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Polarization, the path traced by light’s electric field vector, appears in all areas of optics.
In recent decades, various technologies have enabled the precise control of light’s
polarization state, even on a subwavelength scale, at optical frequencies. In this review,
we provide a thorough, high-level review of the fundamentals of polarization optics and
detail how the Jones calculus, alongside Fourier optics, can be used to analyze, classify,
and compare these optical elements. We provide a review of work in this area across
multiple technologies and research areas, including recent developments in optical
metasurfaces. This review unifies a large body of work on spatially varying polarization
optics and may be of interest to both researchers in optics and designers of optical
systems more generally. c© 2022 Optical Society of America
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1. MOTIVATION

1.1. Why This Review Paper Exists and Who It Is For

Polarization is the path along which light’s electric field oscillates and follows
naturally from the plane wave solution of Maxwell’s equations. It is an essential
concept that touches nearly every area of the physical sciences, from light scattering
in atmospheres to the fundamental quantum mechanics of atomic transitions. Today,
polarization plays a key part in a variety of technologies, too, from liquid crystal
(LC) displays, the fiber optic backbone of modern telecommunications, and even
glare-reducing sunglasses.

It is indeed possible, however, to imagine optical fields in which polarization is not
at all uniform, in which the polarization state of light changes—possibly rapidly—
from point-to-point in space. This is an especially relevant consideration in light of
recent work, roughly over the last half-century, that has enabled the creation of optical
elements whose polarization transfer characteristics may be precisely and adeptly
engineered across a surface. This is an exciting frontier of optical design that enables
optical elements with interesting new functions.

Work of this nature now possesses an extensive literature, with perhaps thousands of
published papers. But, as is common in science, similar ideas have emerged among
different groups of people at different times. Often, work in this field—even at the
level of article and book titles—is labeled by a particular enabling technology. Among
these terms are polarization holograms, polarization gratings, LCs, and most recently,
metasurfaces. These names can reflect real, substantive technological differences. At
the same time, though, this multitude of names can serve as an obstacle: researchers
in any one of these fields may work without awareness of the others despite common
goals and theoretical underpinnings, hampering clarity, risking unintended redun-
dancy, and, ultimately, undermining efforts to put these new components to practical
use.

In this review, we attempt to remedy this state of affairs by, first, presenting a
consistent treatment of the subject that could well apply to any thin (paraxial)
polarization-sensitive diffractive optical element. This permits a high-level under-
standing of the subject and allows for comparisons between different platforms
and approaches with a consistent formalism. We hope that what follows can, given
polarization’s fundamental nature, be of use to anyone with an interest in optics, both
researchers and technologists. Recently, however, this area has seen intense interest
in nanophotonics (metasurfaces in particular). This review, then, may be of particular
interest to researchers in that area.

1.2. How to Read This Paper

We hope that the length of this article will not discourage potential readers. Though
the sections flow from one another as a cohesive whole, they need not be read in suc-
cession. Different audiences may be interested in only one section or another. Here,
we give a summary of each.
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Section 2 : Given that all light has a polarization state, polarization is covered to
some degree in almost every optics book and course, usually at the beginning. This
ubiquity, however, can mean that polarization is often trivialized. Polarization is a
mathematically deep subject, deeper than many optics researchers may at first real-
ize. To that end, in Section 2 we present a self-contained summary of polarization
optics at a high level with concepts that may be new to many readers. We describe
several abstractions that are useful in reasoning through polarization problems. The
concepts and notation from Section 2 are employed throughout the review. Section 2
is a reference and can be read in parts, as necessary, wherever concepts are unfamiliar.
The concepts of the matrix polar decomposition (Subsection 2.3) and retardance and
diattenuation spaces (Subsection 2.6a) are, however, used throughout the rest of the
review.

Section 3 : In our view, part of the problem is an inconsistency in mathematical
treatment and language. At different times, polarization-sensitive diffractive optics
has been treated with different approaches and language. Building on Section 2, in
Section 3 we show how these optics can be analyzed by a combination of Fourier
optics and the Jones calculus, enabling description without regard to the polariza-
tion state of incident light. This treatment generalizes several past approaches to the
description and design of these optical elements.

Section 4 : Using this formalism, in Section 4 we review different research areas and
technologies in which diffractive elements with spatially varying polarization prop-
erties have been investigated, with a particular focus on metasurfaces. We facilitate
cross-comparison by using the language of Section 2 to categorize and classify (in
mathematical terms) the extent of polarization control possible by each. The individ-
ual subsections of Section 4 do not rely on one another and can be read according to
the reader’s interest.

Finally, in Section 5, we offer some very brief concluding notes and predictions for
the future.

Throughout the review, certain topical subheadings appear in bold. This is meant as a
visual aide to break larger sections of text into visually digestible units.

2. INTRODUCTION

In this section, we provide a self-contained, concise review of polarization optics.
This is a subject with coverage, to some degree, in any optics book. Indeed, there
are many excellent texts dedicated solely to polarization optics [1–6], in addition to
introductory texts that treat it with some sophistication [7,8]. For consistency, Table 1
defines the mathematical notation used throughout this section and the review when
dealing with polarization.

Here, we endeavor to highlight some aspects of polarization theory that are either
subtle or overlooked that have particular relevance to spatially varying polarization
optics. We begin with some brief historical context.

2.1. Historical Note

The electromagnetic field of light is characterized by a number of properties. Some
of these, like frequency and intensity, are familiar in human experience through their
sensory manifestations as color and brightness, while others, such as the temporal
and spatial coherence of optical fields, are more abstract and of relatively recent dis-
covery in physics. As a degree-of-freedom of light, polarization stands somewhere
in-between the two: (mostly) imperceptible to the human eye, but readily rendered
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so in possession of the correct optics. Throughout its nearly 400-year history in sci-
ence, polarization has been viewed on many levels of abstraction. We provide some
highlights below, without attempting to retell that history here (instead, the reader is
referred to the account of Brosseau [9] from which much of this discussion is derived).

Polarization’s entrance into western science is owed to a rock quarry in the fjords of
eastern Iceland, near Reyðarfjörður [10]. At some point in the 17th century, excep-
tionally transparent, rhombohedral crystals of calcite (CaCO3)—which accordingly
earned the name “Iceland spar”—were discovered there (Fig. 1). It is well-known
today that calcite is strongly birefringent, playing host to the phenomenon of doubly
refracted images of objects viewed through it due to the difference in refractive index
of light polarized along its fast and slow crystalline axes (which are equally present
in unpolarized natural light). These crystals gradually became distributed through-
out continental Europe, and this double refraction was first formally reported by
Bartholinus in Denmark in 1670. Despite a current lack of archaeological evidence,
there is some speculation that calcite and its birefringence were perhaps used by the
Vikings (who occupied Iceland) for the purpose of navigation under overcast con-
ditions by using the polarization of the sky. This is an active subject of debate in the
historical and scientific communities [11–14].

Early work on this Iceland spar was phenomenological in nature. Nonetheless, much
was understood by the mid-19th century, with significant progress in the first decades
of that century. Malus noted that light reflected from a dielectric interface could form
just one image when passed through an Iceland spar, coining the term polarization
and observing the cosine-squared power trend now known as Malus’ law in 1808. In
1815, Brewster then explained that this angle depended on the refractive index of the
underlying dielectric medium. A breakthrough came with the work of Fresnel, who,
on the basis of an assumption that light takes the form of a transverse elastic wave,
derived the reflection and transmission laws now known as the Fresnel equations in
1821. Fresnel’s work established the role of phase in the description of polarization
and the notions of linear, circular, and elliptical polarization, as well as the concept of
orthogonal polarizations, emerged from his work.

In Fresnel’s work can be found all the essential elements of coherent polarization
optics (polarization ellipse, orthogonality, etc.) and even some elements of an

Table 1. Definition of Notation Used Throughout Section 2 and This Review
Notation Used Throughout Section 2

Symbol Description Value

ã Complex number a + ib

|E 〉 Jones vector

(
Ẽ x

Ẽ y

)
〈E | Jones vector (|E 〉)†

=
(

Ẽ ∗x Ẽ ∗y
)

〈E 1|E 2〉 Inner product, projection Ẽ ∗x ,1 Ẽ x ,2 + Ẽ ∗y ,1 Ẽ y ,2

| j 〉 and | j⊥〉 Orthogonal polarization states 〈 j | j⊥〉 = 0

J Jones matrix

(
J̃11 J̃12

J̃21 J̃22

)
ES Stokes vector

(
S0 S1 S2 S3

)T

ES ′ Abbreviated Stokes vector
(

S1 S2 S3

)T

DoP Degree-of-polarization (DOP)
√

S2
1 + S2

2 + S2
3/S0

ŝ Stokes state-of-polarization (SOP)
(

s 1 s 2 s 3

)T
with s 2

1 + s 2
2 + s 2

3 = 1

I Identity matrix

(
1 0
0 1

)
σ 0, σ 1, σ 2, and σ 3 Pauli matrices I,

(
1 0
0 −1

)
,

(
0 1
1 0

)
, and

(
0 −i
i 0

)
Eσ Pauli vector

(
σ 0 σ 1 σ 2 σ 3

)T

Eσ
′ Abbreviated Pauli vector

(
σ 1 σ 2 σ 3

)T

Ea · Eσ Dot product with Pauli vector a0σ 0 + a1σ 1 + a2σ 2 + a3σ 3
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incoherent theory: Fresnel and Arago both noted that two beams, even in identical
polarization states, could not form interference fringes if derived from independent
sources. In 1852, Stokes posited the alternative description of light’s polarization
in terms of experimental observables—in units of intensity, rather than electric
field—that now bears his name (discussed in Subsection 2.4), which extended this
observation with the ability to describe un- and partially polarized light. It is notable
that all of this occurred prior to 1864, when Maxwell’s equations put the ideas of light
as a transverse electromagnetic wave on rigorous footing.

More recently, the history of polarization optics has been characterized by new polari-
zation optics, as well as more substantive and deeper mathematical descriptions of
polarized light. We describe that history where relevant to our review of the physics
of polarization below.

2.2. Jones Formalism
2.2a. Scalar Wave Equation and Plane Wave Solution

Maxwell’s equations, the basis of all of modern optics, can be combined in a linear,
isotropic, nondispersive, and homogeneous medium [7,15] to yield the scalar wave
equation,

∇
2 EE (Er , t)=µε

∂2

∂t2
EE (Er , t), (1)

where the electric field EE = E x x̂ + E y ŷ + E z ẑ with {x , y , z} being the normal
Cartesian coordinates, {x̂ , ŷ , ẑ} being unit vectors along them, Er being a spatial
coordinate, and µ and ε being the permeability and permittivity, respectively, of the
homogeneous medium. An identical relation exists for the magnetic field. In media
meeting the above constraints, the Cartesian components of the electric field obey
independent and identical wave equations, and each can be treated as independ-
ent scalar fields with no coupling. Equation (1) is, thus, known as the scalar wave
equation.

A simple solution of Eq. (1), obtained by separation of space and time variables, is the
monochromatic plane wave, whose electric field is given by

Figure 1

(a) (b)

(a) Well-formed rhombohedral crystal of “Iceland spar” (i.e., calcite, CaCO3) is
strongly birefringent and exhibits doubly refracted images in transmission, in this
case of a square lattice and a single dot. (b) This effect was first formally reported
(in Latin) by the Dane Bartholinus in 1670, as exhibited by his own sketch of this
effect [10].
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EE (Er , t)= EE0 cos(Ek · Er −ωt)= EE0Re{e i(Ek·Er−ωt)
}. (2)

Here ω is the usual angular frequency, and Ek = (kx , ky , kz), with purely real entries, is
the wave vector with |Ek| =ω

√
µε. This last relation gives the dispersion for a medium

characterized by (ε, µ), where neither property varies with ω—that is, a nondisper-
sive medium. At a given time t , Eq. (2) defines planes of constant phase given by Er
with constant values of Ek · Er . Equation (2) additionally stipulates that we are permitted
to treat plane waves in complex exponential form, significantly easing mathematical
analysis so long as we recall to take its real part when computing any observables in
the end. The linearity of Eq. (1) means that any superposition of fields of the form
of Eq. (2)—along arbitrary Ek and with arbitrary frequencies ω—is also a solution of
Maxwell’s equations.

Substitution of Eq. (2) into Maxwell’s equations results in the time-harmonic, plane
wave form of Maxwell’s equations. These stipulate that in a uniform, isotropic
medium, Ek · EE0 = 0, i.e., that a plane wave is transverse, with its electric field confined
to a plane perpendicular to its wave vector. The same holds for the magnetic field, and
the so-called Poynting vector, the direction along which energy flows, is parallel to
the wave vector Ek.

If our coordinate system is oriented along the z axis such that Ek = kẑ, then the plane
wave’s electric field is constrained to lie in the x − y plane, and we have, in general,
that

EE (z, t)= (E x e iφx x̂ + E y e iφy ŷ )e i(ωt−kz), (3)

neatly packaged in vector notation as

EE (z, t)=
(

E x e iφx

E y e iφy

)
e i(ωt−kz). (4)

Removal of an overall phase and normalization of the vector’s amplitude yields

EE (z, t)= E0e iφx

(
cos χ

sin χe iφ

)
e i(ωt−kz), (5)

where E0 is a real-valued amplitude with E 2
0 = E 2

x + E 2
y and φ = φy − φx .

2.2b. Jones Vectors

Neglecting the frequency and k-vector dependence, we focus on the central part of
Eq. (5), which dictates the “shape” of the electric field vector, given by

| j 〉 =
(

cos χ
sin χe iφ

)
. (6)

Both the x and y components oscillate at a frequency ω and differ only in amplitude
and phase. Equation (6), thus, describes a shape that is in general an ellipse. The two
angles χ and φ are a common parameterization of | j 〉, which is commonly referred to
as a “Jones vector.” Cases in which φ = 0 describe oscillation of the field along a line,
linear polarization. When χ =±π

4 and φ =±π

2 , the ellipse traces out a circle whose
rotation is right- or left-handed (depending on the sign of φ), circular polarization. All
other cases describe elliptical polarization (Fig. 2).

We note that in Eq. (6) we have adopted the bra–ket (or Dirac) notation for Jones
vectors, which is commonly used in quantum mechanics but rather seldomly in
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polarization optics. Advanced by authors such as Damask [4] and others, we find it to
be a convenient and, occasionally, illuminating notation (especially in Subsection 2.5,
where the Jones and Stokes formalisms are connected, and throughout Section 3).

We briefly review this notation here. A ket denotes a Jones vector, a polarization state.
While | j 〉 denotes the most generic normalized Jones vector, a Jones vector is in gen-
eral given by

|E 〉 =
(

Ẽ x

Ẽ y

)
. (7)

Corresponding to this ket is a bra, which is the Hermitian conjugate, denoted by the
† symbol, which entails a transposition of dimensions and a complex conjugation.
That is,

〈E | = (|E 〉)† =
(

Ẽ ∗x Ẽ ∗y
)

. (8)

Any closed bra–ket set is a scalar quantity denoting an inner product between two
Jones vectors, a projection of one onto another. For two generic Jones vectors
|E1〉 = ( Ẽ x ,1 Ẽ y ,1 )

T and |E2〉 = ( Ẽ x ,2 Ẽ y ,2 )
T ,

〈E1|E2〉 = Ẽ ∗x ,1 Ẽ x ,2 + Ẽ ∗y ,1 Ẽ y ,2. (9)

A normalized Jones vector such as | j 〉 in Eq. (6) has a normalized inner product with
itself, i.e., 〈 j |λ〉 = 1. For a generic Jones vector |E 〉, 〈E |E 〉 evaluates to the intensity
of the corresponding plane wave, its square-amplitude.

Jones vectors are said to be orthogonal to one another if their inner product evaluates
to zero. The orthogonal counterpart to the normalized Jones vector | j 〉 [Eq. (6)],
which is also normalized, is given by

|λ⊥〉 =

(
− sin χ
cos χe iφ

)
, (10)

Figure 2

Polarization ellipse and the Jones vector. The plane wave solution of the wave
equation [Eq. (1)] gives an electric field that, in general, traces out an ellipse with
time when observed in a fixed plane. Planes of constant phase are perpendicular to the
electric field and are separated by the wavelength λ along the Ek = 2π/λ vector. The
shape of the electric field is described by the two-element Jones vector, examples of
which are shown at the right.
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which is chosen to ensure 〈λ⊥|λ〉 = 0. Any choice of two orthogonal Jones vectors is a
sufficient basis to span the space of all Jones vectors.

2.2c. Jones Matrices

As plane waves transform—by passing through optical elements, or perhaps after
undergoing reflection or refraction at material interfaces—the polarization state as
described by the Jones vector can change in a way that depends on what the original
polarization state was. If this occurs under the guise of linear optics, then knowledge
of how the polarization is transformed for any given orthogonal set of Jones vectors is
sufficient knowledge to say how any Jones vector should be transformed.

In this case, the linear transformation mapping one Jones vector |E 〉 into another |E ′〉
is given by

|E ′〉 = J|E 〉, (11)

where J is a 2× 2 operator known as a Jones matrix. A generic Jones matrix J has four
complex entries (eight degrees-of-freedom in all) and is given by

J=

(
J̃11 J̃12

J̃21 J̃22

)
. (12)

Again, as dictated by linearity, the action of J on any chosen orthogonal basis of Jones
vectors | j 〉 and | j⊥〉mathematically constrains all of its entries. We suppose

| j ′〉 = J| j 〉 (13)

and

| j⊥,′〉 = J| j⊥〉. (14)

Writing the input Jones vectors as the columns of a 2× 2 matrix A,

A=

 | |

| j 〉 | j⊥〉
| |

 , (15)

and similarly the output set of Jones vectors as the columns of a second 2× 2
matrix B,

B=

 | |

| j ′〉 | j⊥,
′

〉

| |

 , (16)

enables us to recast Eqs. (13) and (14) as a single matrix equation given by

JA=B, (17)

with each of the two original equations residing in the two columns of the
matrix equation. Since A has orthogonal, normalized columns, its inverse is
given by A−1

=A† (A is unitary—more on that in Subsection 2.3), and we have
straightforwardly that

J=BA† (18)
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for any choice of orthonormal Jones vector basis contained in A with † the Hermitian
conjugate. Knowledge of the response of J to any orthogonal set of Jones vectors
is sufficient to fully constrain it. Practically speaking, this requires the ability to
measure output Jones vectors including phase. This is readily achieved in much
of the radio-frequency (RF) domain, but at optical frequencies, polarization and
polarization-sensitive samples must be characterized using intensity measurements.
See Subsections 2.4 and 2.7.

A given Jones matrix J may amplify or attenuate a given incident polarization, and it
may advance or retard it in phase, or perform these operations selectively on orthogo-
nal components of the polarization; one matrix J may do all of these things to a given
Jones vector but something entirely different to another provided that linearity, and
thus superposition, hold. This is described more systematically in the next section.

Finally, we note that in the bra–ket notation a combination of a ket and a bra signifies
an outer product and results in a 2× 2 matrix quantity, a Jones matrix. For two generic
Jones vectors |E1〉 = ( Ẽ x ,1 Ẽ y ,1 )

T and |E2〉 = ( Ẽ x ,2 Ẽ y ,2 )
T ,

|E2〉〈E1| =

(
Ẽ ∗x ,1 Ẽ x ,2 Ẽ ∗y ,1 Ẽ x ,2

Ẽ ∗x ,1 Ẽ y ,2 Ẽ ∗y ,1 Ẽ y ,2

)
. (19)

A combination of a Jones bra and ket in the opposite order yields an inner product, a
projection of one polarization state onto another:

〈E1|E2〉 = Ẽ ∗x ,1 Ẽ x ,2 + Ẽ ∗y ,1 Ẽ y ,2. (20)

By inspection of Eqs. (19) and (20), the two can be related by the matrix trace opera-
tion as

〈E2|E1〉 = Tr(|E2〉〈E1|). (21)

2.2d. Origins of the Jones Calculus

This way of treating polarization, in terms of two-dimensional (2D) state vectors,
and the optical transformations that transform between them in the form of 2× 2
matrices, is known broadly as the Jones calculus. The Jones calculus deals directly
with the electric field of plane waves and, thus, follows naturally from the wave
equation. Despite this close kinship between the two, the use of a matrix formalism to
handle polarized light was first proposed by Robert Clark Jones, a graduate student
at Harvard University and namesake of this Jones calculus, in a series of eight papers
[16–23] beginning only in 1941—some 76 years after Maxwell’s work.

It helps to consider the context in which Jones’ work occurred. Early works in polari-
zation generally employed crystals, like Iceland spar, but also Nicols and Wollaston
prisms, in which multiple output beams are produced. Starting in the 1920s as an
undergraduate at Harvard, and later as founder of the Polaroid Corporation, Edwin
Land developed several technologies for polarizing sheet in which long molecules
are coaxed into alignment in an imitation of a wire-grid polarizer [9]. Notably, these
allowed for mass-produced polarizers yielding only one on-axis output beam. The
presence of a single output beam, and the complex, difficult-to-visualize trans-
formations that can occur as a polarization ellipse transforms through a series of
polarization optics, necessitated the Jones calculus. Shurcliff’s book, written with
mentorship from Land and Jones, addresses this [1].
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Jones’ work extended well beyond merely introducing a matrix formalism (including
the so-called “N-matrices,” which we address indirectly in Subsection 2.5). In the
words of Jones, “this purely formal step of introducing matrix notation turned out to
be fruitful ... because of the large bag of tricks which may be used in the manipulation
of matrices” [20]. We explore some of these in the next section.

2.3. Matrix Polar Decomposition
2.3a. Hermitian and Unitary Jones Matrices

In analogy with quantum mechanics, unitary and Hermitian operators take on a spe-
cial importance in polarization optics.

A Jones matrix U is unitary if

U†U= I=
(

1 0
0 1

)
. (22)

Throughout this review, I refers to the 2× 2 identity matrix. In mathematics, unitary
matrices preserve inner product, and in polarization optics, unitary Jones matrices pre-
serve the amplitude of Jones vectors and inner products between them [a direct conse-
quence of Eq. (22)].

In this way, it can be said that unitary matrices are phase-only. A unitary matrix
can apply an overall polarization-independent phase shift and a relative phase shift
between two orthogonal polarization states. In general, this basis of polarization states
can be elliptical and requires two angles [e.g., χ and φ in Eq. (6)] to fully define.
Counted along with the aforementioned overall and relative phase shifts, a unitary
Jones matrix U is defined by four independent angles.

Physically speaking, a unitary matrix projects an incident polarization onto an
orthogonal basis of polarizations, retards one of these components in phase relative to
the other, and applies an overall phase shift to both. This can be written compactly in
bra–ket notation as

U= e iφ(e i 12 | j 〉〈 j | + e−i 12 | j⊥〉〈 j⊥|). (23)

In Eq. (23), φ is an overall phase shift,1 is known as the retardance, and | j 〉 and |λ⊥〉
are an arbitrary, orthonormal basis of polarization states defined by two angles (χ
and φ) as in Eqs. (6) and (10). The notation of Eq. (23) defines its action. Each term
of Eq. (23) is the Jones matrix of a polarizer. In the first term, for instance, the bra 〈λ|
extracts the part of the incident polarization lying along | j 〉, while the ket e i 12 | j 〉 stip-
ulates that this light is phase-shifted with its polarization preserved. The eigenvectors
of U, then, are | j 〉 and |λ⊥〉.

In a laboratory setting, wave plates—uniaxial or biaxial crystals cut so light can
propagate along a crystalline axis, precisely ground to a desired thickness—
implement unitary Jones matrices but almost always with a basis that consists of linear
polarizations. A quarter-wave plate (“λ/4”) implements Eq. (23) with a retardance
1= π/2, an unspecified value of φ, and a basis corresponding to orthogonal linear
polarizations oriented at the angle of the fast-axis of the wave plate (that is, the axis
along which light propagates faster sees a lower refractive index and, consequently,
accrues less phase).

A Jones matrix H is Hermitian if

H†
=H, (24)
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i.e., the matrix equals its own Hermitian conjugate (with A†
= (AT)∗). Hermitian

matrices describe amplitude changes—polarization-dependent loss (or gain)—with
no phase shifts. A Hermitian matrix is defined by an overall polarization-independent
loss, a differential loss between two polarizations, and an orthogonal basis containing
those two polarization states. In other words, H is defined by two scalars (common
mode and differential loss) and two angles (e.g., χ and φ) to define an orthogonal
Jones vector basis, four parameters overall.

In the bra–ket notation,

H= e−
α0
2 (e

α
2 | j 〉〈 j | + e−

α
2 | j⊥〉〈 j⊥|), (25)

where α0 is a common loss (or gain, if α0 < 0), α is a differential loss, and | j 〉 and |λ⊥〉
are again an orthogonal eigenbasis of polarization states. In laboratory experience,
Hermitian Jones matrices correspond to polarizers. A linear polarizer, for instance,
has an eigenbasis of linear polarization states and is often treated as perfect—one
polarization is passed without attenuation, while the orthogonal polarization is
completely extinguished. This mandates α0 = α =∞ if | j 〉 is the Jones vector with
maximum transmission. In reality, no polarizer or polarizing effect is perfect, and
both losses are finite. In that case, we define the quantity

D=
I| j 〉 − I| j⊥〉
I| j 〉 + I| j⊥〉

=
e α − e−α

e α + e−α
= tanh α. (26)

D is known as the diattenuation and is the contrast in intensity transmitted by H
when | j 〉 and | j⊥〉—the polarization states of maximum and minimum transmission,
respectively—are incident. For a perfect polarizer, D= 1; for H= I (which is both
unitary and Hermitian), no contrast exists in transmitted power with incident polari-
zation and D= 0. Cases in-between represent a partial polarizer, often referred to as a
diattenuator.

