let us consider the
following equation that describes the spatiotemporal evo-
lution of the envelope E of the electric field in an optical
cavity

driving ~ damping—detuning  diffusion—dispersion
TpatE = EI —|— (—1 - 190)E + (dR + ld[)agE
+u(1—iA)(1 - |EP)E,

gain/loss, nonlinearity

(1)

where ¢ and z are the temporal and spatial coordinate along
the cavity axis, in a reference frame moving at the light
velocity in the cavity, and 7, is the damping time of the
cavity field. Electric fields are scaled [26,27] to present the

equation in its simplest form (see Supplemental Material
[28]). E; is the amplitude of a coherent field injected in the
cavity, which may or may not be present. In the second
term, the —1 accounts for cavity losses and 6, is a detuning
parameter. In the third term, the differential operator
applied to cavity modes o« e’*E, provides an algebraic
term —id,k2E, — dxk2E,, whose imaginary part is asso-
ciated with frequency dispersion while the real part (for
dr > 0) is a diffusion term that acts as a cutoff on the
frequency spectrum. This term is connected to the reaction-
diffusion mechanism responsible for pattern formation as
described in Turing’s theory of morphogenesis [29], where
in our case the reaction is produced by all the other linear
and nonlinear terms appearing in Eq. (1). Both terms arise
from an adiabatic elimination of the material variables
(Supplemental Material [28], which includes Ref. [30]) that
takes into account the fast but not instantaneous response of
the medium. In addition, d; may contain the contribution of
the GVD of a host medium. The fourth term describes the
linear and nonlinear interaction of the electric field with
the medium, as obtained by an adiabatic elimination of the
material variables under the approximation |E|> < 1. In
this term, y is the unsaturated gain (u > 0) or absorption
(u < 0) parameter. The coefficient of the nonlinearity A
depends on the system under consideration, being, e.g., the
atomic detuning for two-level media, or the LEF in the case
of semiconductor lasers. In the latter case, it can also
contain a contribution from the Kerr nonlinearity of the host
medium.

173903-2



PHYSICAL REVIEW LETTERS 126, 173903 (2021)

Temporal soliton Free-running to driven

(a) Turing roll (b) \(2\‘(3\(1 Y, (C)4
_4,"'..00 N/ll | AlG|Y
o

x 4 ! 4 [ [

0

Output int
I
SESE:
R
Hw
Z
|
|

o

0 Cavnty coordinate 0 Cavny coordinate

0 ‘ . M 2|2 |54
ocsech2 0
I N 4
REEN L0 e
-60 : . -60 -60 -60

0 Cavity coordinate L 0 Cavny coordlnate

0 1 — 0 0 !
0 Cavity coordinate L 0 Input intensity, Y 12 0 Cavity coordinate L [ =——
(d) (e) o Outputint. 4 ) (9) | ]1.1/1.1 |0.0054
[ ___oaaaa— =<
108 500 100 = 100 >O
F 7  J—
%) S J1.1]1.1 |54
£ l =
= =
0 ' 5 0
=
o

Int. (dB

-50 0 50 -50 50 -50

0
50 -50 0
Relative frequency (FSR)  Relative frequency (FSR)

Relative frequency (FSR) Relative frequency FSR 2

FIG. 2. Spatiotemporal dynamics of the injected ring quantum cascade laser. (a) 1D Turing rolls exhibiting periodic oscillations
between two intensities, corresponding to a pair of blue dots in (b). (b) S-shaped curve of output intensity X = |F|? vs input intensity
Y=F % Injection locking threshold (IL), saddle nodes (SN; and SN,), modulation instability threshold (MI). Different segments of the
curve can be stable (green line), unstable (dashed line), or not accessible (gray line). Blue and red dots correspond to Turing patterns and
cavity solitons (CSs). (c) A CS with a pedestal and peak intensity corresponding to a point on the stable lower branch of the S-shaped
curve and a red dot of (b), respectively. (d)—(g) Spatiotemporal plots and corresponding comb spectra of (d) Turing roll; (e) transition
from Turing roll to non-stationary CSs; (f) CS on an unstable background; (g) stable CS. The input intensity is varied from Y, to Y, as
marked in (b), i.e., first decreasing and then increasing again the intensity. Frequencies are relative to the central mode. Time is scaled to
7, /|r], so that a smaller distance from threshold corresponds to a slower dynamics. The box shows from top to bottom localized
structures emerging from phase instability in the free-running QCL [13], phase turbulence, amplitude turbulence, filamentation, CSs
(see the full spatiotemporal plots in Supplemental Material [28]), when the laser is driven along an arbitrary trajectory across the

parameter space.

In the following we will concentrate on the different
limits of Eq. (1). Let us consider the passive and active case
in order.