Any Jones matrix contains both Hermitian and unitary parts. Hermitian and
unitary matrices taken together form the building blocks of all Jones matrices and,
consequently, all linear polarization elements. This follows from the singular value
decomposition (SVD), which exists for all matrices of arbitrary dimension. A general
square Jones matrix J has an SVD given by

J=ADV†, (27)

where A and V are 2× 2 unitary matrices and D is a diagonal, positive, and real 2× 2
matrix. By definition, V†V and A†A both equal I, so we can insert either anywhere in
Eq. (27). We first write

J= (AV†)(VDV†). (28)

By inspection, the first parenthesized matrix U=AV† is unitary with U†U=
VA†AV†

= I, while the second H=VDV† is Hermitian with H†
=H. We can then

write any Jones matrix J as a product of a unitary matrix U and a Hermitian matrix H,

J=UH. (29)

By an analogous argument, we can also reverse order and write

J=H′U′ (30)
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for a Hermitian H′ =ADA† and a unitary U′ =AV†. This is known as the matrix
polar decomposition. Mathematically equivalent to the SVD, it is a matrix ana-
log to the scalar polar decomposition wherein a complex number q̃ can be written
in amplitude-phase form as q̃ = Ae iθ with a real-valued amplitude A and a phase
angle θ .

A key difference is that matrix multiplication is not in general commutative and
Eqs. (29) and (30) in general represent different decompositions (the “right” and
“left” polar decompositions, respectively). For special J, often referred to as “homo-
geneous Jones matrices” [2,24], the right and left polar decompositions are identical;
the Hermitian and unitary components share a common eigenbasis and can commute.

Since unitary and Hermitian Jones matrices each have four free parameters, the
polar decomposition reflects the fact that an arbitrary Jones matrix has eight
degrees-of-freedom.

In polarization optics, the matrix polar decomposition is physically significant. A
given optical element or process that affects light’s polarization and can be written
as a Jones matrix J can be thought of as comprising a diattenuator (partial polarizer)
followed by a wave plate, or vice versa (though not the same partial polarizer and
wave plate). This can be used as an intuitive aid: The possibly complex polarization-
dependent effect of any linear polarization transformation can be thought of as a
cascade of two optical elements analogous to real laboratory optics, whose parameters
(diattenuation, common mode loss, overall phase, retardance, and the polarization
eigenbases of each) are governed by the polar decomposition. This is shown in Fig. 3.
The polar decomposition (and SVD) can be found by a variety of numerical schemes.

2.3b. Power Transfer Characteristic of a Jones Matrix

The matrix J produces the state J| j 〉 for a generic input, with a power given by
〈 j |J†J| j 〉. Averaged over all possible normalized input polarizations {| j 〉}, the
expected power output is 1

2 Tr(J†J), where Tr denotes the matrix trace operation. If
we take the right polar decomposition of Eq. (29), J=UH. Then, the unitarity of

Figure 3

(a) (b) (c)

Jones matrix polar decomposition. Two broad classes of polarization transforma-
tions exist. (a) A unitary transformation (described by a Jones matrix U for which
U†U = I) is a lossless transformation in which the components of an incident plane
wave along orthogonal eigenvectors are retarded in phase. Physically, wave plates
can enact a unitary Jones matrix. (b) A Hermitian transformation is described by a
Jones matrix H for which H†

= H . These attenuate (or, less commonly, amplify)
an orthogonal eigenbasis of polarizations. Devices implementing Hermitian Jones
matrices are known as diattenuators, of which a polarizer is a limiting case. (c) Any
linear polarization transformation given by a 2× 2 Jones matrix J can be written as
a cascade of a Hermitian device—a diattenuator—followed by a unitary device—a
wave plate. Note that this is true for any J (which may not itself have an orthogonal
eigenbasis).
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U gives J†J=H†H, and the power transfer of the Jones matrix is given solely by
its Hermitian part and its common loss e−α0 (the factor of 1/2 is removed due to the
squaring in going from field to intensity). A similar argument holds if the left polar
decomposition is used owing to the invariance of the trace to the order of matrix
multiplication.

2.4. Stokes/Mueller Formalism
2.4a. Stokes Vector

The Jones formalism, while convenient, makes explicit reference to the electric
field. It is a coherent description in which phase matters. This can be convenient
in the RF (e.g., in radar) domain where direct phase measurements are possible,
but detectors cannot follow the electric field at optical frequencies. Instead, the
intensity—proportional to the square of the electric field—is measured by a linear
detector.

Through its manifestation as a power modulation when passed through an analyzer,
polarization is readily observed. In 1852, Sir George G. Stokes recast Fresnel’s
description of polarized light as an ellipse in terms of series of these measurements.
The experiments involve measuring the intensity of a beam passed through analyzers
for |x 〉, |y 〉, |45◦〉, |135◦〉, |R〉, and |L〉—four equally spaced linear polarizations,
as well as both chiralities of circular polarization. These comprise three orthogonal
polarization bases. Practically speaking, all six analyzers can be constructed from
a rotatable linear polarizer and quarter-wave plate (for the circular measurements).
These measured intensities are labeled I|q〉, where |q〉 is the preferred polarization of
the polarizer.

These six measurements are transformed into four quantities and represented as a col-
umn vector, appropriately dubbed the Stokes vector, given by

ES =


S0

S1

S2

S3

=


I|x 〉 + I|y 〉
I|x 〉 − I|y 〉

I|45◦〉 − I|135◦〉

I|R〉 − I|L〉

 . (31)

In the remote sensing and astronomy, the Stokes vector is often labeled as
ES = ( I Q U V )T , though we use the convention of Eq. (31) here. The first Stokes
vector S0 quantifies the power of the beam and could be given by the sum of the pow-
ers measured in any orthogonal basis (i.e., S0 = I|45◦〉 + I|135◦〉 = I|R〉 + I|L〉 as well). It
constrains the overall size of the polarization ellipse. The next three Stokes parame-
ters define the shape of the polarization ellipse. Each is a differential measurement of
the beam’s preference for different polarizations—|x 〉 over |y 〉 (S1), |45◦〉 over |135◦〉
(S2), and |R〉 over |L〉 (S3). Some examples of polarization states represented using
the Stokes formalism (and their analog in the Jones representation) are provided in
Table 2.

It is sometimes remarked that the Stokes vector does not comprise a true vector space
because not all Stokes vectors are physical (so that some prefer the term “Stokes
parameters”). A Stokes vector must satisfy√

S2
1 + S2

2 + S2
3 ≤ S0. (32)

Equation (32) is a physicality requirement and states that the polarized power in a
beam must be equal (in the case of fully polarized light) or less than (in the case of
partially polarized light) the overall beam’s power. In other words, the act of passing
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a beam through an analyzer cannot impart energy on it. In geometrical terms, Eq. (32)
constrains the set of all possible Stokes vectors to lie inside a cone in four-dimensional
space [25].

Often, the last three Stokes parameters are normalized by the first to yield the state-of-
polarization (SOP) as

Es =

 S1/S0

S2/S0

S3/S0

=
 s 1

s 2

s 3

 . (33)

In the case of fully polarized light, Eq. (32) becomes

s 2
1 + s 2

2 + s 2
3 = 1. (34)

The SOP Es is an alternate (but equivalent) description of the polarization ellipse.
Its parameters s 1, s 2, and s 3 as normalized differential powers are all strictly real.
In light of the physicality requirement Eq. (34), though, the SOP has only two free
parameters. These correspond in number to the two free parameters of the normalized
Jones vector, the angles χ and φ in Eq. (6). All information on the linear nature of the
polarization ellipse is contained in s 1 and s 2, which constrain its azimuthal orientation.
Its ellipticity—how eccentric the ellipse is—is governed solely by s 3.

A polarization ellipse is defined by its size, azimuthal orientation, and this ellipticity.
The Stokes vector Eq. (31), however, contains four parameters. The last degree-of-
freedom of polarization is the degree-of-polarization (DoP), the statistical certainty
with which the polarization ellipse can be known, discussed in Subsection 2.4c.

Stokes’ description of polarized light was itself largely forgotten for a century after
publication, only to be revived in a study of radiative transfer by the astrophysicist
Chandrasekhar in the 1950s [26].

2.4b. Poincaré Sphere

By inspection, Eq. (34) defines the surface of a sphere if the normalized Stokes
parameters (s 1, s 2, s 3) are taken as Cartesian coordinates. In the Poincaré sphere
representation (named for the prolific French mathematician to whom this insight
belongs), all polarization ellipses—all SOPs—can be thought of as residing on the
surface of a sphere. The equator of this sphere where s 3 = 0 contains all linear polari-
zation states whose azimuthal orientations vary with longitude. The poles of the
sphere where s 1,s 2 = 0 and s 3 =±1 correspond to circular polarization states of oppo-
site handedness. In-between the equator and the poles stand all elliptical SOPs, with
lines of constant latitude (constant s 3) defining a fixed ellipticity and lines of constant

Table 2. Various Stokes Vectors and Their Corresponding Jones Vectors
Polarization State Stokes Jones

|x 〉
(

1 1 0 0
)T

(
1
0

)
|y 〉

(
1 −1 0 0

)T
(

0
1

)
General linear
polarization

(
1 cos 2θ sin 2θ 0

)T
(

cos θ
sin θ

)
|R〉

(
1 0 0 1

)T 1
√

2

(
1
i

)
Unpolarized light

(
1 0 0 0

)T
No direct analog.

Can be written as

(
1
0

)
+ e i φ̃

(
0
1

)
for φ̃ random in time.
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longitude (constant s 2/s 1) defining fixed azimuthal orientations of the polarization
ellipse. The interior of the Poincaré sphere can be thought of as containing partially
polarized states of light, with the origin corresponding to completely unpolarized light
(Subsection 2.7). The Poincaré sphere is depicted in Fig. 4.

Orthogonal polarizations on the Poincaré sphere are given by polarization states
whose Stokes vectors are diametrically opposite, that is, inverted about the origin.
A given Stokes vector is orthogonal to another if each of S1, S2, and S3 are equal in
magnitude but inverted in sign. This is a geometric subtlety of the Poincaré sphere
and the Stokes formalism more generally—orthogonality means a separation of 180◦

rather than the conventional notion of perpendicularity at 90◦. All physical angles of
the polarization ellipse are doubled in converting to the Stokes representation. This is
shown in Fig. 4(b).

The Poincaré sphere, an example of the more general notion of a Bloch sphere in
physics, is an intuitive aid that will be used extensively in this review. In addition
to representing polarization states, the Poincaré sphere is also of use in visualiz-
ing polarization transformations and polarization-transforming optical elements
(Subsections 2.5 and 2.6).

2.4c. Partially and Unpolarized Light

Coherent and incoherent addition. The fact that orthogonal polarizations lie on
opposite sides of the Poincaré sphere has consequences that, at first brush, can be
confusing. Consider, for instance, the interference of light linearly polarized along
x with light linearly polarized along y both with intensities of 1/2 (in some arbitrary
units):

ES = EX + EY

=
1

2


1
1
0
0

+ 1

2


1
−1
0
0

=


1
0
0
0

 . (35)

Figure 4

All plane wave polarization states can be imagined to lie on the surface of a sphere
known as the Poincaré sphere [(a), with a view of the northern hemisphere given
in (b)]. All linear polarization states lie along its equator and circular polarization
states of opposite handedness occupy its poles; everywhere in-between is ellipti-
cal. All angles are doubled with respect to the physical polarization ellipse so that
orthogonal polarizations lie at diametrically opposite points. The origin corresponds
to unpolarized light, while the interior corresponds to partially polarized states
(Subsection 2.4c).
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Intuitively, we might first hazard that the interference of the two should yield light
linearly polarized at 45◦ so that the result of the addition should have an SOP of
Es= (0, 1, 0)T . Instead, the SOP seems to be Es= (0, 0, 0)T . This begs another question.
The interference of x - and y -polarized light only yields 45◦ if the two are in phase; if
the phase shift, for instance, is π/2, we have circular polarization. A general phase
shift between the two yields an infinite number of elliptical polarization states. In the
addition of Stokes vectors, which of these relative phases is meant?

Being based on intensity measurements, the Stokes formalism can make no reference
to phase. This underlies the result of Eq. (35), which actually describes completely
unpolarized light. In the Stokes calculus, all addition is incoherent. This means that a
completely random phase relation must be assumed. In adding the Stokes vectors for
x - and y -polarized light, all possible relative phases are included simultaneously, so
the result can be seen as a superposition of all of these at once. At any one instant in
time, the phase between x and y could take on any value between 0 and 2π randomly
so that the polarization ellipse itself has a random shape. Stated differently, the path of
the electric field vector is completely uncorrelated with that an instant in time later.

Degree-of-polarization. This correlation between the polarization ellipse at one
instant of time with that a short time later—a notion of how pure the polarization itself
is—is quantified by the DoP, given for a Stokes vector ES in Eq. (31) as

DoP(ES)= p =

√
S2

1 + S2
2 + S2

3

S0
. (36)

DoP= 1 signifies complete certainty over the polarization ellipse, while DoP= 0 sig-
nifies complete uncertainty. Values in-between signify some, but not perfect, correla-
tion: partial polarization. Values below 0 or above 1 are not physical. A consequence
of this definition is that, geometrically, partially polarized states of polarization can be
understood to occupy the interior of the Poincaré sphere, with completely unpolarized
light sitting at the origin.

The DoP is a measure of how strongly a beam can be suppressed in intensity by a
polarization analyzer (a polarizer). Any perfectly constant polarization ellipse can
be fully suppressed given possession of a polarizer whose pass-axis corresponds to
its orthogonal counterpart (this is, in general, an elliptical polarizer). When light is
partially polarized, it has a preferred polarization ellipse, a sort of “average” path
taken by the electric field vector. A polarizer whose pass polarization is orthogonal
to this state will maximally extinguish the beam, but no polarizer can fully extinguish
a partially polarized beam. The DoP is the “contrast”—the normalized difference—
between the intensity of the beam itself and this minimum analyzed intensity. In
the limit of completely unpolarized light, there is no contrast obtained by passing
a beam through polarizers at different orientations and with different characteristic
polarizations.

In other words, any Stokes vector can be thought of as part fully polarized (with a spe-
cific SOP) and part unpolarized. The DoP value p dictates the distribution between
the two as

ES =


S0

S1

S2

S3

= S0

(1− p)


1
0
0
0

+ p


1
S1

S2
1+S2

2+S2
3

S2

S2
1+S2

2+S2
3

S3

S2
1+S2

2+S2
3


 . (37)
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The first term of Eq. (37) is completely unpolarized while the second term is fully
polarized with the same SOP as the original beam.

Inherent in the definition of the DoP is a notion of time-averaging, which follows
from the definition of the Stokes parameters in terms of intensity measurements,
which necessarily involve integration of some signal (usually electrical). That means
that a plane wave that appears to have a fixed polarization (DoP= 1) on one time
scale may appear completely unpolarized if intensity integration is carried out over
longer times, allowing the polarization ellipse to vary. The limit of this line of thought
is the tracing of the electric field vector at the time scale of the light’s frequency itself,
which is possible at lower frequencies (RF) but not in optics.

Examples of partially polarized light. The DoP represents a manifestation of par-
tial coherence in polarization optics and forms the basis of the modern view of the
polarization of light as a statistical phenomenon alongside other statistical properties
of light, such as temporal and spatial coherence [7,27–29]. We do not dwell much
on this here. We note, however, that, while Eq. (36) defines the DoP, it does not pro-
vide a physical explanation for what partial polarization is, or how to prepare it. Any
effect in which multiple polarization ellipses are averaged will produce the requisite
uncertainty to drive the DoP down from unity. This could be due to several factors,
however, including time-varying sources and even sources whose polarization ellipse
varies over the spatial aperture of the detector. We provide two simple examples of
signals with DoP< 1, also depicted in Fig. 5:

• Consider a beam in a superposition of x and y linearly polarized light (dictated by
an orientation angle θ , constant in time) with a phase shift φ(t) between the two
that depends on time. Its instantaneous Jones vector is given by

|E (t)〉 =
(

cos θ
sin θe iφ(t)

)
. (38)

The instantaneous Stokes vector (a bit of a misnomer, since this cannot be
measured) corresponding to |E (t)〉 is given by

ES(t)=


1

cos 2θ
sin 2θ cos φ(t)
sin 2θ sin φ(t)

 . (39)

We suppose that after some characteristic coherence time τ , φ(t) is uncor-
related with itself. That is, 〈cos φ(t)〉T = 〈sin φ(t)〉T = 0, where T� τ and
〈x (t)〉T denotes a time average of x (t) over a time period t = T, i.e., 〈x (t)〉T =
1
T

∫ T
0 x (t)dt . Assuming a suitably long averaging period, the “average Stokes

vector” (which corresponds to the one actually measured) is given by

〈ES(t)〉T =


1

cos 2θ
0
0

 , (40)

which describes partially polarized light with DoP= cos 2θ . This example falls
under what is sometimes referred to as “naturally” depolarized light—the origin
of this depolarization rests with the physics of the source itself, some aspect of
which [encapsulated in the phase function φ(t) and its coherence time τ ] causes
randomness in the polarization ellipse. In a laboratory, light can be depolarized in
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this way using two polarization beam splitters constructed into a Mach–Zehnder
interferometer with a path length difference that is much longer than, e.g., the
coherence length of the laser source or lamp being used. This is shown in Fig. 5(a).

• A second example concerns a source that is composed of two plane waves of differ-
ent frequency with time-invariant polarization states:

|E (t)〉 = |E1(t)〉 + |E2(t)〉 = e iω1t

(
cos χ1

sin χ1e iφ1

)
+ e iω2t

(
cos χ2

sin χ2e iφ2

)
. (41)

We can compute the first component of the Stokes vector as

S1(t)= (E
(x )
1 (t))∗E (x )

1 (t)− (E (y )
1 (t))

∗

E (y )
1 (t)

= (e−iω1t cos χ1 + e−iω2t cos χ1)(e iω1t cos χ1 + e iω2t cos χ1)

− (e−iω1te−iφ1 sin χ1 + e−iω2te−iφ2 sin χ1)(e iω1te iφ1 sin χ1 + e iω2te iφ2 sin χ1)

= (cos2 χ1 + cos2 χ2 + 2 cos((ω1 −ω2)t) cos χ1 cos χ2)

− (sin2 χ1 + sin2 χ2 + 2 cos((ω1 −ω2)t + (φ1 − φ2)) sin χ1 sin χ2).
(42)

Averaged over a period of time much greater than the “beat” period T = 2π/(ω1 −

ω2), the time-dependent cosines average to zero, and we have

〈S1(t)〉 = (cos2 χ1 − sin2 χ1)+ (cos2 χ2 − sin2 χ2)= S (1)1 + S (2)1 , (43)

that is, just the sum of the Stokes components for |E1(t)〉 and |E2(t)〉 individually.
The same is true of the other three entries of the Stokes vector. Then,

DoP=
(S (1)1 + S (2)1 )+ (S

(1)
2 + S (2)2 )+ (S

(1)
3 + S (2)3 )

S (1)0 + S (2)0

≤ 1. (44)

Given control over the two polarization states, the DoP can take any physical value.
If the two are identical, the light is fully polarized; if the two are orthogonal (such
as x and y ), the numerator sums to zero, and the light is fully unpolarized.
This is an example of what is sometimes referred to as “pseudo” depolarized light
because it is composed of fully coherent, polarized components. It is only the poly-
chromaticity of the signal (paired with a suitably long averaging time) that renders
the light depolarized. This is shown in Fig. 5(b).

As a final note, the DoP and partially polarized light can be equivalently treated in
terms of Jones vectors if the coherency matrix (a polarization analog of the quantum
mechanical density matrix, which involves time-averaging) is formed. This is amply
described in many other references (e.g., [7,28]), and we do not take it up here.

2.4d. Mueller Calculus

A change in the polarization state of a beam can be modeled using Stokes vectors.
A linear transformation that maps an input Stokes vector into an output Stokes
vector is known as a Mueller matrix (named for Hans Mueller, an instructor at the
Massachusetts Institute of Technology in the 1940s [9]). It is a 4× 4 matrix with
strictly real entries:
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M=


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 . (45)

An output beam passing through a system described by M is given by a simple matrix
multiplication as

ESout
=MES in, (46)

and the Mueller matrix of a composite system can be described by multiplication of its
constituent Mueller matrices.

Transformations that do not depolarize light can be described equally well with Jones
or Mueller matrices—that is, up to an overall phase shift (as an incoherent description,
absolute phase does not exist in the Stokes/Mueller formalism). We discuss the trans-
formation between the two formalisms in Subsection 2.5b.

The additional information content of a Mueller matrix, above the eight parameters
that compose a Jones matrix, is to model transformations that change the degree to
which light is polarized. Not all real 4× 4 matrices, however, can be called Mueller
matrices. In analogy with Eq. (32), there are physicality requirements that constrain
some of its entries. The first row and the first column of the Mueller matrix are of
particular importance. The first row dictates the power transfer characteristics of a
Mueller matrix M with incident polarization because Sout

0 , the power of the output

Figure 5

(a) (b) (c)

Partially polarized light. Illustrations of the two examples given in Subsection 2.4c
of how light may be partially (or un-) polarized. (a) The coherence properties of a light
source can be used to deterministically produce partially polarized light. Light can be
split (and then recombined) using polarization beam splitters, projecting the incident
polarization into orthogonal components. These are then delayed by a path length1L
that is much longer than the source’s coherence length, cτ . If the initial polarization
is such that equal intensity goes along each path, the resultant light is completely
unpolarized. (b) Partially polarized light can also be prepared by combining two (or
more) frequencies of completely coherent light in different polarization states. Here
the path of the electric field of two slightly different frequencies in x and y linear
polarization states is shown after several multiples of the characteristic “beat” time
between the two frequencies, 2π/(ω1 −ω2). The electric field traces out a Lissajous
figure. At short times, a preferred direction is evident; over these time scales, the light
is partially polarized. Over longer times, the electric field fills out a full square. All
polarization ellipses are equally represented, and the light is unpolarized. (c) If, on the
other hand, the two frequencies have polarization states that are not orthogonal, par-
tially polarized light is produced. Here, x and 45◦ linearly polarized states of slightly
different frequencies are allowed to interfere for T = 100 beat periods. There is now a
preferred direction of the electric field.
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beam, is only dictated by this row. In other words, this first row dictates the diatten-
uation of the Mueller matrix and the orthogonal polarization basis for which there is
maximum and minimum transmission. This first row can itself be treated as a Stokes
vector,

ED=
(

m00 m01 m02 m03

)T
, (47)

which is called the diattenuation vector. The SOP of the polarization that expe-
riences maximum transmission is given by Es max =

1
m00
(m01 m02 m03 )

T , while

Es min =
1

m00
(−m01 −m02 −m03 )

T experiences minimum transmission. The contrast
in intensity between the two, the diattenuation [cf. Eq. (26)] of M, is given by

D=
√

m2
01 +m2

02 +m2
03

m00
. (48)

The top left element of the Mueller matrix, m00, gives the mean power transmit-
ted averaged over all possible input polarization states and is the average of the
transmitted power when Es max and Es min are incident.

The first column of the Mueller matrix is also significant, being the output Stokes
vector when M acts on completely unpolarized light (whose definition we provide
below). For a more complete discussion of different parts of the Mueller matrix and
their physical interpretation, see Chipman et al. [2].

Mueller matrices corresponding to unitary and Hermitian Jones matrix transforma-
tions take on a special form [2,4]. The Mueller matrix of a Hermitian transformation
has a matching first row and first column

MH =


m00 m01 m02 m03

m01 · · ·

m02 · · ·

m03 · · ·

 , (49)

reflecting the fact that the polarization analyzed is the polarization created when
unpolarized light is incident.

Mueller matrices corresponding to strictly unitary transformations have a form
given by

MU =


1 0 0 0
0 · · ·

0 · · ·

0 · · ·

 . (50)

This reflects the fact that all polarizations are passed without attenuation and that only
the SOP can be modified. This is enacted by the lower right 3× 3 submatrix of MU ,
which, as we discuss in Subsection 2.6, is given by a rotation matrix.

The polar decomposition applied to Jones matrices in Subsection 2.3 has an analog in
the Mueller formalism, first shown by Lu and Chipman. Any Mueller matrix can be
written as

M=M1MU MH, (51)

where MU and MH are Hermitian and unitary transforms—diattenuators and retard-
ers, in other words—and M1 has a purely depolarizing effect [it should be noted that
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the order given in Eq. (51) is not unique]. If M directly corresponds to a Jones matrix,
there is no depolarization (i.e., M1 is an identity matrix) and the Lu–Chipman decom-
position reduces to the Jones matrix polar decomposition up to an overall phase [30].

2.5. Pauli Matrices in Polarization Optics
2.5a. Motivation: The Stokes Vector from the Jones Vector

The definition of the Stokes vector in Eq. (31) was motivated by a physical
experiment. Here we show that it has a mathematical basis as well.

Suppose the unknown polarization whose Stokes vector ES is to be determined has a
Jones vector given by |s 〉. A polarizer that passes |q〉 completely has a Jones matrix
given by A|q〉 = |q〉〈q |, where |q〉 is the normalized Jones vector of the polarization
state passed by the analyzer. When the unknown polarization |s 〉 encounters the
analyzer A|q〉, A|q〉|s 〉 results with an intensity given by

I|q〉 = |A|q〉|s 〉|2 = 〈s |A
†
|q〉A|q〉〉s . (52)

Note, however, that as an analyzer A|q〉 is Hermitian and A†
|q〉 =A|q〉 so that A†

|q〉A|q〉 =
A|q〉 = |q〉〈q |.

In general, then

I|q〉 = 〈s |q〉〈q |s 〉 = |〈s |q〉|2, (53)

which is a statement of the intuitive result that a polarizer projects the electric field of
incident light onto its preferred polarization.

The first Stokes parameter S0 can be then expressed as

S0 = I|x 〉 + I|y 〉 = 〈s |x 〉〈x |s 〉 + 〈s |y 〉〈y |s 〉 = 〈s |
(

1 0
0 0

)
|s 〉 + 〈s |

(
0 0
0 1

)
|s 〉 = 〈s |s 〉.

(54)

This is the expected result: As a complete basis, the outer products |x 〉〈x | and |y 〉〈y |
sum to the identity operator I. Equation (54) simply states that S0 is the overall beam
power.

We can repeat this analysis for the next three Stokes parameters, which are instead dif-
ferential measurements:

S1 = I|x 〉 − I|y 〉 = 〈s |x 〉〈x |s 〉 − 〈s |y 〉〈y |s 〉 = 〈s |
(

1 0
0 0

)
|s 〉 − 〈s |

(
0 0
0 1

)
|s 〉, (55)

S2 = I|45◦〉 − I|135◦〉 =
1

2
〈s |
(

1 1
1 1

)
|s 〉 −

1

2
〈s |
(

1 −1
−1 1

)
|s 〉, (56)

S3 = I|R〉 − I|L〉 =
1

2
〈s |
(

1 −i
i 1

)
|s 〉 −

1

2
〈s |
(

1 i
−i 1

)
|s 〉. (57)

Equations (54 )–(57) can be expressed very succinctly as

ES = 〈s |Eσ |s 〉, (58)

where Eσ is the Pauli vector, a vector containing the set of four Pauli matrices. That is,
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Eσ =
(
σ 0 σ 1 σ 2 σ 3

)T
, (59)

where

σ 0 = I=
(

1 0
0 1

)
(60)

is the 2× 2 identity matrix and

σ 1 =

(
1 0
0 −1

)
, σ 2 =

(
0 1
1 0

)
, σ 3 =

(
0 −i
i 0

)
. (61)

The Pauli matrices also appear in the quantum mechanics of two-level spin systems;
as suggested by the analogy between the Poincaré and Bloch spheres, the mathematics
of polarization and electron spin dynamics are closely associated, though in quantum
mechanical convention the Pauli matrices take on a different order in which σ 2 (by
our definition) comes first, σ 3 second, and σ 1 third. While Stokes was not aware of
the Pauli matrices, their appearance here shows that Stokes’ proposed experiment
involving six power measurements—which at first glance may have seemed some-
what improvised or even arbitrary—has fundamental significance. The Pauli matrices
are built into the linear algebra of polarization optics.

Equation (58) is the most succinct formula for mapping a given Jones vector |s 〉 to
its corresponding Stokes vector ES. The overall phase of |s 〉 is lost in this process.
Consequently, then, if we wish to reverse the process, a Stokes vector ES can be con-
verted to a corresponding Jones vector |s 〉 only up to an arbitrary, overall phase.
Moreover, only purely polarized Stokes vectors (with S2

0 = S2
1 + S2

2 + S2
3 ) have corre-

sponding Jones vectors. In this way, only the last three elements of the Stokes vector,
the SOP, are relevant in computing the corresponding Jones vector; the first element
S0, the intensity, simply dictates the Jones vector’s amplitude, the overall size of the
polarization ellipse.

The Pauli matrices also form a complete basis for Jones matrices, and four, complex-
valued coefficients [one for each Pauli matrix in Eqs. (60) and (64)] are enough to
uniquely specify the eight degrees-of-freedom of a Jones matrix. A general Jones
operator J can be written as

J = Eα · Eσ = a0σ 0 + a1σ 1 + a2σ 2 + a3σ 3, (62)

where Eα is a complex-valued four vector containing the coefficient for each Pauli
matrix. Given a Jones operator J , this Pauli matrix decomposition Eα is given by

αi =
1

2
Tr( J σ i), (63)

where i ranges from 0 to 3. Equation (63) is readily derived from the fact that all Pauli
matrices have zero trace, except for the identity matrix σ 0.

The normalized Jones vector can be found from the SOP Es (the normalized triplet of
the last three components of the Stokes vector) up to an arbitrary overall phase by con-
structing the matrix [4]

Es · Eσ ′ = s 1σ 1 + s 2σ 2 + s 3σ 3 (64)

(the notation σ ′ signifies the last three matrices of the Pauli vector, i.e., excluding the
identity matrix I).
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It can be shown [4,31] that the Jones vector |s 〉 corresponding to the SOP Es is given by
the solution to

(ŝ · Eσ ′)|s 〉 = |s 〉. (65)

The Jones matrix ŝ · Eσ ′ has two eigenvectors. The one corresponding to a +1 eigen-
value is the desired Jones vector. Its amplitude can be scaled up (or down) by a factor
of
√

S0.

When switching between the Jones and Stokes formalisms, it is important to recall
that, in the Stokes formalism, orthogonal polarization states lie on diametrically
opposite points on the Poincaré sphere. Projections of one polarization state onto
another, then, are not simply given by the dot product of their Stokes vectors. The
power given by a projection of one normalized Jones vector |q〉 onto a second Jones
vector normalized |p〉 is given by

|〈p|q〉|2 =
1

2
(1+ p̂ · q̂), (66)

where q̂ and p̂ are their corresponding SOPs, or coordinates on the Poincaré sphere.
From Eq. (66), it is clear that orthogonality (〈p|q〉 = 0) necessitates p̂ · q̂ =−1,
i.e., antiparallelism.

2.5b. Connection between Jones and Mueller Matrices

The Jones calculus cannot handle partially polarized light, and the Stokes/Mueller
calculus cannot keep track of overall phase. Every Jones matrix has a corresponding
Mueller matrix, but since overall phase is necessarily lost in the conversion, all Jones
matrices up to an overall, polarization-independent phase have the same Mueller
matrix. Moreover, only some Mueller matrices have a corresponding Jones matrix. In
particular, Mueller matrices that can decrease the DoP of an incident Stokes vector
have no equivalent in the Jones formalism. Mueller matrices that do have an equiva-
lent Jones matrix, the so-called Jones-Mueller or non-depolarizing Mueller matrices,
can only be converted to a Jones matrix up to an overall phase.

What is the Mueller matrix M corresponding to J ? To answer this, consider a trans-
formation in which a Jones vector |s 〉 is transformed to |t〉 by J as

|t〉 = J |s 〉, (67)

which has a corresponding Mueller matrix M:

ET = M ES. (68)

The i th element of the output Stokes vector ET corresponding to |t〉 is given by
[Eq. (58)]

Ti = 〈t|σ i |t〉 = 〈s | J †σ j J |s 〉. (69)

Using Eq. (21) to exchange the inner and outer products, we can write

Ti = Tr(|s 〉〈s | J †σ i J ). (70)

Expansion of the outer product |s 〉〈s | in the Pauli basis [as in Eq. (62)] can be verified
to give
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|s 〉〈s | =
1

2
〈s |s 〉Tr(I+ ŝ · Eσ ′), (71)

so that we may write

Ti = Tr(|s 〉〈s | J †σ i J )

=
1

2
〈s |s 〉Tr( J †(I+ ŝ · Eσ ′)σ i J )

=
1

2
Tr( J †(ES · Eσ )σ i J )

Ti =
1

2

3∑
j=0

Tr( J σ j J †σ i)S j , (72)

where we have used the fact that the trace of a product of matrices is invariant under
commutation and that the trace of a sum is the sum of the traces. The last line of
Eq. (72) is the long form of a matrix multiplication, mapping the i th element of the
Stokes vector ET to the input Stokes vector ES. We can define the Mueller matrix M
corresponding to the Jones matrix J as

mij =
1

2
Tr( J σ j J †σ i), (73)

where mij is the element of M in the i th row and j th column. Equation (73) is the most
compact way of mapping a Jones matrix onto its corresponding Mueller matrix. This
relation can also be expressed in terms of the matrix outer product, from which one
can form the so-called Dirac matrices from the Pauli matrices. See, e.g., [2]. The
presence of both J and its conjugate J † means any overall phase in J is removed.

2.5c. Physicality of Mueller Matrices

What about the opposite problem? There is no guarantee that a Mueller matrix M will
have a corresponding Jones matrix. Checking whether a Mueller matrix in question
even has a corresponding Jones matrix is a preliminary check to be performed in this
process. In a broader sense, there is no guarantee that an assembly of 4× 4 numbers
into a matrix can even constitute a physical Mueller matrix. This stands in contrast to
Jones matrices, which may have any four complex entries while remaining physical
(any 2× 2 Jones matrix has a polar decomposition and can be thought of as a cascade
of a retarder and diattenuator). How can we test whether 16 elements comprise a
Mueller matrix and, given this, whether it has a corresponding Jones matrix?

These two questions are related: A 4× 4 matrix can be deemed a physical Mueller
matrix if there is no input polarization whose DoP is rendered unphysical, i.e., made
to be larger than 1, by the transformation. Meanwhile, a Mueller matrix has a Jones
matrix analog if it is non-depolarizing, i.e., if there is no incident Stokes vector that
would be transformed to one with a lower DoP (a Jones matrix transformation may,
however, increase DoP; a perfect polarizer, as an edge case, perfectly polarizes
initially unpolarized light and all diattenuators increase the DoP of unpolarized light).

Many authors ( [32–35], to name just a few) have considered this problem, which
before long devolves into significant mathematical complexity. A particularly com-
pact mathematical treatment was put forward by Cloude [36] and further elaborated
by Gil [37]. We briefly summarize it here.
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A 4× 4 real-valued Mueller matrix M—which may or may not be a physical Mueller
matrix—can be associated with a 4× 4 Hermitian matrix6 given by

6 =

3∑
i=0

3∑
j=0

mijσ i ⊗ σ j , (74)

where mij is the i j th element of M and ⊗ is the Kronecker product between the Pauli
matrices (a generalization of the outer product for vectors), yielding a 4× 4 matrix.
Note that when dealing with complex elements, the Kronecker product requires a
complex conjugation of the second matrix. This transformation is reversible: given a
matrix6, the elements of M are given by

mij = Tr(6(σ i ⊗ σ j )). (75)

Since 6 is a 4× 4 Hermitian matrix, its four eigenvalues {λi} are real, and its eigen-
vectors { EVi} are orthogonal by definition. This last fact means that6 can be written as

6 =

3∑
i=0

λi EVi ⊗ EVi , (76)

where ⊗ here represents a vector outer product. It can be shown that the matrix M
that generates the matrix 6 is a physical Mueller matrix if all eigenvalues {λi} are
positive—if even one is negative, the Mueller matrix is unphysical.

Each matrix term EVi ⊗ EVi in Eq. (76) corresponds to a 6 matrix itself, which can be
converted back to a Mueller matrix M by Eq. (75). Each term itself yields a Mueller
matrix in this way, which does have a corresponding Jones matrix. This matrix J can
be found by, e.g., a polar decomposition of its M , conversion of the diattenuation
and retarder eigenvectors to Jones vectors, and construction of the corresponding
Hermitian and unitary Jones matrices Eqs. (25) and (23) up to an arbitrary overall
phase. This means that every Mueller matrix can be written as the sum of four Mueller
matrices that correspond to Jones matrices. Even depolarizing Mueller matrices, then,
can be considered as a superposition of up to four different non-depolarizing polariza-
tion transformations [38]. This also means that a Mueller matrix has a corresponding
Jones matrix if and only if a single eigenvalue λi is nonzero.

2.5d. Matrix Exponential

Each of the Pauli matrices are both Hermitian and unitary, their defining property.
When all elements of Eα are strictly real, it can be seen by inspection of Eq. (62) that
J must be Hermitian. It can also be seen by inspection that if all the coefficients of J
are purely imaginary, J must be “skew-Hermitian”, i.e., J †

=− J . Since any Jones
operator can be fully described by a complex-valued Eα, any operator can be thought of
as being composed of a sum of a Hermitian operator (described by the real parts of the
αi ) and a skew-Hermitian operator (described by the imaginary parts of the αi ).

Equation (62) is interesting because its coefficients can be linked to physical proper-
ties of an optical medium, which modifies light’s polarization state and, when placed
inside a matrix exponential, can generate the Jones matrix operator of a medium pos-
sessing those properties. This requires a generalization of the exponential function for
2× 2 Jones matrix quantities.

For matrix-valued inputs J , the exponential function f (x )= e x must be defined in
terms of its Taylor series expansion as
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e J
= I+ J +

1

2!
J 2
+

1

3!
J 3
+

1

4!
J 4
+ ...= I+

∞∑
n=1

1

n!
J n. (77)

One slightly counterintuitive result about the matrix exponential Eq. (77) is a lack of
the commutivity that is usually taken for granted in the scalar case—namely,

e Ae B
6= e Be A

6= e A+B, (78)

unless the matrices A and B themselves commute, i.e., A B − B A = 0. The identity
matrix I commutes with all matrices. Then,

e α0I+ J
= e α0e J (79)

for any Jones matrix J . The physical meaning of including the identity matrix as
a term in the matrix exponential is an overall loss (or gain), or a phase shift if α0 is
complex.

Having generalized the exponential function for matrix inputs, we derive a matrix
analog of Euler’s identity. We motivate this analogy with the scalar Euler’s equation
by first considering inputs that are skew-Hermitian, i.e., J = i H = i(Eα · Eσ ), where H
is a Hermitian Jones matrix and Eα is real-valued. For reasons that will shortly become
clear, we exponentiate the matrix i(Eα · Eσ )/2 (reduced by a factor of 2):

e
i(Eα·Eσ )

2 = e i
α0
2 e

i(Eα′ ·Eσ ′)
2 . (80)

Here, Eα′ and Eσ ′ are the last three elements of the Eα and the Pauli vector Eσ , respectively,
and α0 is the coefficient of σ 0 = I. We have isolated the effect of the identity matrix,
as in Eq. (79).

We expand the matrix exponential as

e
i(Eα′ ·Eσ ′)

2 = I+
∞∑

n=1

1

n!

(
i(Eα′ · Eσ ′)

2

)n

. (81)

In analogy with the scalar derivation of Euler’s identity, Eq. (81) can be grouped into
even and odd terms as(

I+
1

2!

(
i(Eα · Eσ )

2

)2

+
1

4!

(
i(Eα · Eσ )

2

)4

+ ...

)
+

(
1

1!

(
i(Eα · Eσ )

2

)
+

1

3!

(
i(Eα · Eσ )

2

)3

+ ...

)
.

(82)

For the Pauli matrices in Eσ ′ (excluding σ 0), σ iσ i = I and σ iσ j =−σ iσ j = iσ k , where
the indices i , j , and k are any ascending, cyclic order from 1 to 3. Given this, it can be
shown that even powers of (i(Eα′ · Eσ ′)/2)n evaluate to a scaled version of the identity
matrix, (

i(Eα · Eσ ′)
2

)n

= (−1)
n
2

(
|Eα|

2

)n

I. (for n even), (83)

while odd powers of (i(Eα · Eσ )/2)n, by extension of Eq. (83), evaluate to(
i(Eα′ · Eσ ′)

2

)n

= (−1)
n−1

2

(
|Eα′|

2

)n−1 i(Eα′ · Eσ )
2

. (for n odd) (84)
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These identities take on simple forms thanks to the removal of the identity matrix in
Eq. (80), i.e., dealing with Eσ ′ instead of the full Pauli vector Eσ , simplifying the matrix
arithmetic greatly. Then, the even grouping of terms in Eq. (82) reduces to(

1−
1

2!

(
|Eα′|

2

)2

+
1

4!

(
|Eα′|

2

)4

−
1

6!

(
|Eα′|

2

)6

+ ...

)
I=

(
cos
|Eα′|

2

)
I, (85)

and the grouping of odd terms in Eq. (82) can be shown to evaluate to

i sin
|Eα′|

2
(α̂′ · Eσ ), (86)

where α̂′ = Eα′/|Eα′|.

Combining Eqs. (85) and (86) with scalar exponential factored out in Eq. (80), we
have

e
i(Eα·Eσ )

2 = e i
α0
2

(
cos
|Eα′|

2
I+ i sin

|Eα′|

2
(α̂′ · Eσ )

)
. (87)

Equation (87) generalizes Euler’s identity and describes a general unitary Jones
matrix with a common phase of α0/2, a retardance of |Eα′|, and orthogonal eigen-
polarizations with SOPs given by α̂′ and −α̂′. The description of a unitary operator
in Eq. (87) is equivalent to the more functional description of a unitary operator of
Eq. (23) cast in the bra–ket notation. The two descriptions can be linked through the
relation |α′〉〈α′| = 1

2(I+ α̂
′
· Eσ
′
), an expression for the Jones matrix of an analyzer

invoking the Pauli matrices and the Stokes vector, where |α′〉 is the normalized Jones
vector corresponding to the Stokes SOP α̂′. This relation can be derived from the form
of a normalized Jones vector Eq. (6) and the definition of the Stokes vector Eq. (31).

Instead of the skew-Hermitian matrix i(Eα · Eσ )/2 (with Eα containing strictly real
entries), we can also exponentiate ( Eβ · Eσ )/2 (where Eβ also has purely real entries; this
matrix is Hermitian). We again remove the identity matrix,

e
( Eβ·Eσ )

2 = e
β0
2 e

( Eβ′ ·Eσ ′)
2 , (88)

where β0 is again the weight on the identity matrix and Eβ ′ and Eσ ′ represent the last
three entries of Eβ and Eσ , respectively. By a completely analogous procedure, we can
derive that

e
( Eβ·Eσ )

2 = e
β0
2

(
cosh
| Eβ ′|

2
I+ sinh

| Eβ ′|

2
(β̂ ′ · Eσ

′
)

)
, (89)

which is a general form of a Hermitian Jones matrix, equivalent to the bra–ket form
Eq. (25). Equation (89) describes a diattenuator with a common loss (or gain) of α0/2,
an orthogonal eigenbasis of polarizations (which experience maximum and minimum
transmittance) with SOPs given by β̂ ′ and −β̂ ′, and a diattenuation—the contrast in
intensity between the maximum and minimum transmittance—given by D= tanh |

Eβ ′|

2 .

Equations (87) and (89) show how skew-Hermitian and Hermitian matrices generate
unitary and Hermitian polarization operations, respectively, through the matrix expo-
nential function. By the polar decomposition of Subsection 2.3, any Jones matrix can
be written as a product of a unitary and Hermitian Jones matrix. That is, for any J ,

J = e
i(Eα·Eσ)

2 e
( Eβ·Eσ)

2 =U H (90)
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(assuming a right polar decomposition). Specifying two, real-valued four-vectors
Eα and Eβ is another way to fully constrain the eight degrees-of-freedom of the Jones
matrix.

It should be noted that matrix exponentials and the Pauli matrices have made a rela-
tively recent entrance into polarization optics. Credit is owed to Fano [39], Schmieder
[40], and Whitney [41] for some of the earliest works identifying the role of these in
the mathematical description of polarized light. For significantly expanded detail on
these ideas, see [4] and [2].

2.6. Geometrical Interpretation of Polarization Transformations
2.6a. Retardance and Diattenuation Space

The polar decomposition (Subsection 2.3) means that any Jones matrix—any polari-
zation device—can be viewed as a cascade of a diattenuator and a wave plate. These
correspond to Hermitian and unitary Jones matrices, respectively. There are many
mathematical descriptions of Hermitian and unitary operators, some of which we
have considered here: In Subsection 2.3, we wrote general expressions for U and H
in bra–ket notation, and in Subsection 2.5, we derived forms for these operators from
the matrix exponential function. This latter approach (as encapsulated in Eqs. (87) and
(89) shows how the Jones matrix of a wave plate or diattenuator can be generated by
the Stokes vector of its (orthogonal) eigenbasis, the strength of its polarizing effect
(retardance or diattenuation), and an overall (phase or amplitude) scaling.

In Eqs. (87) and (89), the eigen-polarizations are dictated by the unit vectors β̂ ′ and α̂′,
respectively. These give the states of polarization of the eigenbasis, which allows us to
construct a Poincaré sphere-like picture for representing these polarization operators
(instead of merely polarization states). This is a representation we will find useful in
Section 4 when we discuss the polarization transformations implemented by metasur-
faces.

Diattenuator space. This is carried out separately for Hermitian and unitary oper-
ators. Recall that a general Hermitian operator can be written from Eq. (88) as

H = e
β0
2 e

( Eβ′ ·Eσ ′)
2 , fully defined by the common loss (or gain) β0 and the vector Eβ ′ (four

parameters). Neglecting this polarization-independent β0, the polarization-dependent
amplitude transmission is governed by the magnitude | Eβ ′| and the unit vector β̂ ′. | Eβ ′|
is unbounded—it can range from 0 if there is no polarization selectivity to ∞ for a
perfect polarizer. Recall from Eq. (26) that tanh(| Eβ ′|) is known as the diattenuation. It
is neatly bounded between 0 and 1.

We may then imagine a ball of unit radius that we call the diattenuation sphere. Each
point within the sphere defines a diattenuator Jones matrix (up to an undefined com-
mon loss β0, which is not a part of this picture). Each point within the sphere can be
defined by the coordinates

EjH = tanh(| Eβ ′|)β̂ ′. (91)

In other words, the Stokes vector of the diattenuation axis β̂ ′ (the maximally trans-
mitted polarization) defines the pointing direction, and the diattenuation magnitude
tanh(| Eβ ′|) defines its radial distance from the origin. All points on the surface of the
sphere represent perfect polarizers, the origin represents zero diattenuation (H ∝ I),
and all points in-between represent partial polarizers. The diattenuation sphere is
shown in Fig. 6(b).

Retarder space. We may treat unitary matrices in much the same way. By Eq. (80),

we have that a general unitary operator can be written as U = e i
α0
2 e

i(Eα′ ·Eσ ′)
2 . Here α0



866 Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics Review

is an overall phase, and α̂′ and |Eα|′ are the retardance axis and retardance angle,
respectively. Since retardance is an angular (circular) quantity, some care must be
taken. Suppose the retardance can vary on the interval (−π, π ]. There is an interplay
between the retardance |Eα|′ and the polarization state α̂′, which is the wave plate’s
“fast-axis,” so named because of its faster phase velocity and, thus, lower optical
index and phase accumulation than −α̂′, the “slow-axis.” The polarization α̂′ is
retarded in phase by an angle of |Eα′| relative to −α̂′, but this is equivalent to a situa-
tion in which the fast and slow axes are exchanged and the retardance is modified to
2π − |Eα′| to complete the unit circle.

With this in mind, we imagine a retardance sphere in which each point within a unit
sphere defines a unitary operator up to an overall phase α0. Each point within this
sphere can be defined by the coordinates

EjU = sin

(
|Eα′|

2

)
α̂′. (92)

A division by two (|Eα′|/2) is necessary to create a sphere of unit radius for
|Eα′| ∈ (−π, π ]. The direction from the origin defines the eigen-polarization of the
wave plate’s fast-axis, and its distance from the origin dictates its retardance. All
wave plates of equal retardance lie on spherical shells. The surface of the sphere rep-
resents all half-wave plates (λ/2, or |Eα′| = π ). All quarter-wave plates (λ/4) lie on a
shell of radius

√
2/2. The center represents polarization-insensitive transformations

(i.e., U ∝ I). The retardance sphere is shown in Fig. 6(a).

Of course, a general Jones matrix J is neither Hermitian nor unitary and is in general
defined by eight parameters. This does not admit easy visualization; the best we can
do is find its polar decomposition (given a certain order, right or left) and visualize
each component in a separate space.

Figure 6

(a) (b)

Retardance and diattenuation space. All unitary and Hermitian Jones matrices
can be visualized as lying within a sphere that is referred to as (a) retardance and
(b) diattenuation space, respectively. A point in the sphere corresponds to an operator.
The line connecting the point to the origin gives the operator’s eigen-polarizations
(as the orthogonal Stokes vectors corresponding to that direction on the conventional
Poincaré sphere), while its distance from the origin gives its retardance or diatten-
uation in accordance with Eqs. (92) and (91). For instance, in (a) the surface of the
retardance sphere represents all wave plates with half-wave (λ/2) retardance, while in
(b) the surface of the diattenuation sphere represents all perfect polarizers (D= 1).
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2.6b. Action of a Wave Plate on the Poincaré Sphere

While the use of a sphere to identify sets of polarization operators may seem very
academic, even esoteric, it has immense use as an intuitive aid. As light propa-
gates through a number of polarization elements, it is difficult to imagine how the
polarization ellipse changes.

The action of a wave plate can—with the aid of the Poincaré sphere—be under-
stood as a simple rotation. Recall that the Mueller matrix corresponding to a wave
plate, a unitary Jones matrix, has a first row and first column equal to (1 0 0 0 )
[Eq. (50)], a reflection of the fact that wave plates are lossless and cannot polarize
unpolarized light. It can be shown that the lower 3× 3 submatrix, however (the part
that modifies the light’s SOP and, thus, its polarization ellipse), takes the form of a
rotation matrix [4,31].

Very simply, the action of a wave plate is to rotate (in a right-handed sense) the Stokes
vector of incident light on the Poincaré sphere about its eigen-axis (α̂′) by an angle
equal to its retardance (|Eα′|). Since the eigen-polarization of the wave plate lies along
the axis±α̂′, it is unchanged by this rotation.

In this way, it is easy to see geometrically that a half-wave plate rotates the angle
of linear polarization states—the π rotation about any axis in the equatorial plane
returns a linear polarization back to the equatorial plane. Or it is easy to see why a
quarter-wave plate oriented at 45◦ to a x polarization circularizes it—π/2 radians
of rotation are exactly what is needed to bring it up to the sphere’s pole. If incident
polarization is not specified, the transformations enacted by a given wave plate as its
retardance is varied are concentric circles around the axis ±α̂′. Wave plates—unitary
operators—enact rotations that preserve length (intensity) and inner product (angle)
between Stokes vectors.

Manipulations that are unilluminating in the brute-force algebra of the Jones calculus
become insightful when viewed this way. Some examples of polarization transforma-
tions by wave plates are shown in Fig. 7.

Figure 7

(a) (b) (c)

Action of a wave plate (unitary) operator visualized on the Poincaré sphere.
(a) In general, a wave plate enacts a rotation of the Stokes state-of-polarization (SOP)
on the Poincaré sphere. The input state |in〉 (whose SOP is represented by a green
dot) processes about the eigen-polarization of the wave plate (whose Stokes vector
is denoted by a blue arrow) by an angle equal to the retardance (π/3 shown here),
yielding an output |out〉 (red dot). In general, output states from the unitary operator
for any retardance, given |in〉 as an input, are constrained to lie along the purple circle.
(b) This readily explains why x polarization is transformed into circular when passed
through a wave plate with π/2 retardance oriented at 45◦ and (c) why a crystal with
optical activity (phase retardance between circular polarizations) rotates the angle of
linear polarization.
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2.6c. Action of a Diattenuator on the Poincaré Sphere

Diattenuators, on the other hand, are lossy. A perfect polarizer, for instance, will
convert all incident polarization states to its preferred pass-axis while reducing their
intensity; the polarization orthogonal to the pass-axis is extinguished. In general, a
diattenuator simultaneously scales the length (intensity) of an incident Stokes SOP ŝ
and changes its direction.