Passive case.—Here we assume that the medium is a
weak absorber (u <0, |u| < 1) with strong, negative
atomic detuning (A <0, |A| > 1) and large resonance
curve bandwidth (d; > dj), so that the approximations
u(l —iA) ~ —iuA and dg + id; ~ id; hold true and we
obtain the LLE

O0.F = F;—[1 +i(6 — |F|*)|F + i0;F, (2)

with 6 = 0y + uA, F = \JUuAE, F; = \JuAE;, = =t/z,,
and 5 = z/+/d;, where we assume that the dispersion is
anomalous so that d; > 0. In this case 6, must be taken as
the cavity detuning 6, = (@, — wy)7,, @, being the empty
cavity frequency closest to the frequency w, of the
incident field.

Active case.—Here we assume that the medium is active
and close to the lasing threshold (u = 1 + r, |r| < 1, above
threshold for » > 0 and below for r < 0) and that |E|* has
the same order of magnitude as |r| so that the approxima-
tion u(1 —|E|?) ~u — |E)* is justified and we obtain an
equation formally equivalent to a forced CGLE for

O.F = F;+y(1—i0)F — (1 —iA)|F|*F + (1 + iG)92F,

(3)

with y=r/|r|, 0= (0p+uA)/r, G = d;/dg, F = E/\/|r],
F;=E;/|r’?, v =|r|t/z,, and n = z\/|r|/dg. The rel-
evant parameter is the detuning of the frequency w, of the
injected signal with respect to the frequency w; of the
solitary laser. We show (Supplemental Material [28]) that
this is given by (@, — wg)7, = r(6 — A).

In the Supplemental Material [28] we show that an
equation identical to Eq. (3) can be derived from a full laser
model for a QCL with coherent injection in the limit of
ultrafast carriers and in proximity of the lasing threshold. In
this case we have y = 1 and

—(+ad) e,

A=a+p, 222

G=a+/{, =

(4)

where « is the linewidth enhancement factor (LEF) [31],
and k" are the Kerr and the GVD coefficient, respectively,
of the host medium, while ¢ and 7, are the group velocity of
light in the medium and the polarization dephasing time in
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the QCL with group index #. In this case 8, = 6. — uf and,
therefore, 0 = (6, + ua)/r.

Above threshold and without an injected field Eq. (3)
with § =0, A = ¢y and G = —cp coincides with the
CGLE in Refs. [13,32].

The dynamics of the electric field in the transverse plane
of a similar system, i.e., a class-A laser with injected signal,
was studied in Ref. [33] using an equation like Eq. (3), with
the second order derivative along # replaced by the trans-
verse Laplacian with a purely imaginary coefficient and
A = 0. Equation (3) with A =G = a was already suc-
cessful in describing the formation of phase solitons
occurring in a driven bipolar semiconductor ring laser
with a meter-size extended cavity [34]. Besides the ring
geometry considered here, a connection between QCLs and
the LLE was also established recently in the case of
Fabry-Perot devices [35].

Temporal cavity solitons without background in a
passive microcavity coupled with an amplifying fiber loop
were demonstrated in [36]. This system cannot be
described by the generalized LLE because it requires
two coupled equations.

The injected ring QCL.—When an external coherent
field is injected into the QCL [Fig. 1(b)], the generalized
LLE describing this configuration encompasses two more
control parameters: the external field intensity and fre-
quency. Moreover, the injection of an external field allows
the stationary and homogeneous solution to assume an S
shape, as shown by Fig. 2(b)—a phenomenon known as
optical bistability, occurring also in passive Kerr micro-
resonators. In the active case above threshold only a
segment of the lower branch of this curve is stable, and
this occurs between the injection locking (IL) point, where
the lasing frequency is locked to the injected field, and the
turning point SN, [green segment in Fig. 2(b)]. Part of the
upper branch of the curve is affected by a MI—a sponta-
neous symmetry breaking mechanism producing intensity
patterns characterized by a high degree of spatial correla-
tion [Fig. 2(d)], or else spatiotemporal turbulence [37]. As
in passive microresonators, the S shape of the stationary
curve creates conditions favorable for the generation of
temporal solitons, referred to also as cavity solitons (CSs),
i.e., dissipative localized structures formed inside an optical
resonator. These conditions correspond to having an
interval of input intensities in which the upper branch of
the S curve is modulationally unstable and coexists with a
stable homogeneous state in the lower branch.