For a diattenuator with an eigen-axis given by±β̂ ′ and a diattenuation D= tanh(| Eβ ′|),
the transmitted intensity is

T =
1

1+D
(1+D(β̂ ′ · ŝ )), (93)

which depends both on the diattenuation and the distance of the incident polarization
and the diattenuator’s pass polarization. This can be visualized by distorting the shape
of the Poincaré sphere. The direction along +β̂ ′ will remain of unit radius, but −β̂ ′

will be brought closer to the origin (all the way to the origin, if D= 1). T is constant
in planes perpendicular to the±β̂ ′ axis.

In the case of a perfect polarizer, any incident polarization exits as β̂ ′. In general, we
have [4,42]

t̂ =

√
1−D2

1+D(β̂ ′ · ŝ )
ŝ +

D+ (1−
√

1−D2)(β̂ ′ · ŝ )

1+D(β̂ ′ · ŝ )
β̂ ′, (94)

where t̂ is the outgoing SOP. This is a complicated expression. It can be understood
as a distortion of the Poincaré sphere along the diattenuator axis. Polarization states
are “squeezed” to point closer to +β̂ ′; the degree of this squeezing is governed by
D. This often represented by a wireframe in which all incident polarization states are
represented by a wireframe that gives the original (undistorted) Poincaré sphere as
mapped to new locations by the diattenuator. This is shown in Fig. 8.

2.7. Polarimetry
2.7a. Stokes Vector Polarimetry

The entirety of this section so far has been dedicated to the mathematical and physi-
cal description of light’s polarization state. We have not addressed (directly, at least)
how the polarization state of a beam can be measured. Such a measurement is known
as polarimetry, and an instrument that carries it out is known as a polarimeter.

At low frequencies, the electric field vector can be observed directly. No optical
oscilloscope exists, however, and all measurements of the electric field (and its phase)
must be indirect, most commonly making use of square-law intensity detectors.
Relative phase is an important concept in defining the Jones vector. Phase is measured
in optics by interferometric means. In principle, for a perfectly polarized source, the
Jones vector could be measured by projecting the beam onto its x - and y -polarized
components, measuring their intensity, and deducing relative phase between the
two in a Michelson interferometer, observing the shift in the fringes at zero path
difference. Practically speaking, this is cumbersome, and absolute phase difference
measurements are complicated by assuring this zero path delay condition, which
requires subwavelength positioning precision. Moreover, this prescription does not
work in the case of partially polarized light.

A more conventional technique involves projective measurements of the unknown
Stokes vector onto other Stokes vectors using a diattenuator and measuring the result-
ant power. In fact, Stokes’ prescription of the Stokes vector is an example of such a
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scheme, involving six projective polarization state measurements as was first intro-
duced in Eq. (31). Despite its more fundamental importance, the Stokes formalism,
then, was built around the practical concerns of polarimetry.

Mathematical definition. Stokes’ prescription, however, can be generalized further.
Suppose a beam whose polarization state is to-be-measured has a Stokes vector given
by ES. If this beam is passed through a diattenuator (a polarization optic that enacts
polarization-sensitive intensity transmission) with a Mueller matrix D, the resulting
polarization state is given by

ES ′ = DES. (95)

The observed intensity is given by the first element of ES ′, S ′0, but this in turn is gov-
erned by just the first row of D. This first row is itself a Stokes vector, the so-called
diattenuation vector [from Eq. (47)]. Then, we have

I = S ′0 = ED · ES. (96)

Suppose this experiment is carried out N times while the diattenuation vector is
made to vary (either by physically turning it, by modulating some electrically defined
polarization optic, or by a variety of other methods). Then, the intensity resulting from
the nth measurement is given by

In = EDn · ES. (97)

All N measurements can be described once compactly in matrix notation as

Figure 8

(a) (b)

Action of a diattenuator visualized with the Poincaré sphere. The effect of a diat-
tenuator (Hermitian) Jones matrix can be visualized by sampling the Poincaré sphere
(the space of all possible input polarization states) with a wireframe mesh. A diatten-
uator in general modifies both the amplitude and polarization state of incoming light.
These can be visualized separately by scaling the radius of the wireframe to represent
output power as a function of input polarization [(in accordance with Eq. (93)] and
by distorting the wireframe to represent output polarization [Eq. (94)]. This is done
for a weak diattenuator [(a) D= 0.5] and a strong one, approaching a perfect polar-
izer [(b) D= 0.95], both for x -polarized light. In (b), the diattenuator’s tendency to
convert all incident polarizations to its preferred one is evident in the sparsity of the
output wireframe.
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S3

 , (98)

or simply as

EI = A ES, (99)

where EI is a list of measured intensities and A is an N × 4 matrix containing the four-
element instrument vectors of each of the N diattenuators. A is often referred to as the
instrument matrix—it is a mathematical description of the linear mapping between
experimental observations (the entries of the intensity vector EI ) and the incident
Stokes vector ES.

If the instrument matrix is square (i.e., N = 4) and, notably, if all of its rows are lin-
early independent so that A is not singular, we can write

ES = A−1 EI . (100)

If the matrix A is known, and if the instrument performing the polarimetric mea-
surement is calibrated, the incident Stokes vector ES can be determined with a simple
linear algebraic inversion. This directly shows that only four projective polarization
state measurements are needed to constrain the four-element Stokes vector. Stokes’
prescription, while intuitive, is not minimal.

As long as four, linearly independent analyzers form the rows of A, the Stokes vector
can be determined. This will always be possible if the Stokes vectors of the analyz-
ers, when plotted on the Poincaré sphere, subtend a three-dimensional (3D) volume
when their tips are connected. This means that, for example, four linear polarizers at
different orientations cannot form an invertible A, but the addition of one elliptical
analyzer (pointing out of the equatorial plane of the sphere) makes the subtended
volume nonzero and A non-singular. The volume subtended by the set of four analyz-
ers is in some sense a measure of the fidelity of this inversion; four nearly identical,
but slightly different, analyzers provide nearly the same information, subtend little
volume, and yield an instrument matrix with det(A)≈ 0. In the presence of any mea-
surement noise, the Stokes vector itself is highly uncertain. The optimum scenario
corresponds to when these four analyzers trace out the vertices of a regular tetrahe-
dron on the Poincaré sphere, meaning the analyzers are maximally different from
one another and the polarimetric measurement provides the maximum diversity of
information (an observation first recorded by Azzam et al. [43]).

Measurement accuracy can be further enhanced if N > 4, as in Stokes’ scheme, at the
expense of needing to take more measurements. In that case, A is rectangular and can-
not be inverted directly. Instead, we solve for ES in the least squares sense (since it is
overdetermined) by using the (left) pseudo-inverse:

ES = ((AT A)−1 AT) EI . (101)

In this case, the matrix condition number cond(A) quantifies the degree to which
the polarimetric measurement is or is not invertible (low condition numbers
are “well-conditioned”; high condition numbers—up to ∞—showcase “poor
conditioning”).
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Applications of optical polarimetry. Polarimetry is of great interest in the study
of polarization optics in general. Today polarimetry is used in a variety of scien-
tific and technological applications, too numerous to name here. Some of these are
highly technological in nature, such as in computer vision (where it is used for 3D
surface-normal reconstruction [44–46]) and defense-related applications (where man-
made objects may be discerned from the background based on the polarized nature
of Fresnel reflection [47,48]). Much work on polarimetry has come from the remote
sensing community, where the scattering of polarized light off of natural scenes may
reveal interesting scientific information on its makeup. Polarimetry is a widespread
technique in the radar community [49]. Optical polarimetry is currently used in
atmospheric science where the scattering of linearly polarized light is observed from
space, helping to constrain the particle size distribution of clouds and aerosols [50].
It is also widely used in astrophysical studies of the sun where Zeeman-splitting,
observed with polarized light, sheds light on solar magnetic field distributions [51].

The applications of polarimetry would require a separate review article (and these
already exist: see, e.g., [2,5,47,48]). So too would the technologies enabling it. The
essence, however, is contained in Eq. (100). At least four projective measurements
are needed to obtain the Stokes vector (or three, if only the linear contents S0, S1, and
S2 are needed as in many applications). Polarimeters differ in how these measure-
ments are implemented. In a division-of-time polarimeter, measurements are taken
with a single sensor as polarization-analyzing optics change. This commonly means
mechanically rotating wave plates and polarizers, but some electrically modulated
polarizers do exist (based on, e.g., LCs). This allows for a minimum of componen-
try, but the speed at which optics can be readjusted limits time resolution, and moving
parts are often undesirable. In a division-of-amplitude polarimeter, the incoming beam
is split among multiple paths (using, e.g., beam splitters, a grating, or other optics)
that each implement different polarization analyzers. This allows for a snapshot mea-
surement, at the detriment of compactness (more optics are required). In applications,
the Stokes vector is often determined over a 2D photographic image. This is known
as imaging polarimetry. A third technique exists in imaging polarimetry, in which the
focal place of the imager itself has pixels patterned with polarization analyzers. This
approach is compact and snapshot, but it suffers from the so-called “instantaneous
field-of-view” issue in that adjacent pixels, being physically separated in space, do
not look at exactly the same position in a scene.

We direct the reader to other resources for more thorough reviews of polarimetric
applications and instrumentation [2,5,47,52].

2.7b. Mueller Matrix Polarimetry

In a variety of applications—especially those involving active illumination where the
polarization of incident light can be controlled—it is of interest to not only determine
the Stokes vector of a beam but to measure the polarization transfer characteristic of a
sample as contained in its 16-element Mueller matrix M . The procedure of determin-
ing M is known as Mueller matrix polarimetry. We remark on it only briefly here (see
[52] and [2] for more detail).

The Mueller matrix transforms an input Stokes vector ESin into an output ESout:

ESout = M ESin. (102)

In Mueller matrix polarimetry, a sample is probed with N input polarization states,
and the polarization state emerging is measured by a Stokes vector polarimeter. This
process can be expressed as
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
−ES (1)in −

−ES (2)in −

...
−ES (N)in −

 , (103)

or more compactly as

O= M I , (104)

where M is the Mueller matrix to-be-determined and O and I are N × 4 matrices
with output and input Stokes vectors, respectively, as their rows. Given suitably
chosen input polarization states, I is invertible, and we can write

M = OI−1 (105)

for N = 4 or

M = O(I T(I I T)−1) (106)

if N > 4 and the system is overdetermined. In this case, we solve for M in the least
squares sense, and Eq. (106) uses the (right) pseudo-inverse of I .

3. JONES MATRIX FOURIER OPTICS: PARAXIAL DIFFRACTION WITH
POLARIZATION

In this section, we consider a simple mathematical framework by which polarization
can be incorporated into the (paraxial) diffraction of electromagnetic waves. This
same framework—which we refer to as Jones matrix Fourier optics—can, given
a designer optical medium in which the polarization ellipse may vary controllably
from point-to-point, be used as a mathematical and intuitive tool for designing useful
optical elements.

We begin by summarizing Fourier optics as it is broadly understood in the context of
diffraction and imaging systems.

3.1. Fourier Optics and the Plane Wave Expansion

Solution of the wave equation, Eq. (1), is greatly simplified by making two
assumptions, in particular (1) that only a single polarization is of interest, so
EE (Er , t)= E (Er , t)d̂ along unit vector d̂ and (2) that space and time dependence may
be separated by assuming E (Er , t)=U(Er )e iωt . Given this assumption of a monochro-
matic, time-harmonic solution, we need only solve for the complex wave amplitude
U(Er ) at a single frequency ω. Substitution of this time-harmonic solution into the
wave equation yields the Helmholtz equation,

(∇2
+ k2)U(Er )= 0, (107)

where k = nω/c = 2π/λ is again the wave vector. It is readily verified that the plane
wave U(Er )= e i Ek·Er is a solution of the Helmholtz equation. By linearity, so too are any
and all superpositions of such plane waves.

This insight underlies the angular spectrum (or plane wave expansion) picture of
diffraction. Suppose a monochromatic field is described by a (potentially compli-
cated) U(x , y , z= 0) in some plane z= 0 in space. Mathematically, U(x , y , z= 0)
can be described by its 2D Fourier transform,
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A(kx , ky ; z= 0)=
∫∫

+∞

−∞

U(x , y , z= 0)e−i(kx x+ky y )dxdy . (108)

The function A(kx , ky ) weights sinusoidal functions in the plane z= 0 with k-vectors
given by (kx , ky ). In this way, we can imagine the field as a superposition of these as

U(x , y , z= 0)=
∫∫

+∞

−∞

A(kx , ky )e i(kx x+ky y )dkx dky (109)

This is simply an inverse Fourier transform. The use of a Fourier transform, at first
just a mathematically justified choice, becomes physically interesting when paired
with the realization that a field with an in-plane wave vector (kx , ky ) is formed by a
plane wave incident at off-normal incidence on the plane z= 0. At the chosen fre-
quency ω (corresponding to a wavelength of λ= 2πc/(ωn)), a plane wave has an
in-plane wave vector (kx , ky )when

kz =

√
|k|2 − (k2

x + k2
y )=

√(
2π

λ

)2

− (k2
x + k2

y ). (110)

The field U(x , y , z= 0), then, can be formed by the interference of a continuum
of plane waves incident at different angles, as governed by the Fourier transform
A(kx , ky ; z= 0). The azimuthal angle of each plane wave is determined only by kx

and ky , while its tilt relative to the normal is governed by the ratio kz/
√
(k2

x + k2
y ).

Some of these plane waves have (k2
x + k2

y ) > 2π/λ, rendering kz imaginary by
Eq. (110); these “evanescent” plane waves are attenuated with increasing z.

If the field U(x , y , z= 0) can be “thought of” as comprising these plane wave com-
ponents, it is just a superposition of these plane wave components. By the linearity of
the Helmholtz equation, each can be treated independently and propagates individu-
ally forward in space. We can immediately write that

A(kx , ky ; z)= A(kx , ky ; z= 0)e ikz z. (111)

After advancing each plane wave component by the appropriate phase, we can synthe-
size the field in any plane z as

U(x , y , z)=
∫∫

+∞

−∞

A(kx , ky ; z= 0)e i(
√
(2π/λ)2−(k2

x+k2
y ))ze i(kx x+ky y )dkx dky . (112)

This is a highly intuitive way of understanding optical wave propagation in free space.
Any signal can be broken into its plane wave components, and the phase of each can
be suitably shifted with propagation in z. This is shown in Fig. 9(a).

Beyond simple propagation, the plane wave expansion picture aids in modeling the
interaction of light with planar obstacles. We assume that an object lies in the plane
z= 0, which modifies the field. In a simplistic way, we can relate the field just before
the obstacle, U−, to the field just after, U+, with use of a transmission function,

U+(x , y , z= 0)=U−(x , y , z= 0)t(x , y ). (113)

This transmission function t(x , y ) is complex, encoding both amplitude scaling and
phase shifts. Given knowledge of the field illuminating the obstacle, the field just
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after can be calculated by Eq. (113) and propagated forward in space with Eq. (112).
This understanding of an obstacle as being described by a transmission function
t(x , y )—a sort of structured screen standing in as a proxy for what could potentially
be a complex scattering problem—relies on several assumptions about the nature of
the obstacle (see the discussion in Subsection 3.4), but is a notion that has nonetheless
found widespread use in optics. Throughout this review, we will rely on this descrip-
tion to model the interaction of light with various engineered polarization-sensitive
optical elements (Section 4).

Armed with the angular spectrum picture of wave propagation, we can make even
more general statements about light propagation through optical systems. These, in
general, may be composed of many optical elements, such as lenses, gratings, and
even surfaces implementing spatially varying transfer functions like t(x , y ) (not to
mention the empty spaces between them). We can describe any such system simply,
so long as it is linear. Practically speaking, this means that the optical system’s trans-
fer characteristics cannot depend on the nature of the signal propagating through. In a
more philosophical sense, a linear system cannot exhibit an “awareness” of the signal
on which it operates.

Given a linear optical system (imaging or non-imaging), we can write that

U2(x2, y2)=

∫∫
+∞

−∞

h(x2, y2; x1, y1)U(x1, y1)dx1dx2, (114)

where h(x2, y2; x1, y1) is an impulse response function, giving the electric field
evoked in the output plane at (x2, y2) by a point disturbance at (x1, y1) in the input
plane, with the form of h abstracting away all specifics of the optical system in ques-
tion [Fig. 9(b)]. For imaging systems, Eq. (114) takes the particularly convenient form
of a convolution integral [15].

The angular spectrum representation of optical fields and the transfer function
abstraction of optical systems are important concepts of Fourier optics (Fig. 9). In
Fourier optics, these methods are applied to space-dependent fields, but the same
language and intuition are applicable to the time-dependent signals encountered in
electronics. Fourier optics emerged from intense work in this area beginning in the
1920s, 1930s, and 1940s, benefitting greatly from the flurry of developments in radar

Figure 9

(a) (b)

Two important concepts from Fourier optics. (a) A field U(x , y ) is composed of a
spectrum of plane waves A(kx , ky )—its angular spectrum. Each plane wave in the set
can be individually propagated forward in space. (b) Any linear optical system can be
abstracted as a black box described by an impulse response function h(x2, y2; x1, y1),
where h describes the field evoked at (x2, y2) at the system’s output in response to a
point excitation (x1, y1) at the system’s input. (Only lenses are shown here for illus-
tration, as this formalism is often applied to imaging systems, but any configuration
of linear elements, such as sections of free space, lenses, holograms, gratings, and
mirrors, can be described in this manner.)
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and RF electronics during the Second World War ( [53] and [54] are two notable
early references). Fourier optics was further solidified with the publication of J.W.
Goodman’s Fourier Optics [15] in 1968, written on the heels of the invention of the
laser in 1960. The laser—with its ability to produce temporally and spatially coherent
fields—hastened the widespread adoption of Fourier optics as a tool of research and a
pillar of optics education.

3.2. Paraxial Interference of Plane Waves
3.2a. Two Polarized Plane Waves

Analytical treatment. Light is polarized and is inherently vectorial. Polarization,
however, traditionally receives scant mention in Fourier optics. Goodman’s text [15],
for instance, makes mention of polarization only twice: once near the beginning when
it is set aside in treating diffraction, and again in an appendix where polarization
effects in LCs are introduced in relation to spatial light modulators (SLMs). Fourier
optics is almost always spoken of with regard to scalar fields. Here, we will extend
Fourier optics to apply to fields that have spatially varying polarization properties and
to the optical elements that produce them.

The fact that any superposition of plane waves is a solution of the Helmholtz equation
is the foundation of Fourier optics. This is true independent of the polarization state
of the plane waves involved. We begin with the simplest problem: the interference of
two plane waves with different polarization states.

For simplicity, this is done in one dimension. We define the global Cartesian coor-
dinate system to be given by (x , y , z). Suppose there are two plane waves, |E1〉

and |E2〉 whose k vectors lie in the (x , z) plane. One plane wave points along the
z axis with Ek1 = k0(0, 0, 1), and a second plane wave is tilted at an angle θ with
Ek2 = k0(sin θ, 0, cos θ). These fields occupy all of space, but at some imaginary plane
z= 0 we examine their interference. The electric field of the first plane wave lies in
the (x − y ) plane, but the second plane wave has a tilted set of reference axes (x2, y2)

in which its electric field lies. The Jones vectors of each plane wave can then be
expressed as

|E1(Er )〉 =
(

E x
1

E y
1

)
, (115)

|E2(Er )〉 =
(

E x2
2

E y2
2

)
. (116)

This problem is shown schematically in Fig. 10. The total electric field in the global
coordinate system is

EE (Er )=

 E x

E y

E z

= |E1〉e i(Ek1·Er ) + |E2〉e i(Ek2·Er ) =

 E x
1 e i(Ek1·Er ) + E x2

2 e i(Ek2·Er ) cos θ
E y

1 e i(Ek1·Er ) + E y2
2 e i(Ek2·Er )

E x
1 e i(Ek1·Er ) + E x2

2 e i(Ek2·Er ) sin θ

 .

(117)

Being 3D, this EE is not a Jones vector, and in general it cannot be treated with any
of the same mathematical machinery developed around plane wave polarization
(e.g., the Stokes vector, Jones matrices, the Poincaré sphere). Crucially, we adopt a
small angle limit, the paraxial limit, in which θ ∼ 0. In the paraxial limit, sin θ ∼ 0
and cos θ ∼ 1. Note that the former is a stronger small angle limit than is often used
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in physics, in which sin θ ∼ θ . Here, we take only the zeroth-order term of the Taylor
expansion. These small angle assumptions mean that the component of the field along
the propagation direction z tends to 0, and the wave is again transverse (an approxi-
mation we grapple with in Subsection 3.4). The individual Jones vector coordinate
systems of the two beams become identical and aligned with the global (x , y ) axes.

We make a conscious decision, however, to not apply this small angle approximation
to the k-vectors, which are still assumed to deviate by an angle θ . We can then write
the overall field as

EE (Er )=

 E x
1 e i(Ek1·Er ) + E x

2 e i(Ek2·Er )

E y
1 e i(Ek1·Er ) + E y

2 e i(Ek2·Er )

0

 . (118)

In the plane z= 0, Er = (x , y , 0), and we have

EE (Er )=

 E x
1 + E x

2 e i(k0 sin θ)x

E y
1 + E y

2 e i(k0 sin θ)x

0

 . (119)

The electric field is now transverse, and we can again use the Jones formalism to write

|E (x )〉 = |E1〉 + |E2〉e i(k0 sin θ)x . (120)

In the plane, the resultant polarization state is the superposition of the two Jones
vectors with a spatially varying phase shift. The polarization ellipse has a shape that
varies in x , which repeats periodically after a grating period of 3= λ/ sin θ . In other
words, the spatially varying linear phase shift in the plane z= 0 is mapped into a
polarization interference pattern. If 〈E1|E2〉 = 0, no intensity interference can occur,
and only the polarization state changes. If 〈E1|E2〉 6= 0, interference can appear as
both a change of polarization and a change of wave intensity. If |E1〉 and |E2〉 describe
the same Jones vector, polarization is constant in x , and only intensity fringes appear.

As an aside, we mention that the superposition of two polarization states with variable
phase can occur in other contexts in optics. For instance, if two frequencies with dif-
fering Jones vectors are combined, the frequency can be seen as a linear gradient of
relative phase (going as 1ωt) in time. In this way, a periodic, time-varying polariza-
tion ellipse appears, much like the patterns in this section appear separated in space.
This was the basis of the discussion surrounding Fig. 5. The light in these gratings can

Figure 10

Geometry of an interference problem between two polarized plane waves.
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also be seen to be unpolarized, if the ellipse is averaged over a distance that is large
compared to the grating period.

Visualization with the Poincaré sphere. The Stokes formalism and Poincaré sphere
provide useful geometric intuition here. It can be shown that the polarization state
produced by the interference of two polarized plane waves as their relative phase
varies from 0 to 2π traces out a circle on the Poincaré sphere. The nature of this
circle depends on the two polarization states involved and their relative magnitude.
For simplicity, suppose we are interested in the polarization ellipse produced by the
interference

|E tot〉(1− b)|E1〉 + b|E2〉e iφ, (121)

where we take both |E1〉 and |E2〉 to be normalized so that b ∈ [0, 1] controls the
relative magnitude of the two. We consider an example where 〈E1|E2〉 = 0, and
in particular |E1〉 = |x 〉 and |E2〉 = |y 〉. If b = 1/2 (equal magnitude), the resultant
polarization sweeps a great circle located in the s 1 = 0 plane on the Poincaré sphere.
For φ = 0, |45◦〉 linear polarization is produced, then |R〉 at φ = π/2, and so on. If
b is modified so that one polarization is stronger than the other, the circle remains
centered on the s 1 axis but slides along it toward the Stokes vector corresponding to
|E1〉 or |E2〉 (toward |E1〉 for b < 1/2, toward |E2〉 for b > 1/2). For b = 0 or b = 1,
one polarization dominates, and the circle shrinks to a point. In this case of orthogonal
polarizations, the amount of arc traversed along the circle is proportional to φ.

This is shown in Fig. 11 in which |E1〉 = |x 〉 and |E2〉 = |y 〉. Five cases are shown
in Fig. 11, both as paths on the Poincaré sphere (left) and as periodic distributions
of polarization ellipses seen in the plane z= 0 (right). These cases correspond to
b = 1

4 ,
1
3 ,

1
2 ,

3
4 ,

4
5 , ordered from bottom to top. In the middle case (b = 1

2 ), light goes
from 45◦ linear to right-circularly polarized (RCP), then to 135◦ linear and left-
circularly polarized (LCP), and back again: a great circle on the Poincaré sphere.
Notably, because 〈E1|E2〉 = 0, there is no amplitude modulation; interference only
manifests as a modulation of the polarization ellipse’s shape.

When 〈E1|E2〉 6= 0 (non-orthogonal states), however, this is not the case. As an exam-
ple, we consider the interference of |x 〉 linearly polarized light with a second linear
polarization of equal magnitude that is not orthogonal (Fig. 12). In each case, φ is
varied from 0 to 2π in discrete, evenly spaced steps, and the resulting polarization
is visualized on the Poincaré sphere as the polarizations become more parallel from

Figure 11

Interference of |x 〉 and |y 〉 polarized light. Each circle on the Poincaré sphere denotes
a different relative weight between |x 〉 and |y 〉 and corresponds by color to a row in
the adjacent table, depicting how the interference between two slightly tilted plane
waves appears as a periodic interference pattern of polarization state. One repeating
period of this pattern is shown.
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left to right. Once again, this traces out a great circle that bisects the line between
the Stokes vectors of |E1〉 and |E2〉. However, the distance traversed along this great
circle is no longer proportional to φ: points are sparser near the diametrically oppo-
site end, increasingly so as the polarizations become parallel. This is a trade-off in
interference “fringes” between the amplitude and polarization degrees-of-freedom of
the light. When the polarizations are close to parallel, the polarization changes only
slightly across the grating, but there is high intensity contrast—approaching perfect
contrast (with I ∝ | cos φ|) when the two states are parallel.

As a final note, we again emphasize that this view of plane wave interference relies
crucially on a small angle approximation, essentially neglecting the longitudi-
nal component E z. This means that the distribution of polarization ellipses in the
plane z= 0 shown throughout this section does not exactly satisfy Maxwell’s equa-
tions. Nonetheless, we work in this regime throughout this work. We discuss this in
Subsection 3.4.

3.2b. Multiple Polarized Plane Waves

Naturally, it is tempting to generalize this problem. Can we apply any of the intuition
of the previous section to a case when many (>2) polarized plane waves interfere? If
we adopt the same paraxial approximation wherein the Jones vectors of each plane
wave can add as though their electric fields exist in the same transverse plane, albeit
with differing transverse phase gradients, we can write

|E tot(x )〉 =
n∑

p=m

wp |E p〉e i p2π x . (122)

In Eq. (122), we assume a finite set of plane waves with indices between p =m and
p = n, as in Fig. 13. Distance has been normalized so that the grating repeats peri-
odically on the range x ∈ [0, 1). Each plane wave in the set has an amplitude weight
wp and a normalized Jones vector |E p〉 and traverses p multiples of 2π of phase in a
period.

We can attempt to apply the same visual intuition developed in the last section to this
case; even with just three plane waves, this proves difficult. A casual investigation
of this problem can yield a whole zoology of outcomes, with sometimes exotic paths

Figure 12

Interference of non-orthogonal polarization states, which induces amplitude
modulation.
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on the Poincaré sphere and complex variation in output intensity (some examples are
shown in Fig. 14). As the number of orders involved increases, this problem becomes
akin to Fourier analysis, which proves itself to be a more useful tool and language
in describing these problems. In the next section, then, we adapt the language and
formalism of Fourier optics to problems of polarized light.

3.3. Scalar, Vector, and Matrix Regimes

The incorporation of polarization into the formalism of Fourier optics lends itself to
three related levels of abstraction. These are referenced throughout the review.

3.3a. Scalar

The plane wave decomposition is the fundamental concept of Fourier optics. Given
a field U(x , y ) at a given plane, the plane wave spectrum A(kx , ky ), computed by
Fourier transform [Eq. (108)], provides sufficient information to propagate U(x , y )
to any other plane in space. The field U(x , y ) is specified by amplitude and phase,
two free parameters that can vary with space. We refer to this as the regime of scalar
diffraction. At this level, polarization is not a part of the picture, set aside much as in
conventional discussions of Fourier optics.

3.3b. Vector

Under the guise of the above paraxial approximation, we can also imagine a field
|U(x , y )〉, which is a spatial distribution of Jones vectors. A Jones vector is composed
of two complex fields, two orthogonal components of the polarization in any basis.
It is described by four free parameters. These can be parameterized in several ways,

Figure 13

Interference of multiple polarized plane waves, equally spaced in angle, with indices
lying between p =m and n.

Figure 14

Complex polarization and intensity patterns over one grating period produced by three
(left) or four (right) arbitrarily chosen, linearly polarized beams whose diffraction
orders and angles of polarization are shown in a table for each case. The polarizations
of the plane waves are labeled with blue dots on the Poincaré sphere. In each case, all
plane waves have equal weight in the superposition. Each table denotes the polariza-
tion state of the assumed diffraction orders—here, |θ〉 denotes linearly polarized light
with an azimuth angle of θ .
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for instance, as an overall phase, an overall amplitude, a phase difference between
polarization components, and a relative amplitude between the two. Whatever the
case, orthogonal polarizations do not interact and can be treated separately. If

|U(x , y )〉 =
(

U1(x , y )
U2(x , y )

)
, (123)

then

A1(kx , ky )=

∫∫
+∞

−∞

U1(x , y )e i(kx x+ky y )dxdy (124)

and

A2(kx , ky )=

∫∫
+∞

−∞

U2(x , y )e i(kx x+ky y )dxdy . (125)

For convenience, we can express this as a single, vector-valued equation:

|A(kx , ky )〉 =

(
A1(kx , ky )

A2(kx , ky )

)
=

∫∫
+∞

−∞

|U(x , y )〉e i(kx x+ky y )dxdy . (126)

In Eq. (126), we can imagine the Fourier transform as distributing over each ele-
ment of the Jones vector |U(x , y )〉. The angular spectrum, now Jones vector-valued,
describes the amplitude, weight, and polarization ellipse of the plane wave component
propagating at an angle determined by its in-plane wave vector (kx , ky ).

In computing A(kx , ky ), it is as though the arrows drawn in Figs. 10 and 13 have been
reversed: Given a field, the plane waves propagating forward in space are determined.
However, using an inverse Fourier transform, the field |U(x , y )〉 formed by a given
plane wave spectrum |A(kx , ky )〉 can be determined. If |A(kx , ky )〉 is discrete and
consists of diffraction orders with uniform spacing, the integral in Eq. (126) becomes
a sum, and |U(x , y )〉 is periodic, a polarization grating, as in the previous section.
If |A(kx , ky )〉 is instead continuous, |U(x , y )〉 has no periodicity, and a continuum
of diffraction orders can be imagined to emerge. We refer to this picture linking
|U(x , y )〉with |A(kx , ky )〉 as the vector regime of diffraction.

3.3c. Matrix

Part of the power of Fourier optics is that it can deal adeptly with light’s interaction
with obstacles and—through the notion of an impulse response function—whole
optical systems. In the scalar regime, that is because a field U−(x , y ) just before an
obstacle can be modified by an obstacle with a complex-valued transmission function
t(x , y ), yielding U+(x , y )=U−(x , y )t(x , y ) just after. The transformation of polari-
zation as described by the Jones vector has more degrees-of-freedom than a single
complex number. When dealing with polarized light, the Jones matrix (which here we
allow to vary spatially) is the analogous concept. A field of Jones vectors just before
an obstacle |U−(x , y )〉will form |U+(x , y )〉 just after as mediated by the Jones matrix
function,

J (x , y )=
(

J11(x , y ) J12(x , y )
J21(x , y ) J22(x , y )

)
, (127)

with

|U+(x , y )〉 = J (x , y )|U−(x , y )〉. (128)
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J (x , y ) contains four spatially varying functions. The angular spectrum immediately
after the obstacle is given by

|A+(kx , ky )〉 =

∫∫
+∞

−∞

J (x , y )|U−(x , y )〉e i(kx x+ky y )dxdy , (129)

with the Fourier transform distributing over the two elements of the Jones vector,
as before. Suppose that the incident field is a normally incident plane wave with a
spatially uniform polarization state, amplitude, and phase. The analysis also applies
to a plane wave incident at an angle, provided the Fourier transform is suitably
shifted, or even to a non-plane-wave source if the convolution theorem is applied.
This is a common situation in optics, with wide applicability. The output of a laser,
for instance, can often be approximated in this way (even if its true profile is more
Gaussian) if its beamwaist is large compared to the object or region of interest. Then,
|U−(x , y )〉 = |U−〉with no space dependence. In that case, it can be removed from the
integral in Eq. (129) as a constant,

|A+(kx , ky )〉 =

(∫∫
+∞

−∞

J (x , y )e i(kx x+ky y )dxdy
)
|U−〉. (130)

It is notable that the quantity in parentheses in Eq. (130) is itself a Jones matrix, a kind
of matrix-valued angular spectrum given by

A(kx , ky )=

∫∫
+∞

−∞

J (x , y )e i(kx x+ky y )dxdy =
(
F{J11(x , y )} F{J12(x , y )}
F{J21(x , y )} F{J22(x , y )}

)
.

(131)

The matrix A(kx , ky ) is a Jones matrix transformation that describes the behavior of
the plane wave directed at an angle governed by the in-plane wave vector (kx , ky ),
obtained by distributing the Fourier transform over each of the four spatially vary-
ing entries of J (x , y ). This is an important distinction. In this description, the Jones
matrix angular spectrum A(kx , ky ) is decoupled from any particular incident polari-
zation, which may illuminate J (x , y ); in a sense, this description is a bookkeeping
technique that allows all possible incident polarization states |U−〉 to be handled at
once. At first, this is a strange perspective to adopt: Fourier analysis and diffraction
are calculated on Jones matrices, which are not themselves electric fields. Rather,
the Jones matrix is a stand-in for all possible electric fields that might illuminate the
polarization-sensitive object.

Abstractly, a plane wave with in-plane wave vector (kx , ky ) can be thought of as a
polarization-sensitive device with a Jones matrix given by A(kx , ky ). This device
could be a wave plate, a diattenuator, or some combination of the two, as governed by
the A(kx , ky )’s matrix polar decomposition (Subsection 2.3). Moreover, if J (x , y )
is periodic, these Jones matrix devices form a discrete set, carried by equally spaced
diffraction orders.

Through this lens, a spatially varying polarization modifying obstacle J (x , y ) can be
viewed as enacting many polarization-sensitive devices in parallel, carried as Jones
matrix weights on its diffraction orders. This perspective, along with the reciprocal
nature of the Fourier transform, means that a device implementing many polarization
transformations in one can be straightforwardly described. Taking a discrete case,
assume there is a set of diffraction orders (a set {`}) onto which we wish to encode
polarization devices with functions given by { J k}. Then, we can straightforwardly
construct a periodic Jones matrix obstacle J (x , y ), which will implement this desired
behavior as
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J (x , y )=
∑
Ek∈{`}

J ke−i Ek·Er . (132)

Exactly how this mathematical description can be transformed to a real diffractive
optical element is, however, not answered by Eq. (132) and is instead the subject of
Section 4.

Broadly speaking, we refer to these notions, encapsulated by Eq. (131) linking a spa-
tially varying Jones matrix with a Jones matrix angular spectrum, as the Jones matrix
or simply matrix regime of diffraction.

This Jones matrix Fourier optics has appeared in other areas of optics, such as in the
analysis of optical systems with polarization-dependent effects (both desired and
undesired) [2], a history we briefly discuss in Subsection 3.5.

Note that the choice to use the Jones formalism here again makes use of the paraxial
approximation. The choice to use the Jones formalism immediately neglects any
longitudinal E z component that may be present. This means that any spatially varying
Jones matrix function must be “slowly varying” as compared to the wavelength to be
physical (Subsection 3.4).

3.3d. Linking the Three Regimes

As a concluding note, we stress that these three regimes—scalar, vector, and matrix—
are in fact intimately related, with the scalar and vector pictures as subcases of the
matrix description. For simplicity of discussion, we assume a periodic J (x , y ) with
a discrete spectrum { J k}. If a plane wave with Jones vector | j 〉 is normally incident
on J (x , y ), a vector field | j (x , y )〉 = J (x , y )| j 〉 results with Fourier coefficients
| jk〉 = J k| j 〉. If that vector field is then projected (analyzed) along a particular polari-
zation |ξ〉, a scalar field t(x , y )= 〈ξ | j (Er )〉 results with scalar Fourier coefficients
ãk = 〈ξ | jk〉. The vector description contains two independent scalar diffraction prob-
lems, while the matrix picture encodes two such vector problems, yielding the eight
degrees-of-freedom of the Jones matrix. Simply stated, the Jones matrix picture
can be seen as a container, a bookkeeping tool, albeit one that can yield additional
insights. This hierarchy is illustrated in Fig. 15.

3.4. Paraxiality and Polarization

The concept of a Jones vector, as traditionally defined, only makes sense if a single
transverse coordinate system is involved. Strictly speaking, we can only use the Jones
calculus to keep track of the interference of plane waves having the same Ek. Key
to the idea of incorporating polarization into Fourier optics is the idea of multiple
polarized plane waves interfering at different angles. To reconcile this, we said in
Subsection 3.2a that we limit ourselves to small angles so that the transverse coor-
dinate system in which the polarization of each plane wave component is defined
roughly overlaps.

We begin by commenting the paraxial limit taken throughout this review is actu-
ally very similar in nature to a number of other approximations commonly made in
diffractive optics as a whole, whether explicitly acknowledged or not. Chief among
these is the very concept that an optical element can be described by an amplitude
transmittance function. The assumption that the transfer through an optical element
can be described by a simple multiplication of the incoming electric field by a scalar
function assumes a certain locality to the interaction. This is equivalent to the notion
that light at high angles cannot be involved, since it is light at steeper angles that
would induce high k components that bring fast spatial variations into play. If the
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field varies over short distances, the transfer of the optical element can no longer be
local. These terms that are occasionally thrown around—a thin optical element, local
interactions—are actually all one in the same, and all hint at an approximation that
only plane waves propagating at small angular deviations from normal are involved.

In fact, the issue of polarization cannot be so easily dispensed of in Fourier optics (as
it often is) without use of the paraxial approximation. The angular spectrum repre-
sentation is an exact solution of Maxwell’s equations. However, the superposition
of more than one plane wave implies a field that is no longer transverse. So, unless
this longitudinal component E z is accounted for, a paraxial approximation (that it is
small) is being tacitly made. This is the case in most Fourier optics arguments. So,
the paraxial limit used throughout here in the form of Jones matrix Fourier optics is
no more conspicuous than the approximations in the course of developing “normal”
Fourier optics. We can, then, feel somewhat justified in its use, keeping in mind this
limitation.

What is the alternative? Light’s interaction with a periodic obstacle—including
polarization—is fully described by the rigorous coupled-wave analysis (RCWA).
RCWA is both a theoretical approach and, in its approximate form, a numerical tech-
nique for analyzing diffractive optical elements. RCWA considers a single normally
incident plane wave on a periodic permittivity (and, thus, refractive index) modula-
tion, i.e., a grating. It casts the boundary conditions from Maxwell’s equations into a
matrix equation whose solution dictates the weight and phase of all diffraction orders,
one that can be solved numerically if the set of diffraction orders is truncated [55].

Cast as an analytically exact solution to Maxwell’s equations, RCWA trudges into the
E z/non-paraxiality issue head-on and can be written for both transverse electric (TE)
and transverse magnetic (TM) incident polarization. In fact, the polarization state
and phase of each outgoing diffraction order can be computed. In this way, RCWA
can ascribe a Jones matrix, a linear polarization transfer function, to each diffraction
order, relative to the coordinate system defined by the Ek of each. The idea of specific k
having an associated Jones matrix, then, is not fundamentally paraxial. However, the

Figure 15

A hierarchical view of polarization-dependent paraxial diffraction. In the scalar
regime (left), a periodic electric field distribution t(x , y ) produces discrete orders
with scalar weights {ak}. In the vector regime (middle), the full polarization state
| j (x , y )〉 is allowed to vary periodically with space and produces diffraction
orders with characteristic Jones vectors (polarizations) {| jk〉}. Finally, in the matrix
regime, the Jones matrix of the grating may vary with space as J (x , y )—in this
case, the Fourier coefficients { J k} are themselves Jones matrix operators, encoding
polarization-dependent behaviors. The vector field can be recovered from the matrix
description if a particular polarization | j 〉 is incident, and a scalar field from a vector
one if analyzed along a particular polarization |ξ〉.



884 Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics Review

idea of a locally acting Jones matrix transfer function describing an optical element is.
In their review [55], Gaylord and Moharam describe how RCWA can be seen as the
top level of a hierarchy of a variety of approximations and heuristics, among them the
amplitude transmittance model.

3.5. Origin of Jones Matrix Methods in Fourier Optics

Light’s vectorial nature has been a consideration since the development of Maxwell’s
equations into what we know today as diffraction theory by Sommerfeld, Kirchoff,
and others. Fourier optics is a formulation of diffraction theory in terms of impulse
response and transfer functions, valid under certain approximations, that forms the
basis of a particularly useful tool for optical design and intuition. Surprisingly, con-
sideration of Fourier optics alongside the linear algebra of polarization, as we have
presented here, is not widespread in the optics literature.

This work, however, is not the first to imagine combining the two. We remark briefly
on past work of this nature here. Some of the earliest efforts in this direction were
spurred by the analysis and design of imaging systems. By the 1950s, polarized light
microscopy—that is, illuminating and analyzing samples in optical microscopy with
linear polarizers—was a biological analysis tool of great interest. In a system contain-
ing a lens between crossed polarizers, a pattern of leakage with fourfold symmetry
known as a “Maltese cross” is visible. This is an example of a polarization aberration,
stemming ultimately from the mismatch between the cylindrical symmetry of lenses
and the Cartesian symmetry of polarized light [2]. Inoué and Kubota observed and
explained this, albeit without direct use of the Jones calculus, using Fourier optics
concepts in the 1950s [56] (we thank Prof. Russell Chipman for making us aware of
this work). This was later formalized by Urbańcyzk, who—in a series of papers in the
1980s—introduced more formally the idea of a Jones matrix impulse response func-
tion [57]. These ideas were further cemented by McGuire and Chipman who extended
the methods to include a full study of polarization aberrations and polarization ray
tracing in work that continues to this day [2,58–61].

In this line of work, spatially varying polarization effects are often implicitly treated
as an undesired or unexpected outcome, to be characterized and mitigated. On the
other hand, in the present work, we are concerned with optical elements where
polarization-dependent effects can be quite deliberately and flexibly engineered. The
idea of applying Jones matrix Fourier optics to the analysis of diffractive optics has
appeared, to our knowledge, only once before, in the work of Moreno et al., at first
only theoretically [62] and later in a paper containing an experiment with an SLM
[63]. Due to the limits imposed by working with only a single SLM, however, only
fields with spatially varying polarization ellipses were synthesized (i.e., the vector
regime above, not the most general matrix case). A number of other works have come
quite close to the spirit of the approach here, however, and we will discuss a number
of these in the next section.

4. SPATIALLY VARYING POLARIZATION OPTICS: PHYSICAL
IMPLEMENTATIONS AND APPLICATIONS

We have said much of optical elements that modify the polarization of light spatially.
In the last section, we described how these optical elements may be analyzed by
extending Fourier optics to 2× 2 Jones matrix quantities. With the help of the inverse
Fourier transform, this formalism even dictates the design of these same optical
elements by constraining the mathematical form of a spatially varying Jones matrix
J (x , y ), as in Fig. 16.
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Without a tangible connection to some physical implementation, however, all of
this is only a mathematical exercise. How can an optical element be constructed that
modifies the polarization of light in a desired way, point-by-point across an optical
element? It is clear that this physical layer—in addition to all of the abstractions of
Section 3—should occupy a position of crucial importance. After all, any constraints
on what can be physically realized themselves place mathematical constraints on
J (x , y ) and, ultimately, the achievability of a given far-field function A(kx , ky )

(Fig. 16).

A variety of optical devices have been proposed (and demonstrated), which enable
spatial modulation of polarization at optical frequencies. This work spans many
decades, with clusters of research occurring at different times in different communi-
ties of optics separated in time and space (in many cases, working without awareness
of one another). This section seeks to catalog these past efforts. The sections below
are dedicated to different diffractive optics technologies that manipulate light’s
polarization. The basic capabilities of each are elaborated, and selected past works in
each area are discussed. In practice, research often evades neat categories. Some work
fits under more than one category, and it is entirely possible that some contributions
(even whole sub-fields of research) have been unwittingly omitted by this review.
What follows is an attempt to approach this task as comprehensively and as clearly as
possible while managing the trade-off between the two. A top-level summary of this
effort is provided in Table 3.

In the next section, we provide a scheme for classifying this work using the lan-
guage of Sections 2 and 3, permitting comparison between different approaches and
technologies.

4.1. Classifying Polarization-Sensitive Diffractive Optics Using the Poincaré Sphere

A scalar diffractive element is often characterized by a transmission function t̃(x , y ).
Usually, t̃ cannot take on any complex value. What is achievable depends on its par-
ticular physical implementation. These restrictions distinguish one diffractive optic
from another.

For instance—unless an element is capable of shuffling light between spatial locations
(going against the limit of a thin optical element), without gain, |t̃| ≤ 1, defining a unit
disk in the complex plane. Within this disk, some diffractive platforms (“phase-only”)
can implement t̃ anywhere along the disk’s edge; others (“amplitude-only”) are con-
strained to remain along the real axis between 0 and +1. Still finer distinctions exist—
some technologies may only implement a part of the full phase or amplitude range, or

Figure 16

A spatially varying Jones matrix described by J (x , y ) and its corresponding Jones
matrix plane wave spectrum A(kx , ky ) (related by Fourier transform F) consti-
tute a mathematical abstraction neglecting the fact that J (x , y ) must be somehow
implemented. Different technologies for doing so place different constraints on
J (x , y ), and the “near-field” produced just after the object, and the far-field behavior
contained in A(kx , ky ). This physical layer is, thus, a key design consideration.
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some a mixture of the two. In others, this control may be discrete rather than continu-
ous. Whatever the case, the geometry of the complex plane provides for simple com-
parison.

The Jones matrix has eight free parameters in contrast to t̃’s two. Nevertheless, the
Poincaré sphere—rather than the 2D complex plane—provides a visual standard-
of-comparison for polarization-sensitive diffractive optics: amplitude modulation
is generalized as a Hermitian J while phase modulation is generalized as a uni-
tary J . An arbitrary Jones matrix is fully defined by where it lies in the space of
Hermitian operators (diattenuation space, a three-vector; see Subsection 2.6a), where
it lies in the space of unitary operators (retardance space, another three-vector; see
Subsection 2.6a), and where its overall loss and overall phase, two scalars that them-
selves constitute a complex transmission function t̃ , place it in a 2D complex plane.
An arbitrary prescription of a polarization-sensitive diffractive element, then, can
be represented as a region in diattenuation space, a region in retardance space, and a
region on the complex plane. A “region” here could be a volume, a plane, a point, or a
mixture thereof, where J (x , y ) is free to reside at the discretion of the designer, given
any physical constraints imposed by a given technology.

Several possibilities are shown in Table 4. Its first row shows an example of a rather
arbitrary case in which the Hermitian component of J is constrained to lie in an oddly
shaped volume in diattenuator space, its unitary component to a general surface, and
overall phase/amplitude to a region in the complex plane. In general, these regions
could be linked by a set of inequalities and could be quite complicated, although
we note that any region can be rotated about the S3 axis of the sphere by a physical
rotation of the element in question. This representation also allows us to portray the
fullest passive control possible. As shown in the second row, this would mean that a
Jones matrix could fall anywhere in the full-ball volume of the diattenuation space,
anywhere in the retardance sphere, and anywhere in or on the unit circle of the com-
plex plane. At the other extreme, we can also represent elements with no polarization
sensitivity whatsoever (second row, a “phase-only” diffractive optic where H and U
both are I).

The real technologies discussed throughout this section lie somewhere in-between. In
each subsection that follows, and in the summary in Table 3, we describe a technology
or area of research and classify its ability to spatially control polarization, matching
each to its “Type” (the label in the leftmost column of Table 4). This hierarchy allows
for high-level comparison between platforms.

4.2. Polarization in Holography
4.2a. Early Commentaries

Some of the earliest work of this nature was born from holography. In the 1960s, the
invention of the laser set forth a flurry of research in optical holography, posited ear-
lier as a theoretical proposal in electron optics [64]. Holography—then as now—was
largely imagined in a scalar sense. This oversight, however, did not entirely escape
the notice of the optics community. Adolph Lohmann, the pioneer of the computer-
generated hologram, wrote in 1965 that, while the word “holography” roughly
translates as “total recording” from Greek, “a hologram is not really a total recording,
since only one amplitude and one phase are recorded, which would be adequate if
light were a scalar wave” [65]. Several works that followed offer early proposals of
how the holographic recording and reconstruction process might be modified to yield
an optical element—a hologram recorded in photographic film—creating fields upon
reconstruction with polarization that could vary spatially [65–68].
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A key limitation of these schemes is the fact that typical photographic film, usually
an emulsion of silver halide crystals, is neither sensitive to the polarization of light
present during exposure nor is its transmission function sensitive to the polarization
of illuminating light after development. This is what differentiates these earliest
efforts with traditional holographic media from the technologies we detail throughout
this section. Polarization was “recorded” in these schemes only inasmuch as con-
trolled, polarized reference waves at different incident angles were present during
both recording and reconstruction, a sort of angular multiplexing as is common in

Table 4. Classes of Spatially Varying Polarization Optics as Defined by the J They
Are Capable of Implementinga

Classes of Polarization Control Referenced Throughout Section 4

Label Description Diattenuator Space Retarder Space Overall Phase/Amplitude

A An arbitrary case, for sake
of example

B Complete control: any
(passive) Jones matrix
achievable at any point

C Full unitary control: any
retarder Jones matrix with

any retardance, overall
phase, and fast-axis

polarization achievable at
any point

D Phase-only platform (no
polarization sensitivity)

E Geometric phase only

F Any linear retarder with any
retardance, and overall

phase control

G Any linear wave plate; no
phase control

(Table continued)
(Table continued)
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Classes of Polarization Control Referenced Throughout Section 4

Label Description Diattenuator Space Retarder Space Overall Phase/Amplitude

H Multi-level discrete control
of overall phase and

retardance; fixed retardance
axis

I Continuously tunable
retardance, no control over
overall phase or retardance

axis

J Continuously tunable
retardance and overall phase

with no control over
retardation axis

K Polarization-selective,
binary amplitude control

(polarizer or no polarizer);
no control over retardance,

overall amplitude, or overall
phase

a J exists, in general, in an eight-dimensional parameter space. This is made intuitive by imagining it as a point in
diattenuator space (describing its polarizer-like behavior), retarder space (describing its wave-plate-like behavior),
and on the complex plane (representing its overall amplitude and phase).

holographic recording. Since the film itself was not polarization-sensitive, all polar-
izations would be affected by the transmission function for all polarization states,
resulting in unwanted ghost images [65].

4.2b. Polarization Holograms

Materials do exist, however, in which optical anisotropy can itself be induced opti-
cally. These are known as photoanisotropic materials. The first recorded observation
of photoanisotropy was by the German physicist Fritz Weigert in 1919 [69,70].
Weigert observed that a silver chloride film exposed to linear polarization induced
linear dichroism. After exposure, the film attenuated light polarized orthogonal to the
original illuminating light experienced higher transmission. Since then, a variety of
photoanisotropic effects have been discovered in a variety of materials. These effects
are not confined to linear dichroism; it is known that linear birefringence, and even
circular dichroism and optical activity (circular birefringence), can also be induced by
light of the correct polarization state. Which effect is induced and which is felt may
vary with the illuminating wavelength (the “actinic light”) and the probe wavelength.
This diverse array of photoanisotropic effects are often dubbed simply the “Weigert
effect,” regardless of mechanism.