In this situation the system might form a localized
pattern emerging from the MI on a uniform stable
background, and eventually give origin to a CS [27] [see
Figs. 2(c,g)]. These considerations guided our search for
CSs (and the associated OFCs) in QCLs with injected
signal and in particular the choice of an experimentally
reasonable parameter set. Figure 2 shows the results of
numerical simulations of Eq. (3), performed with the

following parameters: y =1, 6 =47, a=2, =0,
(=1 (A=2, G=3). By assuming n=3.73,
7, =50 ps, and 7, =60 fs [13], our parameters corre-
spond to a slight red detuning of the pump field, e.g.,
0.9 GHz for a laser 10% above threshold, and the GVD
calculated from Eq. (4) turns out around —300 fs?/mm, a
realistic value for QCLs [38]. The S-shaped curve calcu-
lated for the selected parameter set is shown in Fig. 2(b).
Note that, while the plotted input and output intensity are
comparable, the corresponding physical quantities are
scaled to 7 and r, respectively, so that the physical injected
intensity is typically much smaller than the output one.
By varying the input intensity ¥ = F? [39], we observe
the following scenario emerging from numerical integra-
tion [40] of Eq. (3). Starting on the high-intensity spatially
uniform solution, stable to the right of the MI point, and
progressively decreasing Y, a globally modulated pattern
bifurcates from MI at Yy; = 7.8 [Fig. 2(a) shows the
pattern for Y, = 6.3]. The bifurcation is by definition
supercritical as the branch that bifurcates remains stable,
down to about Y = 5.4. The modulated pattern corresponds
to a 1D Turing roll [29] and its branch is indicated by the
blue dots in Fig. 2(b), which mark the maximum and
minimum intensity. The period of the spatial modulation of
the roll pattern depends on Y. This feature makes the
injected ring QCL particularly appealing, because the comb
spacing can be tuned by simply changing the intensity of
the injected signal, rather than by widely tuning its
frequency as it was done for the control of the harmonic
state in Fabry-Perot QCLs [41]. Figure 2(d), in fact, shows
a simulation where a period-18 roll pattern (stable only at
Y =6.4), taken as an initial condition, spontaneously
evolves to a stable period-17 roll when ¥ =Y, = 6.3.
Below Y = 5.4 the rolls become unstable and the system
undergoes a spontaneous collapse of the roll pattern. It
evolves into a number of nonstationary CSs sitting on a
turbulent background, which corresponds to the unstable
lower branch of the steady-state curve [Fig. 2(e), Y, = 5.3].
A further decrease of Y brings the system in a turbulent
regime where any ordered structure disappears. Conversely,
by starting from the nonstationary CS and increasing the
input intensity in the interval 5.7 < Y < 7 a single CS with
turbulent background survives [Fig. 2(f), Y3 = 5.8]. The
background fluctuations cause a jitter in the soliton shape
and intensity maximum. The range of fluctuations of the CS
peak are traced by the pairs of red dots in Fig. 2(b). Finally,
by following upwards the soliton branch in the interval
7 <Y < 7.4 the pedestal of the single CS becomes stable
corresponding to the lower uniform and stable branch of
the steady-state curve, as expected, since Yy = 6.97
[Figs. 2(c),2(g), Y4 =7.4]. The CS spatial shape and
corresponding spectra, well approximated by a sech?
envelope [Figs. 2(f),2(g)], do not change in time. We note
that CSs are not only predicted by our reduced model, but
are also observed in our full dynamical model of the
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QCL [see Egs. (S1)—(S3) of the Supplemental Material
[28], which includes Refs. [42,43]]. Moreover, we
show that CSs emerge also when transitioning from the
free-running [13] to driven case, when an appropriate
path is swept in the multidimensional parameter space
(Fig. 2, box).

The most appealing features of CSs, from the applicative
viewpoint, are multistability, independence, and plasticity.
The CSs reported here are (a) stable versus the considerable
fluctuations such as those shown in the background of
Fig. 2(f); (b) intrinsically multistable so that the injection of
short pulses allows to excite multiple CSs (see
Supplemental Material [28], which includes Ref. [44],
for related simulations).

Conclusions.—The generalized LLE introduced in this
work makes it possible to connect for the first time from a
formal viewpoint Kerr microresonators and QCLs. The
injected ring QCL is a direct result of this unification
opening a pathway for the realization of new spatiotem-
poral patterns in QCLs such as Turing rolls and CSs,
previously restrained to Kerr combs. The CS emerging
from a CW input field demonstrate the possibility of
generating high-contrast short pulses in this device.
Although this result comes as a surprise, as it has long
been thought that the ultrafast dynamics of QCLs should
strongly suppress amplitude modulation [45] in the absence
of a radiofrequency modulation of the gain [46], here we
have shown that a short pulse regime is possible, thanks to
soliton formation triggered by a compensation between
dispersion and nonlinear self-phase modulation associated
with finite LEF in a resonator with gain driven by an
external CW optical signal. In Ref. [34] this requirement
was fulfilled using a long external cavity (%1 m) and a
standard semiconductor bipolar laser with nanosecond gain
recovery time. In this work we showed that unipolar lasers
(QCLs), having carrier dynamics 3 orders of magnitude
faster, allow us to downsize the cavity length to the
millimeter range, with significant impact on chip-scale
frequency comb applications.
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