The Weigert effect may be observed in a variety of materials and films, including
silver halides, alkali halides, organic dyes, and polymers with azobenzene side chains.
The latter is perhaps the most popular choice. Numerous efforts are documented in
the chemistry and optics literatures that seek to increase the strength and stability of
photoanisotropy in these materials. The description we give here, however, is high
level and does not delve into these details (see instead Chaps. 4 and 5 of [70]). We
also note that the physical mechanism underlying the Weigert effect in these materials
is itself a subject of scientific debate. Polarized light is thought to evoke a rearrange-
ment at the molecular level. In azobenzenes, this is proposed to occur through rapid
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cis-trans isomerization between two molecular conformations (twisting along the
molecule’s nitrogen double-bond), which induces random molecular reorientations
that only cease upon alignment with the major axis of the polarization ellipse [71].
Being molecular in origin, the strength and orientation of photoanisotropy can vary on
optically small size scales.

With the right chemistry, a photoanisotropic medium can retain memory of spatially
varying polarization in the form of a spatially varying Jones matrix, even after the
recording light is turned off. In the 1970s and 1980s, a community of researchers
sought to use the Weigert effect to create “polarization holograms.” The bulk of this
research occurred in the former Soviet Union, and much of it is not documented in the
English language. Sh. D. Kakichashvili, a physicist working in the Georgian SSR, is
often cited as the pioneer of this area and was the first to propose polarization holog-
raphy (in [72], and further summarized in [73,74] and his Russian-language textbook
[75]). A recent book (2009) by Nikolova and Ramanujam [70] provides a modern,
comprehensive account.

4.2c. Recording a Jones Matrix Mask

General principle. Here we provide a simple example of polarization holographic
recording, paraphrasing and restructuring one given in Chap. 3 of [70]. In what fol-
lows, we assume that incident light, after some exposure time, induces only linear
birefringence locally. This is true for some materials and wavelengths (such as in
[76]), but as described above, photoanisotropy can manifest in other ways. Before
exposure, we suppose the medium is isotropic with refractive index n0, composed of
randomly oriented molecules. When the medium is illuminated with linearly polar-
ized light of intensity I , the long molecules will tend to rotate and align so that an
anisotropy will be induced in the refractive index parallel and perpendicular to the
polarization such that

1n‖ = k‖ I

1n⊥ = k⊥ I , (133)

where k‖ and k⊥ are photoanisotropic properties that can be positive or negative
[Fig. 17(a)]. Again, in the photoanisotropic effect treated here, linear birefringence
is induced by linear polarization (i.e., for circularly polarized illumination, orthogo-
nal linear polarization states would cancel the effect and induce no birefringence).
Locally, the Jones matrix of the film

J =
[

e ik(n0+1n‖)d 0
0 e ik(n0+1n⊥)d

]
, (134)

where d is the film thickness and k is the free-space wavenumber. Since this is a
power-dependent effect, we can operate in the Stokes formalism. A general elliptical
polarization has a Stokes vector ES = [ S0 S1 S2 S3 ]

T . ES, when fully polarized,
represents a polarization ellipse tilted at some azimuth angle with some ellipticity.
Only the components of the polarization linearly polarized along the ellipse’s major
and minor axes induce a change in refractive index. Defining I‖ and I⊥ to be the lin-
early polarized powers along the major and minor axes of the ellipse, respectively, we
can write the intensities along the major and minor axes of the polarization ellipse as
[Fig. 17(b)]

I‖ =
S0 + (S1 + S2)

2

I⊥ =
S0 − (S1 + S2)

2
, (135)
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such that, by orthogonality,

1n‖ = k‖ I‖ + k⊥ I⊥,

1n⊥ = k⊥ I‖ + k‖ I⊥. (136)

The retardance δ induced locally is given by (n‖ − n⊥)kd , or

δ = (k‖ − k⊥)(I‖ − I⊥)kd = (k‖ − k⊥)(S1 + S2)kd = (k‖ − k⊥)(s 1 + s 2)S0kd . (137)

In general, 1n‖ and 1n⊥ also induce a change in overall phase φ̄ given by
(n‖ + n⊥)kd/2, or

φ̄ =
(k‖ + k⊥)(I‖ + I⊥)kd

2
=
(k‖ + k⊥)S0kd

2
, (138)

where, as in Table 1, s 1 and s 2 are the first two components of the SOP. Figure 17(c)
shows that both a retardance δ and an overall phase shift φ̄ are induced relative to
the background n0. Using the matrix exponential notation of Eq. (81), we can write
(neglecting the constant overall phase n0kd )

J = e i φ̄e
i δ√

s 2
1+s 2

2

(s 1·σ1+s 2·σ2)

. (139)

Figure 17

(a) (b) (c)

(d) (e)

Polarization holographic recording. (a) In a photoanisotropic medium, linear
polarization induces a local change in refractive index both parallel and perpendicular
to its direction and proportional to its intensity. (b) In the general case of elliptically
polarized light, a linear photoanisotropic medium feels only the linearly polarized
components (denoted in blue), again inducing changes in refractive index in the par-
allel and perpendicular directions. (c) Full control over the magnitude of 1n‖ and
1n⊥ is sufficient to fully control retardance δ and overall phase shift φ̄. (d) A spa-
tially varying polarization pattern will induce a spatially varying polarization transfer
function in the photoanisotropic film. In this case, the interference of right- and left-
circularly polarized light is shown. This particular case induces linear polarization
of constant magnitude but periodically changing azimuth, which, in a linear pho-
toanisotropic material, induces a spatially varying wave plate of constant retardance
and periodic azimuth. This particular recording scenario, which produces an optic that
will produce three diffraction orders regardless of illuminating polarization, has been
used in practice in most work in polarization holography.
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Equation (139) represents a linearly birefringent wave plate whose overall phase,
retardance, and orientation are all independently tunable by varying ES of the illu-
minating light. The orientation of the wave plate is fixed by the azimuth angle of
the polarization ellipse, solely governed by s 1 and s 2 so that the normalized axis is

1√
s 2

1+s 2
2

(s 1, s 2, 0). The overall phase can be tuned by adjusting the beam’s intensity S0,

while the retardance can be tuned by changing the polarization’s ellipticity, modify-
ing the sum s 1 + s 2 by increasing or decreasing s 3. If a spatially varying polarization
field ES(x , y ) can be created, J (x , y ) will result, representing an optic in which linear
retardance, linear retardance axis, and overall phase can be controlled everywhere.
This type of photoanisotropy falls under type F of Table 4.

Recording a polarization grating. An example makes this less abstract. As dis-
cussed in Subsection 3.2, interfering two plane waves at different angles with
different polarization states is a simple way of creating a periodic, spatially vary-
ing polarization field. Suppose we (paraxially) interfere two plane waves of opposite
circular polarization. The interference will trace the equator of the Poincaré sphere,
always remaining linear, periodically repeating over a distance 3= λ

sin θ , where θ is
the angle between the beams’ k-vectors. The Jones vector will be given by

| j (x , y )〉 =
[

cos 2π x
3

sin 2π x
3

]
, (140)

or, in the Stokes formalism,

ES(x , y )=
[

1 cos2 2 2π x
3

sin2 2 2π x
3

0
]T

. (141)

We have from Eqs. (137) and (138) that δ = (k‖ − k⊥)kd and φ̄ = (k‖ + k⊥)kd/2—
neither a function of space. The retardance axis on the other hand will rotate uniformly
with space from 0 to 2π . In other words, if a photoanisotropic film is exposed to light
with a spatially varying polarization given by Eq. (141), the Weigert effect will cre-
ate a medium that acts as a spatially varying wave plate with uniform retardance
and overall phase and a uniformly rotating fast-axis [Figs. 17(d) and 17(e)]. This is
given by

J (x , y )∝ R
(
−

2π x
3

) [
e i δ2 0
0 e−i δ2

]
R
(

2π x
3

)
, (142)

where R is again a rotation matrix.

It can be shown that the matrix Fourier transform of this J (x , y ) has just three terms,
so we can write

J (x , y )= cos
δ

2
I+

(
i
2

sin
δ

2
|L〉〈R |

)
e+i 2π

3
x
+

(
i
2

sin
δ

2
|R〉〈L |

)
e−i 2π

3
x . (143)

The first term of Eq. (143) is a polarization-independent zero order, while the second
and third terms are ±1 orders that act as circular polarizers for opposite circular
polarization states (while flipping their handedness at the output). The weight of the
orders is governed by the induced retardance δ.

If we arrange, by choice of material, wavelength, recording beam intensity, and
film thickness for δ = π , the zero order vanishes, and all light is directed into the
±1 orders. In scalar paraxial optics, it is impossible to losslessly diffract light into
more than one diffraction order with a thin grating [77]. The polarization degree-
of-freedom, however, relieves this constraint, a theme that has been remarked on by
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several authors [78,79] (Subsection 4.6) but first by Kakichashvili in this context.
Equation (142) also represents a geometric phase grating in which retardance and
phase are held constant but angular orientation varies (type E of Table 4). Work by
Kakichashvili et al. anticipated extensive later work on these gratings in the areas of
metasurfaces and LCs (Subsections 4.5 and 4.7), some 30–40 years earlier.

4.2d. Applications of Polarization Holograms

The recording example of the last section—involving the interference of two orthogo-
nal, circularly polarized plane waves—is just one specific use case out of an infinity of
possibilities. In fact, its use is limiting, resulting in a less general sort of polarization
control than could potentially be realized. Nevertheless, the fact that only three orders
emerge and that the ±1 orders act as circular analyzers makes this particular record-
ing scheme very intuitive. Research in polarization holography has tended to operate
in this regime with two recording beams of opposite circular polarization.

Figure 18

Applications of polarization holograms. (a) Spectropolarimetry with a polariza-
tion hologram. The full-Stokes vector of a beam can be measured over a band of
wavelengths if linear detectors are placed on the diffraction orders of a polarization-
insensitive grating and a circular polarization-splitting polarization hologram. Two
polarizers on the left two diffraction orders suffice to determine S1 and S2. Reprinted
with permission from [80]. Copyright 2000 Optical Society of America. (b) If one
recording beam is passed through a lens, the period of the interference is spatially
varying such that upon illumination (after recording), as in (c), the photoanisotropic
film will function as an off-axis lens, focusing for one circular polarization and
diverging for the other. (b) and (c) reprinted from Opt. Lasers Eng. 44, Ramanujam et
al., “Polarisation-sensitive optical elements in azobenzene polyesters and peptides,”
pp. 912–915, copyright 2006, with permission from Elsevier [81]. (d) If, in the record-
ing scenario of (b), a transparency is placed (in this case an image of Denis Gabor),
a holographic image will be recorded on the two inner diffraction orders. These are
sensitive to opposite circular polarization states, and one is inverted with respect to the
other, a characteristic of geometric-phase-only devices. Reproduced with permission
of Cambridge University Press through PLSclear [70]). (e) This recording can be
done twice, reversing the chiralities of the recording beams in-between transparen-
cies. Then, each diffraction order can show two images depending on the sense of
circular polarization incident, or both images simultaneously (for linearly polarized
illumination). Reprinted with permission from [82]. Copyright 1985 Optical Society
of America.
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Applications of polarization-sensitive optical elements recorded into pho-
toanisotropic materials can be sorted into two major application areas, with some
examples shown in Fig. 18:

1. Polarization-sensitive gratings for snapshot polarimetry: The inner two orders
of Eq. (143) act as circular polarizers. When the grating is illuminated with light
of an unknown polarization state, if P+1 and P−1—the power of these orders—
are recorded, the Stokes parameters S0 = P+1 + P−1 and S3 = P+1 − P−1 can
be immediately deduced. The remaining Stokes parameters S1 and S2 cannot be
determined by these two grating orders alone. Several possible schemes exist
to convert the grating into a full-Stokes polarimeter. Nikolova et al. proposed
placing a polarizer on the zero-order channel to make it polarization-dependent,
while tilting the grating at an angle to capture reflected light from the grating
[83] which experiences a polarizer-like effect enacted by the Fresnel coefficients.
In another scheme, a cascade of two gratings may be used-the first polarization
insensitive and the second of the form of Eq. (134). The diffraction orders of the
former are passed through polarizers prior to detection to enable determination of
S1 and S2. This setup is shown in Fig. 18(a). Use of these gratings also splits colors
(the more typical use of a grating in optics). Polarimetry may be performed over
a continuous bandwidth if linear detectors are used, enabling spectropolarimetry
[80,84].
Nikolova and Todorov et al. were the first to propose the use of polarization-
sensitive gratings in polarimetry, an application later explored with other
technologies at different times (as we discuss throughout this section). These
schemes [80,83,84], however, mandate optical loss, multiple gratings, or both in
order to measure the full-Stokes vector. This stems directly from the simplifica-
tion owed to recording only with orthogonal circularly polarized beams, which
creates solely geometric phase optical elements without realizing the full freedom
afforded by the platform.

2. Polarization-sensitive optical elements: So far the only polarization holograms
we have treated are periodic diffraction gratings. However, our discussion can
extend to non-periodic optical elements so long as they change at much lower
spatial frequencies than the grating periodicity set by the angle between refer-
ence and object beams (a paraxial approximation). In this way, more general
optical elements can be recorded into a polarization holographic material. If, for
instance, a lens is placed before one beam during the recording process (and the
NA of the lens is lower than the NA defined by the angle between the beams),
a grating will be recorded with spatially varying period. This modified record-
ing process is shown in Fig. 18(b). After recording, the element will act as a
polarization-sensitive, off-axis lens. For RCP incident light, it will focus light in
the direction of the+1 order; for incident LCP light, it will act as a diverging lens
in the −1 order [as shown in Fig. 18(c)]. This type of lens has been demonstrated
in azobenzene-containing polymers by Ramanujam et al. [81].
More generally, if one recording beam passes through a transparency and then a
Fourier transforming lens, upon later illumination, a holographic image of this
transparency can be reconstructed in the far-field. This image is polarization-
sensitive—the image will be formed on the +1 order and a point-inverted version
thereof on the−1 order, a fundamental consequence of using the geometric phase
alone. Each order moreover acts as a circular analyzer. Figure 18(d) shows a
reconstructed far-field of an element encoding a transparency of D. Gabor. The
image is formed on both orders upon illumination with linear polarization, but
only on one with circular illumination [70]. Multiple holograms can be encoded
if the recording process is carried out twice for two separate images, reversing
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the polarizations of the two recording beams in-between (from |R〉→ |L〉 and
|L〉→ |R〉). Figure 18(e) shows an example where one image appears on a single
diffraction order, while another appears when the chirality of the illuminating light
is reversed; both appear for linearly polarized illumination [82]. 3D holography
is possible using similar schemes if scattered light from an object is used during
recording.
Finally, we note that Fratz et al., using a very similar azobenzene-containing
polymer platform (recorded by direct laser writing), demonstrated polarization
holograms for laser beam shaping [85] and computer-generated holographic
imagery [86].

Numerous other applications have been proposed, including in optical data storage
[87], optical information processing [88], and nonlinear optics [89].

4.2e. Discussion

Polarization holograms are—theoretically—among the most flexible technologies for
spatially varying polarization optics reviewed here. In this section, we have focused
on linear photoanisotropy, in which linear polarization induces linear birefringence.
However, in some materials, photoanisotropy manifests as linear dichroism and even
circular birefringence. The fact that several of these effects can occur at once in the
same material means that polarization holograms can (potentially) access more gen-
eral types of polarization control than other platforms. These effects, however, are not
independent and constrain each other. For instance, linear birefringence and linear
dichroism, when present together in a photoanisotropic material, will appear along the
same axis and will be correlated in magnitude.

A drawback of polarization holography as presented here is its reliance on recording.
The light-sensitive polarization effect is itself induced by light—possible designs
are constrained by what distributions of intensity and polarization can be created
in the first place. In that regard, it is unsurprising that most research in the field has
centered on variants of two-beam interference, though direct laser writing is possible
[81]. In contrast, other polarization technologies we discuss in this review, especially
metasurfaces, enable rather arbitrary specification of the Jones matrix, even with
discontinuities, from point-to-point, coming closer to the ideal of computer-generated
holography. A second major drawback of the polarization holograms described here
is materials and chemistry. Extensive research in polarization holography has cen-
tered on creating holographic media where the Weigert effect is stable over long
time scales. These films have glass transition temperatures near ambient. This is
responsible for photoanisotropy to begin with (so that molecules may rotate) but also
means that photoanisotropic effects tend to fade. Azobenzene-containing polymers
and polyesters, the most promising polarization holographic materials, are highly
sensitive to ambient light and heat, which threaten to erase recorded patterns. A major
advance in the field was the realization of holograms with stability over hours to days
[76,82,90]. Polarization holograms with at least decade-long stability under proper
storage conditions have been reported [81].

This field, which is not well-known in many corners of the optics community, may
be an interesting area for future research. Other technologies discussed here can more
ably create sophisticated spatially varying fields and, when combined with these
photoanisotropic materials for recording, may yield new devices.

4.3. Elements Fabricated into Birefringent and Polarization Dichroic Substrates

The first polarization optics used in-built properties from crystal physics, namely
birefringence and polarization dichroism, to manipulate polarization (Fig. 1). These
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effects, however, are spatially homogeneous, inherent in the atomic lattice of the
materials. It is natural to wonder whether a homogeneous polarization-sensitive
crystal suitably patterned with modern lithography tools can surmount this.

General principles. This was a line of research pursued extensively in the 1990s
by Y. Fainman et al., summarized in Fig. 19. In these efforts, computer-generated
holograms were obtained that implemented separate phase profiles for an orthogonal
basis of linear polarizations (with this basis being constant across the optical element).
Thus, the spatially varying Jones matrix implemented by these elements is given by

J (x , y )=
[

e iφx (x ,y ) 0
0 e iφy (x ,y )

]
, (144)

where φx (x , y ) and φy (x , y ) are independent phase profiles imparted on orthogonal
linear polarizations (labeled x and y for convenience). If an overall, polarization-
independent phase (φx + φy )/2 is factored out from Eq. (144), it can be seen that
Eq. (144) represents a wave plate with two independent degrees of freedom. Proper
adjustment of φx and φy permits control of this overall phase as well as the wave
plate’s retardance φy − φx , though the wave plate’s fast-axis remains fixed. For
fabrication-related reasons we detail below, φx and φy must take on one of a set of a
discrete values and are not continuously variable. Thus, the control implemented by
these optical elements is of type H of Table 4.

Figure 19(a) shows the geometry of a single “pixel” of such an optical element. Two
uniaxial (or biaxial) crystals are bonded together with a gap medium, which is iso-
tropic. Before assembly, each uniform-birefringent substrate (often lithium niobate
or calcite in these works) is patterned and etched to a given depth. Strictly speaking,
only one of the substrates must be birefringent, a possibility the authors acknowl-
edged [92], but both must be individually lithographically patterned. Control of the
two depths d1 and d2 permits control of the two phases experienced by orthogonal
linear polarization states [91] (labeled φo and φe in Fig. 19, in reference to ordinary
and extraordinary waves). These depths, and consequently these phases, may vary
across the optical element giving something in the end that resembles the schematic
of Fig. 19, which may act as an independent phase hologram for orthogonal linear
polarization states. With more traditional phase holograms, this function could only
be achieved with a complicated configuration of many optical elements, first splitting
the light on the basis of polarization, enacting the phase holograms, and recombining
orthogonal polarization states with beam splitters [as in Fig. 19(c)]. One example
of this presented by the authors was a lens element with a focal length of f for x -
polarized light and 2 f for y -polarized light. Then, when the incident polarization of
coherent light illuminating an object was switched between x and y , either an image
of the object or its Fourier transform were formed on a sensor plane [91,92]. Systems
involving cascades of these birefringent holograms and switchable LC elements were
also demonstrated for dynamic beam-routing [92,93].

Discussion. This line of work represents early efforts in this field, and Fainman
et al. deserve credit for anticipating later research on polarization-switchable
micro/nanofabricated optical elements. Since these elements are lithographically
patterned, they allow arbitrary phase profiles and are of use in polarization-sensitive
computer-generated holography. However, the approach of using birefringent media
directly—which might at first seem to be the most natural approach—presents a
number of drawbacks. For one, the approach relies on the birefringent substrate being
experienced as a bulk medium at each pixel for the approach (using modulations in
depth to encode modulations in phase) to work. Consequently, each pixel’s lateral
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extent must occupy at least several wavelengths, resulting in low sampling density
and making zero-order-only diffraction challenging.

Additionally, the depth modulation required to achieve polarization-dependent phase
mandates a complicated fabrication procedure. The technique of choice for micron-
scale milling, reactive ion etching, is a top-down approach. Different depths can only
be achieved sequentially using multiple steps of lithography (electron-beam lithog-
raphy, in this case) and etching. This is known as multi-level diffractive optics [94].
Fabricating a structure with N discrete etch depths requires log2 N discrete lithog-
raphy/etch cycles. This approach with two birefringent substrates requires 4 log2 N
to achieve N discrete values of φx and φy , the phase profiles imparted on orthogonal
polarizations [92]. Moreover, once fabricated, the two etched substrates must be
carefully sandwiched and aligned to one another in a procedure that is, altogether,
cumbersome {Fig. 19(e) and [92], with the authors presenting a later approach [95]
that used one substrate with much deeper etching, avoiding this alignment}. Other
authors [96,97] proposed additional improvements.

Figure 19

Computer-generated holograms etched directly into birefringent substrates.
(a) Orthogonal linear polarizations can experience two arbitrarily specified phases
upon propagation through two birefringent crystals sandwiched together with con-
trollable etch depths. Reprinted with permission from [91]. Copyright 1993 Optical
Society of America. (b) If these two etch depths can vary from point-to-point, two pat-
terned birefringent substrates can form a computer-generated hologram that imparts
two independent phase profiles on orthogonal linear polarization states. Reprinted
with permission from [92]. Copyright 1995 Optical Society of America. (c) Such a
hologram implements the function of two non-polarization-sensitive phase holograms
placed in a setup in which polarization is split and recombined by polarizing beam
splitters. Reprinted with permission from [93]. Copyright 1997 Optical Society of
America. (d) In one application, the hologram can be designed to act as a lens with
two different focal lengths depending on the polarization of incident light, either
imaging a coherent target or producing its Fourier transform when input polarization
is switched. (e) The two substrates must be patterned and etched separately in a multi-
level fabrication process, then precisely aligned. Reprinted with permission from
[92]. Copyright 1995 Optical Society of America.
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The use of form birefringence, in which in-plane lateral dimensions are varied instead
of depth, can be accomplished in a single lithographic step, surmounting the difficul-
ties of using the natural birefringence of crystalline substrates. This is the approach
used by more recent works (Subsection 4.7), and it appears that Fainman et al. also
appreciated this [98–100]. We discuss this further in Subsection 4.7c.

Patterning dichroic materials. To conclude, we note that it is also possible to create
polarization-sensitive computer-generated holograms by patterning a substrate that
is dichroic, i.e., polarizer-like. This approach has received less attention, perhaps
because polarizers are absorptive while birefringent media enable lossless phase-like
holograms. Hossfeld et al. demonstrated that a polarizing sheet can be selectively
“bleached” (i.e., ablated so that it no longer acts as a polarizer). This enables one
polarization to pass while the orthogonal polarization experiences a binary amplitude
hologram, passing where the polarizer was bleached and attenuated where it was not
[101,102]. Nonetheless, these optical elements permit simple, planar fabrication with
laser lithography. This class of control falls under type K of Table 4.

4.4. Stress-Engineered Optical Elements

The photoelastic effect. Mechanical stress—applied force over an area—can reorient
materials at a molecular level and induce local changes in density. In transparent
materials (e.g., glasses and plastics), these effects conspire to produce stress bire-
fringence in which light experiences phase retardation. Stress at MPa scale usually
induces a change in refractive index at the ∼0.0001 level, a small change indeed,
but one that can build up through the optically thick macroscopic scale of an optical
element. This is known as the photoelastic effect and is well-known having been first
described by David Brewster. Often, stress birefringence is regarded as a nuisance in
optical systems, requiring careful accounting on the part of an optical designer [2]. It
can be induced by a lens’ mount or, in larger elements, even by gravity. Stress bire-
fringence can also be “frozen in” during manufacturing, a concern especially relevant
to the injection molded optics now common in consumer electronics. Less commonly,
stress birefringence can be put to practical use. In a photoelastic modulator (PEM), a
piezoelectric transducer resonantly excites a dielectric bar, allowing the device to act
as a time-periodic wave plate (at the level of an entire beam). PEMs are used widely in
precision polarimetric systems and a variety of scientific measurements.

Stress engineering. More relevant to this review, however, are “stress-engineered
optics” (SEOs), in which stress birefringence is induced deliberately in a controlled
way. Solid mechanics dictates the distribution of stress inside a material through the
Poisson equation. Under given boundary conditions, the Poisson equation can be
solved (using, for instance, finite element analysis) yielding the stress tensor σ across
a material (which is 2× 2 in the limit of a planar body with in-plane applied stress).
The tensor σ can be diagonalized to give the principal stresses, which—through a
material’s stress-optic coefficients—dictate the retarder-like transmission function
induced locally in the optic. The eigen-axes of σ dictate its angular orientation. In
an SEO, stress birefringence is engineered through control of force boundary condi-
tions. Several such schemes have been demonstrated. A glass round can be placed in
a mount and stress birefringence induced by tightening set screws placed in desired
locations. In another scheme, a glass round can be placed inside a metal ring that has
undergone thermal expansion. As the ring cools, it compresses and stresses the glass
optic. The ring itself can be structured to tailor the resulting stress distribution (see
[103] for more details).

Applications. SEOs have been proposed for a number of applications, primarily by
T. G. Brown et al. [104] in the 2000s and 2010s (see Fig. 20). A glass plate stressed in
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three places (threefold symmetry) produces a spatially varying retarder near its center
whose retardance scales with radius and whose angular orientation varies linearly
with azimuth angle. Such an SEO may produce polarization vortices, i.e., radially
and azimuthally polarized beams containing optical angular momentum [105]. Cast
in different mathematical terms, the same SEO, when illuminated with circularly
polarized light, can produce a “full Poincaré beam,” an optical beam in which all
polarization states are present [106,107], even partially polarized ones [108]. These
Poincaré beams have spurred significant interest in the structured light community.
When placed in a pupil plane of an imaging system, the SEO has a point-spread func-
tion (PSF) that is polarization-sensitive. This can yield optical systems producing
different focal points for left- and right- circularly polarized light [109], and the PSF’s
image on a sensor can be used as a tool to ascertain the polarization state of incident
light [110,111]—a polarimeter.

Polarimetry based on an SEO relies on imaging the whole PSF, rather than taking dis-
crete point measurements as in other schemes. As a result, it can be used for imaging
polarimetry only for spatially sparse sources wherein different parts of the source can
form a PSF on an imaging sensor without overlapping with other parts of the source.
The resolution of an SEO could be increased by shrinking the diameter of the PSF,
at the expense of polarization accuracy. From a variational perspective, it has been
shown that the simple SEO described above provides a nearly optimal balancing of
the two [113].

Despite this limitation, SEO polarimetry has been demonstrated in several applica-
tions of sparse polarimetric imaging. One of these is multicore fibers [114] where
an SEO can be used to determine the polarization of light in each of the many cores
in a single shot. A second recent application of SEOs is a microscopy technique that
permits the determination of the position, angular orientation, and wobble of fluo-
rophore, even at the single molecule level, by coupling the SEO to a stochastic optical
reconstruction microscopy (STORM) setup (a super-resolution technique) [112].
Being approximately an electric dipole, the fluorophore’s orientation is intimately
tied to its polarization; additionally, the variation of the PSF with defocus permits
reconstruction of z position, while wobble manifests as depolarization. The SEO
can be placed in the pupil plane of a high-NA microscope, as shown in Fig. 20(d).
Analyzing the light for RCP/LCP is necessary to distinguish z position from orien-
tation. An example of several single molecules whose positions, orientations, and
wobbles have been reconstructed by this technique are shown in Fig. 20(e), at left
(in this case, Alexa Fluor 488 molecules attached to a fiber of F-actin). The STORM
image of one single molecule [Fig. 20(e), right top row] is shown with its closest
theoretical reconstruction [Fig. 20(e), bottom row], which are reminiscent of the SEO
PSFs in Fig. 20(c).

Discussion. In principle, polarization control attained by SEOs can span anywhere in
the equator of retardance space—any wave plate with any retardance and angular ori-
entation could be achieved somewhere within the aperture of an SEO (overall phase,
however, cannot be spatially controlled). The polarization control they enact then falls
under type G of Table 4. We note, however, that unlike many of the platforms here,
this control cannot be arbitrarily defined from point-to-point. The spatially varying
Jones matrix enacted by the SEO is governed by applied force. These applied forces
can be customized creating potentially quite complex patterns [e.g., Fig. 20(b)] but
can never be specified fully at-will. Stress birefringence, being molecular in nature,
has no optically significant sampling limit (unlike other technologies discussed
here, which are pixelated). The J (x , y ) realized by an SEO must be continuous and
smoothly varying, lacking the freedom afforded by other spatially varying elements,
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which could well contain sharp discontinuities. For this reason, an SEO is not capable
of computer-generated holography in general.

Nevertheless, the origin of these fundamental limitations is also the strongest selling
point of SEOs: their fabrication is simple, requiring only glass, heat, and simple appli-
cations of force.

Figure 20

Stress-engineered optical elements (SEOs). (a) Example of SEO fabrication. A
glass round is held in a mount, and stress is applied through three adjustable set
screws, inducing stress birefringence visible in a broadband image viewed through
crossed circular polarizers. Reprinted with permission from [105]. Copyright 2007
Optical Society of America. (b) Viewing through crossed circular polarizers with
narrowband illumination highlights contours of equal retardance, showing how tai-
lored stress birefringence induces complex patterns of spatially varying birefringence.
Near the center of this SEO, the pattern displays azimuthal symmetry with retardance
varying with radius and wave plate fast-axis with azimuthal angle. Reprinted by per-
mission from Macmillan Publishers Ltd.: Brown and Beckley, Front. Optoelecton.
6, 89–96 (2013) [104]. Copyright 2013. (c) When placed in the entrance pupil of
an imaging system, an SEO modifies the system’s point-spread function in a way
that depends on incident polarization. This effect can be used to measure that inci-
dent polarization state. Reprinted by permission from Macmillan Publishers Ltd.:
Brown and Beckley, Front. Optoelecton. 6, 89–96 (2013) [104]. Copyright 2013.
Reprinted with permission from [106]. Copyright 2013. (d) and (e) An application
using SEO-enabled polarimetry to determine the orientation, position, and wobble of
single molecule fluorophores, described in Subsection 4.4. Reprinted under a Creative
Commons Attribution 4.0 International License [107].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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4.5. Liquid Crystal Devices
4.5a. Introduction

Optical properties of LCs. LCs are a state of matter with properties lying between
liquids and crystalline solids. Like a liquid, LCs can flow and exhibit viscosity. Like
a crystal, LCs can exhibit long-range order and, as we discuss below, exhibit optical
anisotropy. LCs are composed of long, rod-like organic molecules with lengths on the
order of nanometers. The subject of a century of scientific inquiry, LCs are also the
enabler of LC displays, today a multi-billion dollar industry. Much could be said here,
ranging from the fundamental physics governing LCs’ behavior to more technological
considerations. In this review, however, we can scarcely begin to scratch the surface
of this, a subject which deservedly forms the basis of many dedicated books (coming
at the subject from both fundamental [115] and technological perspectives [116]).

A wide variety of organic compounds can be classified as LCs. In fact, the photore-
fractive azobenzene-containing polymers of Subsection 4.2 can be considered LCs
and could have been included here. In fact, as we will see below, similar materials
are used in conjunction with other LCs to mediate photoalignment. The dedication
of an independent section to polarization holograms above (Subsection 4.2), then,
reflects a distinction that is primarily historical and contextual (a different literature at
a different time) rather than fundamental in nature.

Here, LCs are of interest inasmuch as they are an important technology for
polarization-dependent diffractive optics. A key property of LCs is their birefrin-
gence. LC molecules, being elongated cylinder-like rods, exhibit optical anisotropy.
In a medium with aligned LC molecules, light polarized along the long axis of the LCs
experiences a larger index (ne , the extraordinary index) than light linearly polarized
in the plane perpendicular to the molecules’ long axis (n0, the ordinary index). The
specific values depend on the LC phase and molecular details, but 1n between the
two is typically on the order of 0.2 but can be 0.4 or higher [116,117]. When ordered,
LCs, thus, form a uniaxial medium.

Consider light propagating at an angle through a medium of LCs. In general, light in
a uniaxial medium propagates in a superposition of two eigenmodes (ordinary and
extraordinary rays). The index ellipsoid can be used as a geometrical aid to determine
the refractive index experienced by each eigenmode [8,118] as a function of propa-
gation angle. The index of the two linearly polarized eigenmodes is determined from
(half) the length of the semi-major axes of the ellipse formed from the intersection of
the index ellipsoid and a plane perpendicular to the light’s Ek vector. If the light prop-
agates parallel to the LCs’ long axes, both eigenmodes will experience n0 (the ellipse
formed by the intersection is a circle). If light propagates perpendicular to the axes of
the LCs, light can experience either n0 or ne , depending on its polarization state. In
intermediate cases, one linear polarization will always experience n0 while the other

experiences an index n with n0 ≤ n ≤ ne , with n(θ)= ne n0/

√
n2

e cos2 θ + n2
0 sin2 θ ,

with θ the angle between Ek and the extraordinary axes of the LCs [Fig. 21(a)].

LC cells. LCs, then, serve as a retarder whose retardance (per unit length) depends
on the orientation of the LCs relative to incoming light. This, paired with two other
crucial capabilities of LCs, forms the basis of most LC optical technology. These,
which we describe only briefly here, are (1) voltage-tunability, wherein LCs placed
in an electric field will, by virtue of an induced electric dipole, tend to align with
that field, allowing the LCs to be rotated with application of an electrical bias and,
(2) anchoring, wherein LCs can be fixed in a custom orientation near an appropriately
patterned substrate.
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These two effects make possible LC cells, two examples of which are sketched
in Fig. 21(b) (we limit ourselves to nematic LCs—simply put, LCs that tend to
align—the most common phase encountered in electro-optic technologies). A LC
cell generally contains a medium of LCs sandwiched between two substrates, each
with a polymer alignment layer that has been mechanically rubbed. This mechanical
rubbing creates a boundary condition which, through van der Waals forces, coaxes
the LC molecules near the alignment layer to orient along the rubbing direction. In
equilibrium, LCs in the bulk tend to align with the boundary layers. However, if a
voltage is applied (∼5 V, switching polarity at kHz rates), an induced dipole moment
will cause LCs in the bulk to align with the applied electric field. In the case shown in
the left half of Fig. 21(b), where the rubbing directions are parallel, this means the cell
will act as a retarder with voltage-tunable retardance. When placed between crossed
polarizers, this retardance effect can be converted into intensity modulation, the basis
of LC displays. For practical reasons [namely, better field-of-view (FOV)], modern
LC displays instead use a twisted nematic architecture [Fig. 21(b), right half], which

Figure 21

(a) (b)

(c) (d)

Liquid crystal (LC) devices. (a) A medium of ordered LCs is uniaxially birefringent
due to the elongated nature of the LC molecules. At oblique incidence, one polari-
zation eigenmode always experiences n0, while the other experiences n0 ≤ n ≤ ne

depending on θ (and can be computed with aid of the index ellipsoid, pictured here).
The retardance experienced varies with θ . (b) A layer of LCs can be sandwiched
between substrates that have been mechanically rubbed. Van der Waals forces coax
the LCs near the substrate to align with the rubbing directions. In a parallel aligned
nematic crystal cell, the rubbing directions for both substrates are parallel so that
the cell acts as a retarder. When a voltage is applied, LCs in the center of the cell
rotate to align with the E-field, modifying the cell’s retardance. In modern display
applications, twisted nematic cells (placed between polarizers) are used instead. Here,
lines on substrates denote rubbing directions for LC alignment (not polarizer direc-
tions). (c) Two techniques for patterning photoalignment materials with polarized
light. Adapted from [119]. (d) A schematic of a typical fabrication procedure for
photoaligned LC diffractive optics.
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also exhibits a voltage-tunable polarization effect, albeit one that is not as simple as a
pure modulation of retardance with applied bias [120].

This is as deep a survey of LC devices as we provide here, and in particular we do
not delve into the exact physical mechanisms of these effects, including important
issues such as the speed at which bias-tuning can occur and the trade-offs involved in
using different LC types (twisted nematic, parallel aligned nematic, vertically aligned
nematic, among many others) [116]. Instead, we next review how LC devices have
enabled spatially varying polarization-sensitive diffractive elements. These fall into
two different categories. In Subsection 4.5b, we describe LC devices enabled by
substrate patterning, in particular a relatively new technique known as photoalign-
ment. We describe polarization-dependent diffractive optics it has enabled, which
have recently spawned several commercial products and new scientific applications.
Then, in Subsection 4.5d, we describe diffractive devices where LCs are instead
biased on an addressable grid, allowing for tunable, spatially varying polarization
control. These are known as LC SLMs. We provide a top-level overview of the
extent of polarization control possible with these LC SLMs (as in Subsection 4.1 and
Table 4) and a review of past work.

4.5b. Photoaligned Liquid Crystal Polarization Diffractive Elements

LC displays were developed at RCA Corporation in the early 1960s and formally
announced in 1968 [121–123]. In the decades since, the LC display industry has
become ubiquitous and highly mature. From its inception, progress on displays has
nurtured a parallel avenue of research in non-display optical applications [124] that
capitalize on the unique optical characteristics of LCs. Using a variety of techniques
over several decades, LCs have been used to realize gratings [125–128], tunable
lenses [129–134], color filters [135,136] (often of the Lyot type), and even laser gain
media (when doped with dyes) [137], among many others.

Our interests here center specifically on LC devices that explicitly use the anisotropy
of LC devices to make designer polarization-sensitive diffractive optics, rather
than simply using it as a means of phase accrual and doing away with the resultant
polarization dependence by using a polarizer (the case in many LC optical devices).
Fundamentally, a LC cell acts as a retarder, one whose retardance depends on the
orientation of the LCs relative to the propagation direction and whose eigenbasis
(fast-axis orientation) depends on their orientation in the plane perpendicular to that
propagation direction. The former can be tuned with an applied bias, which when
made to vary spatially provides one route to realize polarization-sensitive diffractive
optics with LCs. Much effort has been dedicated this approach, the natural conclusion
of which is an addressable array of electrodes placed on top of the LC cell, in which
case the device is known as a LC SLM. These are the subject of Subsection 4.5d
on SLMs {though we note here that other schemes for spatially dependent control
short of a full array of electrodes have been investigated, particularly those based
on resistive voltage divider networks that synthesize custom electrical potential
gradients/functions (e.g., [132])}.

Photoalignment. The latter approach, varying the azimuth of the LCs’ anisotropy
axis, requires spatially varying control over the orientation of the LCs in the plane
of the LC cell (perpendicular to the propagation axis). In principle this too could be
voltage-controlled, but the fabrication of an array of electrodes perpendicular to a
substrate is not compatible with top-down fabrication schemes. As a result, LC in-
plane orientation must be controlled through substrate patterning, which, as described
above, transfers to the LC molecules themselves through anchoring forces.
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The most common method for this substrate patterning is mechanical rubbing, which
is widely used in the LC display industry. For display needs, the required rubbing
pattern is simple, requiring only one orientation over the entire substrate. However,
the sophistication of patterns achievable by mechanical rubbing is limited. Patterns
that are discontinuous, or those that change on short length scales, cannot be achieved
in this way. These limitations constrain the types of optics achievable.

A breakthrough in this regard arrived around 1990, termed photoalignment (proposed
by several groups around the world around the same time [138–141]). Photoalignment
was originally developed in service of the LC display industry; for a different set of
reasons (namely surface defects and charging), mechanical rubbing is not always
ideal for display production, either. In photoalignment, a photoalignment layer—
usually an azobenzene-containing polymer, much like the holographic materials
of Subsection 4.2—is spun onto a glass substrate. In the presence of polarized UV
illumination (laser or otherwise), the molecules of the photoalignment layer tend to
align with the azimuth angle of the illuminating light’s polarization ellipse through a
rapid cis-trans photoisomerization process. Then, when a LC layer is spun atop this
photoalignment layer, the LCs—by an electrostatic anchoring process—will tend to
align with the photoalignment molecules. In this way, a LC layer can be fabricated
whose in-plane orientation can be controlled by varying the linear polarization axis
of light during the recording step with no mechanical contact necessary. Much has
been written about photoalignment [142–144], but we point out that it is essentially
similar to the polarization holography techniques discussed in Subsection 4.2 with the
difference that a very thin polarization holographic material is used as an alignment
layer for LCs, rather than as the optical medium itself. Figure 21(d) summarizes this,
depicting a typical photoalignment-based process flow.

Polarization manipulation with photoaligned LC elements. Photoalignment
permits arbitrary spatial variation of the LC axis, so long as the desired pattern can
be generated as varying UV polarized light on the photoalignment layer. This can
either be done in a holographic exposure using multiple tilted beams in a single shot
[Fig. 21(c), top] or, for more arbitrary patterns, with a direct-write procedure using
a focused laser, variable linear polarizer, and computer-controlled stage [Fig. 21(c),
bottom]. This enables diffractive optics with spatially varying polarization transfer
functions. In particular, it can realize an optic with a spatially varying Jones matrix of
the form

J (x , y )= R(θ(x , y ))
[

e i 12 0
0 e−i 12

]
R(−θ(x , y )), (145)

where R denotes a 2× 2 rotation matrix, θ(x , y ) is an arbitrary, spatially varying
orientation function, and 1 is a retardance governed by the product of the thickness
of the LC layer and the native birefringence of the LCs (1 is potentially tunable on
a whole-device layer by the application of a bias voltage to the cell). Generally, 1 is
arranged to be π so that the optic consists of half-wave-plate-like elements of vari-
able orientation. Usually, these optics are designed to work for circularly polarized
incident light. In this case, the half-wave plates convert the handedness of the incident
polarization state and apply a relative phase shift to the outgoing light equal to 2θ
(where θ is measured against some arbitrary reference). The control exerted by these
photoaligned LC elements can be classified as type E in Table 4, though the circle in
the equator of the retarder space could vary in radius by controlling 1; the LC layer
acts as a linear retarder with fixed retardance but variable orientation.

Geometric phase gratings. The utility of photoalignment for producing diffractive
optics was first appreciated by the technique’s pioneers in the 1990s [145]. However,
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a flurry of work on this subject appeared in the mid-to-late 2000s and continues to
the present day. Early efforts beginning in ∼2004− 2006 concentrated on making
geometric phase gratings. These are gratings that implement a linearly rotating fast-
axis orientation. As a result, incident circularly polarized light experiences a linear
geometric phase gradient and is deflected to the ±1 order (depending on the hand-
edness of the incident light) with theoretically unity efficiency. Interest in these was
multifaceted: On the one hand, the requisite distribution of UV polarization needed
to encode this pattern into a photoalignment material is simple to generate, being
the result of two tilted circularly polarized plane waves. Additionally, the geometric
phase, being a function of a physical orientation of the LC, is achromatic: as λ varies,
the retardance 1 experienced will change too, but in a way that only decreases over-
all efficiency. Finally, as we will see in Subsections 4.6 and 4.7, these polarization
gratings attracted significant interest around the year 2000 for their ability to exhibit
theoretically perfect diffraction efficiency from a thin diffractive element [78,146].

Geometric phase LC gratings were demonstrated at almost the same time by sev-
eral different groups using photoalignment techniques [147–149], with very similar
LC geometric phase gratings having been earlier demonstrated using microscale
mechanical rubbing of a substrate with an atomic force microscope tip [150]. These
were further developed by M. Escuti and others [151], including the important reali-
zation that two twisted layers of these photoaligned LCs with opposite twist could
imbue these gratings with high efficiency (>99%) over the entire visible spectrum
[152–154]. Of course, the LC optical elements created by photoalignment need not be
limited to periodic gratings. Direct-writing techniques (or, alternatively, the synthesis
of complex vectorial wavefronts with SLMs) allow for the encoding of arbitrary
geometric phase LC elements. In this way, lenses, axicons, and computer-generated
holograms in general have been demonstrated [119,155]. These geometric phase
holograms (GPHs) are also sometimes referred to as “cycloidal polarization holo-
grams.” An illustration of a LC geometric phase grating is given in Figs. 22(a) and
22(b).

Geometric phase optics beyond gratings. Photoaligned geometric phase LC optics
has been proposed for a number of applications. First, LC geometric phase lenses
have attracted interest as imaging optics, both as standalone components, as arrays
of microlenses, and integrated with refractive lenses into compound systems [156].
Some success has been achieved at achieving high-NA (low f -number) LC lenses,
down to f /1.5 [161]. LC geometric phase lenses are even commercially available
from standard optics catalogs, as of this writing from Edmund Optics [157], as shown
in Fig. 22(c). Due to their ease of fabrication, LC geometric phase lenses and grat-
ings have recently attracted interest in the optical design of augmented and virtual
reality (“AR/VR”) systems [162–164]. At least one company (ImagineOptix, Inc.
in North Carolina, USA) has been founded to commercialize LC geometric phase
optics focused on the AR/VR application in particular, and, to name just one example,
Facebook Reality Labs has recently demonstrated a compact virtual reality headset
prototype based on LC polarization holographic elements [158] [Fig. 22(d)].

It is no surprise, perhaps, that these optics can be used for polarimetry. A geometric
phase grating acts as a polarization beam splitter sensitive to circular polarization; as
a result, measuring the intensity of its ±1 diffraction orders directly yields S0 and S3

of impinging light. By combining several such gratings with additional polarization
optics, a snapshot full-Stokes polarimeter can be constructed [165]. Cascades of
several LC polarization gratings can be used for imaging polarimetry as well using
a “channeled” approach in which the Stokes vectors are encoded as the modulation
depth of white light fringes [48,159]. An example of a reconstructed image from
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Figure 22

Optical devices and applications enabled by photoaligned LCs. (a) A geomet-
ric phase grating fabricated by illuminating a photoalignment layer with two tilted,
circularly polarized beams that create a linearly polarized interference pattern of
varying azimuth. LCs align with this patterned photoalignment layer to create a grat-
ing that (b) splits circularly polarized incident light into the ±1 diffraction orders,
with some leakage into the zero order if the cell’s retardance deviates from π . These
can be patterned uniformly over large areas, as shown by a grating fabricated by
ImagineOptix, Inc. (a) Escuti and Jones, SID Symp. Dig. Tech. Pap. 37, 1443–1446
(2006) [151]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with
permission. (b) reprinted with permission from [156]. Copyright 2016 Optical Society
of America. (c) The LCs can be patterned to realize a lens geometric phase profile.
These components can be purchased off-the-shelf from Edmund Optics in ø1” for-
mat and f = 45− 100 mm (example pictured at right). Reprinted with permission
from Edmund Optics [157]. (d) Photoaligned holographic LC optics were recently
used by Facebook Reality Labs in a virtual reality headset with a sunglasses-like
formfactor. The prototype and optical design schematic are shown here (illumination
source and screen electronics are located externally). Reprinted under a Creative
Commons Attribution International 4.0 License [158]. (e) Systems incorporating sev-
eral LC polarization gratings have been used for linear-only imaging polarimetry. The
example here shows a white light image of a car taken through such a system where
green and reddish colors are used to denote angle of linear polarization. Reprinted
with permission from [159]. Copyright 2011 Optical Society of America. (f) LC
geometric phase polarization holograms have been investigated for use in coron-
agraphic systems for exoplanet imaging applications. Here, they are referred to as
vector apodizing phase plates (“vAPPs”) and are advantageous for creating “cleared
out” point-spread functions on both side of a host star where exoplanets can, poten-
tially, be directly imaged. (g) Image of a fabricated vAPP between crossed polarizers.
Reprinted with permission from Snik et al., Proc. SPIE 8450 (2012) [160].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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such a camera is shown in Fig. 22(e). In these polarimetric schemes, the limited
control afforded by LC geometric phase optics mandates the use of multiple grating
elements to determine light’s full-Stokes vector, in contrast to what is possible with
metasurface gratings, as we discuss in Subsection 4.7.

Photoaligned LC optics in coronagraphy. Finally, LC geometric phase elements
have also attracted interest in the construction of new astrophysical instrumenta-
tion [166], in particular for exoplanet detection in systems known as coronagraphs.
Coronagraphy, so named because it was originally intended for observations of the
solar corona, describes a suite of related techniques for modifying the PSF of an
imaging system (usually a telescope) to provide the contrast enhancement neces-
sary to directly image a dim object in the vicinity of a much brighter one (such as
an exoplanet orbiting a much brighter faraway star). Essentially, a coronagraph is
an angular filter. A variety of techniques for coronagraphy using custom diffractive
optical elements have been proposed [167]. These can be divided into focal plane and
pupil plane-type instruments depending on where in the telescope system the designer
optic is placed, with benefits and trade-offs to both classes. LC geometric phase optics
has been proposed for both. In particular, they have been investigated for optical
vortex coronagraphy (OVC), a focal plane technique that uses helical phase profiles
[168] (we discuss this application in Subsection 4.5c). LC geometric phase optics has
also been investigated for use in apodizing phase plate (APP) coronagraphs, a pupil
plane technique. APP relies on the placement of a phase mask in a pupil (usually the
entrance pupil) of a telescope that modifies the PSF of on-axis light (e.g., from a host
star) to produce a one-sided dark region with high contrast that ideally allows light
from a neighboring exoplanet to be directly imaged. The phase mask is not usually
polarization-sensitive, but it can be implemented with a LC GPH (making it a vector
APP, or vAPP) [160]. In this case, the light entering the telescope (which, practically
speaking, is unpolarized) experiences two conjugated PSFs for each handedness of
circular polarization. This coincidence, a result of the symmetry of the geometric
phase, is useful in that it creates two PSFs with dark spots on both sides of the host
star, enabling exoplanet detection over a wider area [shown in Fig. 22(f)]. The fact
that the phase profile can be achromatized by using many layers of twisted LC ele-
ments is another advantage to this technology for APP coronagraphy. This and similar
ideas have been investigated by Snik et al., both in the lab [160,169–171] and, more
recently, in ground-based mid-infrared observatories, such as in the MagAO/Clio2
instrument at the Magellan/Clay telescope [172] and as part of the Keck OSIRIS
imager [173].

Discussion and conclusion. To conclude, LC geometric phase optics enabled by
photoalignment technology are a promising technology for polarization-sensitive
diffractive optics that may enable a variety of applications. In contrast to other tech-
nologies discussed in this review, they can be fabricated over large areas (even on
curved substrates) with relative ease using either holographic or direct-write tech-
niques. This can be done even in small-scale facilities without the use of advanced
technologies such as, e.g., vacuum systems and plasmas that might necessitate the use
of specialized semiconductor foundries for scaling up. Multiple layers of patterned
LCs are possible, and this capability allows for achromatization. These elements are
known to exhibit very high efficiencies (in excess of 99% for gratings), and the ability
to bias LC cells to tune overall retardance gives a post-fabrication knob to improve
performance that does not exist for solid-state platforms such as, e.g., metasurfaces.
Moreover, these technologies benefit from the widespread and highly mature LC
display industry. The promise of LC geometric phase optics is evidenced by the
number of researchers and firms investigating these today, and the technology has
reached the point of ubiquity that completely custom patterned LC geometric phase
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optics can be made-to-order from major optical vendors (e.g., Thorlabs, Inc. [174],
which markets them as optical depolarizers and “patterned retarders”). These form
the basis for at least two companies (known as ImagineOptix, mentioned above, and
BEAM Co., based in Florida, USA). On a more creative note, these LC optics recently
enabled a public art exhibition on the shed of the Amsterdam Centraal train station in
the Netherlands [175].

A key disadvantage for LC geometric phase optics, at least from the perspective of
this review, is the comparatively limited control over polarization they offer. With
photoalignment-based fabrication, only the LCs’ fast-axis orientation is tunable
[Eq. (145)] while its retardance is a property of the LC thin film as a whole. That is,
only one angular quantity of the full Jones matrix (out of eight total) can vary arbi-
trarily at the control of the designer. This stands in contrast to other technologies and
techniques discussed throughout this section, which enable, mathematically speaking,
more degrees-of-freedom (and can use geometric phase in tandem with propagation-
based phase). The extent to which this matters depends on the application of interest;
there are, however, cases in which other technology platforms can integrate polari-
zation functions in a single device that would require multiple GPHs to realize (for
the case of grating-based polarization analysis, see Subsection 4.7). A key disadvan-
tage of LC GPHs more generally is, paradoxically, their polarization dependence; in
applications that do not specifically use this polarization dependence and that require
unpolarized illumination, this can mean wasting at least 50% of incoming light to a
circular polarizer before the optical element.

4.5c. Vortex Beams and “q-Plates”

Here, we briefly discuss the application of LC devices to the generation of beams
carrying optical orbital angular momentum (OAM). Optical OAM, while a highly
related subject area, takes us somewhat far afield here. The reader is referred to one
of numerous recent reviews [176–178]. Briefly, wavefronts carrying OAM are those
with helical gradients of phase. These helical phase gradients can be analyzed in terms
of wavefronts that are eigen-states for the angular momentum operator, which carry a
phase dependence that goes as

e imφ, (146)

with m being an arbitrary integer (the “topological charge”) and φ being the usual
azimuthal coordinate. Optics that produce this azimuthal phase dependence and that
convert between different OAM states has attracted significant interest. These can be
implemented in a variety of ways, including with purely refractive optical elements
known as spiral phase plates.

Some implementations of Eq. (146) can be polarization-dependent. Of particular note
are LC devices known as “q-plates.” A q-plate is a LC device that implements the
phase profile of Eq. (146) with a LC layer with half-wave (π ) birefringence where the
LCs’ axes rotate. As a result, one circular polarization picks up a phase profile of e imφ .
However, due to the symmetry of the geometric phase, the other circular polarization
will acquire a phase profile of e−imφ . As a result, the OAM that results is coupled to
the polarization handedness, or spin angular momentum, of the incident light. The
q-plate, then, is often referred to as enacting “spin–orbit conversion.”

Spin–orbit converting LC devices were brought to the fore by the work of Marucci
et al. in 2006 [179] (though we note very similar earlier work, using mechanical LC
alignment, by Stalder and Schadt a decade prior [180]) and have since provoked sig-
nificant interest in the academic community for their application in both classical and
quantum contexts (though we point out that Hasman et al. demonstrated spin–orbit
conversion with geometric phase in a nanophotonic device several years earlier [181],



Review Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics 909

and metasurfaces, also a nanophotonic device, have since been shown to relieve the
constraint of conjugate charges±m [182], enabling “J-plates”).

Unlike many of the devices of the previous section, q-plates can be realized using
mechanically rubbed substrates (no need for photoalignment). Twisting two mechan-
ically rubbed substrates relative to each other yields the correct LC orientation [179].
However, other authors have investigated creating these same structures using pho-
toalignment techniques [183] for use in vortex coronagraphy [184,185], a focal plane
coronagraphy technique discussed above. Here, however, LCs simply enable better,
more precise vortex plates to be manufactured; their polarization-dependent nature
does not play an explicit role or lend any advantage to the measurement technique
(unlike in the case of the vAPP summarized above).

4.5d. Spatial Light Modulators

An SLM is a general term for any number of devices imparting spatially varying
amplitude and/or phase transmission masks on incident light. Over decades of
research and development, many technologies for SLMs have emerged utilizing a
wide variety of physical effects. What these share is tunability, usually electrical
(computer-controlled) in nature, but in some cases, especially in early imple-
mentations, SLMs can be controlled optically with a second light beam (optical
addressing). SLMs are widely used today in applications ranging from beam and
pulse shaping to quantum optics. A detailed discussion of SLM technologies and
applications is beyond the scope of this review and has been treated extensively
elsewhere (see, for instance, [15,186–190]). To provide just a few examples, SLMs
have been implemented using magneto-optic effects, voltage-tunable absorption in
multiple quantum wells, and with microelectromechanical systems (MEMS)-based
deformable micro-mirror arrays.

Particularly relevant to our interests here, however, are SLMs based on LCs. In
practice, too, today these are among the most common and widely available com-
mercially, especially those integrated on silicon with CMOS drive electronics [liquid
crystal on silicon (LCoS)] [117,191,192]. This is owed in large part to the similarity
between LC SLMs and LC displays, and indeed, some authors often refer to such
SLMs (especially in earlier work) as “liquid crystal TV displays,” though there are
of course important differences between devices sold as literal television screens and
those intended for optical use.

LC SLMs are fundamentally a polarization-dependent technology. As described
above, LCs can be rotated by application of an applied bias voltage. This effect
enables, essentially, a retarder with an electrically variable retardance, which, when
addressable over an array, forms an SLM. This effect can be either used as a pure-
phase modulator (if the incident polarization is always linearly polarized along the
bias-tunable axis) or as a pure-amplitude modulator (if the LC cell is placed between
analyzers that may be crossed or parallel, depending on the exact implementation, as
in LC displays). It is for these two purposes that LC SLMs are most often used.

Here, however, we are interested in the spatially varying polarization modula-
tion enabled by these LC SLMs, or cascades thereof. In Subsection 4.5e, we take
an abstract viewpoint, classifying the polarization control enabled by SLMs.
This analysis, to the best of our knowledge, is new to this review. Then, in
Subsection 4.5f, we briefly review past work and devices that use LC SLMs to
implement polarization-sensitive diffractive optics.
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4.5e. Polarization-Transformations with Systems of Multiple SLMs

Introduction. In this section, we consider the spatially varying polarization opera-
tions attainable with cascades of several SLMs, paired with bulk polarization optics.
We classify the polarization control attainable for conceptual comparison with other
technologies, such as those described throughout this section. To the best of our
knowledge, this presentation is new to this review, though the configurations here are
not unique and similar generalizations have recently been explored by other authors
(e.g., [193], and others cited later in this section). Here, cascades of SLMs could be
SLMs that are physically cascaded at optically close distances, SLMs successively
imaged onto each other using 4 f systems of lenses, or multiple passes through the
same SLM, with different sections addressed with different phase masks. The ideas of
this section are depicted in Fig. 23.

As described above, a single LC SLM pixel can be thought of as a tunable retarder,
specified independently at each discrete point (x , y ) across an array. Ignoring the
overall, constant phase shift imparted upon the unmodulated polarization, a single
SLM implements the spatially varying Jones matrix,

J (x , y )=
[

e iφx (x ,y ) 0
0 1

]
, (147)

where φx (x , y ) is a phase shift on linear x -polarized light that can be arbitrary tuned
across the array [Fig. 23(a)]. An SLM can be physically rotated by 90◦ or, alterna-
tively, left unrotated but sandwiched between λ/2 plates oriented at ±45◦, to realize
the same control over y -polarized light [Fig. 23(b)]. We denote this as φy (x , y ). The
case of a single SLM corresponds to type I of Table 4.

Two SLMs. A cascade of two such SLMs, one after the other (or, as noted above,
encoded on separate sections of the same SLM with appropriate mirrors and
polarization optics), can implement the spatially varying Jones matrix,

J (x , y )=
[

e iφx (x ,y ) 0
0 e iφy (x ,y )

]
= e i

φx+φy
2

[
e i

φx (x ,y )−φy (x ,y )
2 0

0 e−i
φx (x ,y )−φy (x ,y )

2

]
. (148)

Equation (148) describes a space-variant wave plate in which retardance δ = φx − φy

and overall phase 8̄= (φx + φy )/2 may be independently and arbitrarily specified.
The addition of a second SLM, then, expands control to type J of Table 4. Two SLMs
together act as a spatially varying wave plate whose overall phase and retardance are
variable but whose retardance axis is fixed along x/y (s 1 axis).

Optical rotation with SLMs. It might at first seem that this is a fundamental limi-
tation; after all, the pixels of the SLM cannot be individually rotated independently
of one another. However, the ability to pair the SLM with bulk polarization optics
relieves this constraint. Specifically, we consider an SLM sandwiched between two
quarter-wave plates, turned at ±45◦ [Fig. 23(d)]. In this way, incoming light is effec-
tively converted to the circular basis, retarded along one polarization by an angle
that the SLM can control spatially, and converted back to its original basis. This
system, viewed from the outside, acts as an optically active medium where the phase
retardation between circular polarizations can vary arbitrarily from point-to-point; in
practice, any polarization ellipse incident on the system will be rotated by the angle θ
encoded by the SLM at each pixel, converting the phase shift θ to a physical rotation
of the polarization ellipse.

Intuitively, this can be understood with the aid of the Poincaré sphere and the concepts
of Subsection 2.6 [Fig. 23(e)]. One particular incident polarization is considered (light
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linear polarized along x ). A green path and arrow show the effective transformation

Figure 23

(a) (b) (c)

(d) (e)

(f)

Implementation of spatially varying polarization control with configurations of
spatial light modulators (SLMs). (a) A single LC SLM implements a phase profile
φ(x , y ) on one linear polarization and a constant phase (disregarded here) on the
other, which can be addressed separately by (b) rotating the SLM, or equivalently,
using half-wave plates. (c) Two orthogonally oriented SLMs can implement a retarder
whose overall phase and retardance can be arbitrarily specified at each point in space.
(d) A spatially varying rotation matrix can be realized by sandwiching such an SLM
between two quarter-wave plates (λ/4) oriented at ±45◦. (e) The operating princi-
ple of the system in (a) can be understood with the Poincaré sphere taking incident
x -polarized light as an example. The cascade of a quarter-wave plate, SLM, and oppo-
sitely oriented quarter-wave plate takes the light on a path (in black) that, effectively,
amounts to a rotation of the polarization state (in green). (f) Cascade of one rotation
unit (as in (d)), two SLMs implementing the phase profiles φx (x , y ) and φy (x , y ),
rotated 90◦ with respect to one another, and a final rotation unit to undo the first.
Throughout this figure, it is assumed that the SLMs are located optically close to one
another (or equivalently, imaged onto each other with systems of lenses) and perfectly
aligned.
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enacted by the system, i.e., a rotation in azimuth by a certain angle, a change in longi-
tude on the Poincaré sphere. A black path, however, shows the three individual steps
by which the system of Fig. 23(d) implements it. First, a quarter-wave plate oriented
at 45◦ rotates the incident polarization 90◦ about the s 2 axis of the sphere. Then, the
SLM, itself effectively a polarization retarder oriented along x , rotates the polariza-
tion by an angle of θ about the s 1 axis of the sphere. Finally, the quarter-wave plate at
−45◦ rotates the polarization −90◦ about the s 2 axis, back to the equatorial plane of
the Poincaré sphere, having enacted an effective azimuth rotation by θ .

In other words, the configuration of Fig. 23(d) functions as a linear change of basis
operation (where the angle of the change of basis can vary over the SLM array). As
shown in Fig. 23(f), when paired with the configuration of Fig. 23(c), it enables a
device that acts as a retarder whose retardance, overall phase shift, and fast-axis angu-
lar orientation are all independently variable at each point. This works by first rotating
the desired polarization basis into the x/y basis with R(−θ), shifting its phase, and
inverting the change of basis with R(θ). In Fig. 23(f), this is shown implemented with
four SLMs; however, practically speaking, the two change of basis transformations
could be condensed into one system traversed in opposite directions. The combina-
tion of SLMs depicted in Fig. 23(f) corresponds to type J in Table 4. As described
in Subsection 4.7, this is the same level of polarization control that can be realized
in a single plane with a dielectric pillar-based metasurface device, albeit without the
tunability offered by SLMs.

The linear change of basis system of Fig. 23(d) can be extended to an arbitrary change
of basis system with the addition of an SLM oriented along x preceding the system
(though this choice is not unique). Then, in analogy with Fig. 23(f), a system could be
constructed in which an arbitrary unitary Jones matrix could be constructed at each
point, i.e., one in which overall phase, retardance, and the two parameters defining an
arbitrary elliptical eigenbasis could be independently specified at each point (x , y )
(implementing type C polarization control in Table 4, though this is not shown in
the figure). Moreover, the concepts of this section could extend to configurations
of SLMs realizing Hermitian spatially varying Jones matrices using polarization
beam splitter cubes and polarization-independent, amplitude-only SLMs (i.e., not
LC-based devices), combined with the change of basis configurations discussed here.
Then, in theory, a configuration of SLMs could be assembled capable of realizing of
fully arbitrary (passive) Jones matrices across an array (type B control).

In the next section, we review past work on SLM configurations that permit spatially
varying polarization devices. By and large, most past work is more ad hoc and does
not take as general a standpoint as we have motivated here, but can nonetheless be
understood and classified in this context.

4.5f. Literature Review—Spatially Varying Polarization Elements with SLMs

Here we review some applications of LC SLMs, with some examples discussed
here featured in Fig. 24. LC SLMs are widely used in a variety of applications,
among them optical microscopy [194] (including super-resolution techniques such as
STED microscopy), electrical beamsteering, digital holography, and beam shaping
[186,190] (including in the generation of beams carrying optical OAM), and even as
near-eye displays for AR/VR [195–198]. By and large, these efforts treat light as a
scalar field, aiming to sculpt its phase or amplitude alone, and each would merit its
own dedicated review article. Here, in contrast, we focus explicitly on past research
efforts in which SLM-based systems have been used to implement diffractive optics
with designer polarization dependence. Examples of this nature are considerably
more limited, since most works treat the polarization-dependent nature of LC SLMs



Review Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics 913

as a route to achieve phase or amplitude modulation rather than for polarization
manipulation itself.

Work of Davis and Moreno et al. Some of the most detailed work in this area,
which best approximates the spirit of this review, has been performed by J. A.
Davis, I. Moreno, et al. in a collection of related work from ∼2001 to the present
[193,200,201,203–209]. Broadly speaking, the work of Davis, Moreno et al. con-
siders optical setups in which light is permitted to make multiple passes through an
SLM and interceding polarization optics (wave plates). Much as in the discussion

Figure 24

Spatially varying polarization transformation with liquid crystal SLMs.
(a) Example of a polarization-dependent-phase mask encoded on a LC SLM, viewed
between crossed polarizers. Reprinted with permission from [199]. Copyright 2019
Optical Society of America. (b) Typical setup for producing polarization-dependent
diffractive optics with an SLM. Incident light passes through a section of the SLM
and, by virtue of a reflective 4 f system and quarter-wave plate, is imprinted with
a second polarization-dependent phase profile encoded on the second half of the
SLM. Taken together, this setup imparts arbitrary and independent phase profiles
on the x - and y -polarized components of incoming light. Reprinted with permission
from [200]. Copyright 2016 Optical Society of America. (c) A setup such as that in
(b) can be used to create polarization-sensitive diffractive optics, such as gratings
whose orders act as analyzers for particular polarization states, distributing light
between orders according to the incident light’s polarization state. Reprinted with
permission from [201]. Copyright 2001 Optical Society of America. (d) This concept
can be extended to generate gratings whose orders act as analyzers for arbitrarily
specified states of polarization. The intensities of the different orders permit recon-
struction of incident light’s full-Stokes vector. Reprinted with permission from [200].
Copyright 2016 Optical Society of America. (e) Altogether very similar optical setups
(here taken from [202], for sake of example) have been used to realize far-fields
with arbitrary polarization state variation [functionally equivalent to (b), with two
interactions with a LC SLM]. However, structuring the far-field polarization rather
than polarization transfer function represents a subcase, rather than the most general
capability of devices such as SLMs to serve as polarization-sensitive optical elements
(Subsection 3.3). Reprinted with permission from [202]. Copyright 2018 Optical
Society of America.



914 Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics Review

above, Davis et al. analyze the resulting diffraction patterns in terms of Jones matrix-
weighted Fourier coefficients. We note here that a 2004 paper by Moreno is one of the
only references before this work to cast Fourier optics in terms of Jones matrix quan-
tities [62,63]. Moreover, the work of Davis and Moreno et al. is among the earliest
examples of this type of SLM work in the literature so it constitutes an outsized role in
our discussion here.

A setup characteristic of this type of work is shown in Fig. 24(b). While the precise
implementation details can vary, generally speaking light is allowed to pass twice
through a LC SLM with the plane of linear polarization rotated 90◦ between passes.
In the example of Fig. 24(b), this is accomplished by directing light through half of an
SLM, then through a quarter-wave plate at 45◦, an off-axis lens, and the same configu-
ration in reverse after a reflection from a mirror. The two quarter-wave plate passes
rotate the initially x -polarized light by 90◦, and the off-axis lens directs the light
through both halves of the SLM while re-imaging the light. In this way, independent
phase profiles can be addressed on orthogonal polarization states using the two halves
of the SLM, as in Eq. (148) and Fig. 23(c).

The phase profiles imparted can be fully arbitrary, thus permitting many different
applications. The earliest work of this nature by Davis et al. considered gratings—
periodic phase profiles—the most fundamental choice. This work was partially
motivated by the fact that polarization-dependent paraxial beam splitting gratings
may have a higher efficiency than their scalar counterparts (see Subsection 4.6).
In early work, Davis et al. showed the possibility for the diffraction orders of
polarization-sensitive gratings to act as analyzers for pre-specified polarization
states [Fig. 24(c)], allowing the distribution of light among the orders to vary with
incident polarization state [201,204]. In later work, this was taken further to permit
diffraction gratings with many orders analyzing for designer-specified polarization
states [200,207]. Figure 24(d) shows the response of the far-field of such a grating
constructed as in Fig. 24(b) with varying incident polarization state. The relative
weights of the orders permit full-Stokes polarimetry (see Subsection 2.7). Davis and
Moreno et al. used similar concepts to investigate many other areas that we do not
describe in depth here. Among them were polarization-sensitive lenses [205,208],
polarized vortex beam generators and analyzers [209], and computer-generated
holograms in general [193].

Creation of vectorial fields. A variety of other work concerns the ability of multi-
pass SLM configurations to generate fields whose polarization can vary arbitrarily
over space for an input whose polarization state is known a priori. This possibility
has been considered by many authors, both theoretically [210–212] and experi-
mentally [202,203,206,213–215]. These share in common the notion that any given
polarization state can be transformed to another by two retarder transformations
with perpendicular retarder axes on the Poincaré sphere; these works—some quite
recent—seem to have been carried out without awareness of the others. Similar ideas
and setups can even be extended (using a cylindrical Bessel beam basis of modes)
to control of the SOP along light’s propagation direction (again given knowledge of
the incident polarization state) [216–220]. This body of work, in which the spatial
polarization state distribution rather than transfer function is controlled, does not
represent the most fully general means of polarization control afforded by systems of
LC SLMs, corresponding to the “vector” picture rather than the “matrix” one of which
it is a subcase (Subsection 3.3).

Systems of SLMs provide the possibility to structure spatially varying polarization
devices that can, in general, be quite arbitrary. The electrical, computer-addressed
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tunability of SLMs is a compelling advantage. However, it is telling that all the exam-
ples cited here generally do not exceed two SLMs (or two SLM passes). This reflects
the fact that these systems are cumbersome to use and align, requiring either optical
proximity between SLMs or systems of lenses, mirrors, and/or prisms, resulting in a
large system size. Metasurfaces, as we explore in Subsection 4.7, hold promise for
enabling these possibilities with a single element, in a single plane.

4.6. Polarization Gratings

This section is different from others in this review in that it does not center around
a technology. Rather, here we briefly summarize a body of papers that appeared
around the new millennium (∼1999− 2004) that considered, from a theoretical
point-of-view, polarization gratings (and perhaps coined this term). Chronologically
speaking, these works were not the first on the subject of polarization-dependent
diffractive optics (or gratings in particular); see Subsection 4.2. However, they are
significant from a historical perspective in that these increased the subject’s visibility
at a time when new technologies were emerging that enabled the ideas expressed
to find experimental realization. The ideas expressed in these works spurred devel-
opment in devices based on LCs (described in Subsection 4.5) and nanofabrication
(metasurfaces, Subsection 4.7), through which their influence is still felt today.

Work of Gori (1999). The origin of this literature can be traced to a paper of F. Gori,
published in 1999 [146]. Using the Jones calculus, Gori theoretically considers a
transmissive, periodic optical element that behaves as a polarizer whose transmission
axis rotates linearly between 0 and 180 degrees along one spatial direction. Gori
shows that the structure has just three diffraction orders, 0 and±1. The±1 orders are
circularly polarized (opposite handedness), irrespective of the polarization of the inci-
dent light, while their intensity depends on the projection of the incident polarization
onto RCP and LCP. The zero order always matches the polarization of the input and
has a constant intensity. Gori noted that such a grating, if implemented, could be used
for Stokes polarimetry (given a second, rotatable polarizer). It is unclear whether Gori
was aware of previous work on very similar polarization grating-type work using pho-
toanisotropic materials (see Subsection 4.2; a related reference on four-wave mixing
in these materials is cited [89], but Gori ultimately concludes that “the general subject
of polarization gratings has not received much attention” [146]).

Gori’s 1999 work stemmed from a line of investigation, involving Gori as well as
others, on phase-only gratings, and phase-only diffractive optics more generally.
Phase-only gratings (thin ones, treated in the paraxial limit, at least) can be shown
to produce only one (in the case of a simple blazed grating) or an infinite number of
diffraction orders [77]. This is an ultimately mathematical statement about the Fourier
series of a function of constant modulus. A number of works, including by Gori,
investigated how a phase-only grating can be optimally designed (from a variational
standpoint) to direct as much light as possible into a limited, finite set of diffrac-
tion orders [221–225]. These gratings were, and still are, of interest for coherent
beam-combination and division.

Work of Tervo & Turunen, et al . Inspired by Gori’s work [146], Tervo and Turunen
[78] et al. (here referred to as “T&T”) made the connection between the two topics by
recognizing that a polarization grating was not beholden to the same constraints as a
scalar one. They showed, using the vector approach described in Subsection 3.3, that
a periodically modulated retarder could indeed produce a finite number of diffraction
orders with 100% efficiency. One special example considered is that of a geometric
phase grating (though they did not use this term), wherein a half-wave plate is rotated
periodically with space. T&T recognized that the extra degrees of freedom encoded
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by polarization relieve the constraints of scalar optics. In further work, T&T intro-
duced a method for generating the Jones vector distributions describing gratings with
a (generally 2D) set of diffraction orders that numbers any power of two to a side
[226]. This method is recursive, building from a base case of a two-order grating with
orthogonally polarized beams. T&T also illustrated examples with non-power-of-two
sets of diffraction orders [226] as well as cases where even with polarization consid-
ered perfect diffraction efficiency cannot be obtained [227]—though still, even now,
no general method or mathematical proof has been demonstrated concerning when a
polarization-dependent grating can exhibit perfect efficiency and when it cannot in a
beam-division context.

Notably, T&T (and Gori, to a lesser extent) explicitly recognized that lithographi-
cally defined form-birefringent structures could be used to realize what was, in
their work, only expressed theoretically. One strategy was proposed in [226].
Here, T&T proposed using an isotropic medium of variable thickness to impose a
polarization-independent “bias” phase with the possibility to impart retardance with
a form-birefringent grating of constant period but variable thickness. A proposed
example implementation of a blazed grating with opposite blazing angles is shown in
Fig. 25. In [226], an intention was declared to fabricate these, which would no doubt
prove challenging due to the non-planar nature of the structure proposed. It seems that
this research direction was not pursued (despite some later related works [228,229]).
However, T&T presciently predicted that “rapid progress in microstructure fabrica-
tion technology” may soon render polarization gratings realizable [226]. The work of
Gori and T&T was often cited as an influence in work on polarization diffractive tech-
nologies in the mid-to-late 2000s, such as in LC devices and nanophotonic gratings,
later evolving into the wider field of metasurface optics.

4.6a. Mathematical Issue in Review of Cincotti (2003)

A brief review of work on polarization gratings, from the purely theoretical work of
Gori and T&T to some experimental implementations, is provided in a 2003 review
article by G. Cincotti [79]. In addition to a literature review, Cincotti provides a
unified theory of polarization grating design based on many of the same concepts
covered in Section 2 in this review, namely the Pauli matrices and the connection
between the Jones and Stokes calculi.

Figure 25

A proposed architecture for a lithographically defined polarization grating based on
form birefringence capable of splitting x - and y -polarized light. A combination of a
form-birefringent grating and an isotropic material was intended to impose the correct
phases on orthogonal polarization states, with TiO2 as a proposed dielectric. Given the
difficulties associated with non-planar fabrication, this structure was seemingly never
realized, but proposals such as these anticipated trends in micro- and nano-optics,
especially metasurfaces (Subsection 4.7). Copyright 2000 from “Fourier array illu-
minators with 100% efficiency: analytical Jones-matrix construction” by Honkanen
et al. Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa pic [226].
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However, we are concerned that the theoretical approach used in [79] may be math-
ematically incomplete, and a brief effort is made here to clarify this. Cincotti’s
approach is to break a spatially varying Jones matrix into a spatially varying part and
a constant one. When a given polarization state is incident, the resulting Jones vector
also has a spatially varying part and a constant part. Cincotti applies this approach
separately for purely Hermitian and purely unitary cases, in view of the matrix polar
decomposition (Section 3). In each case, it is found that the derivative of the spatially
varying part of the Jones vector can be described with aid of a “polarization grating
vector” E�, which is unique to a given grating {e.g., Eqs. (18), (21), and (30) of [79]}.

A key conclusion made on this basis for both Hermitian and unitary gratings is that
the Jones vectors of the grating’s diffraction orders are solutions of an eigenvalue
equation [Eq. (20)], which contains no dependence on the incident polarization state.
Cincotti then concludes that the polarization state of diffraction orders from a polari-
zation grating “do not depend on the polarization state of the incoming light and are
fully characterized by the polarization grating vector.” However, this conclusion is, in
general, not correct. There are certainly cases in which the polarization of the orders
of a polarization grating can depend on the incident polarization.

A very simple one that serves as a counter-example to this conclusion is a
polarization-independent blazed grating, with a transfer function given by

J (x )=
[

e ikx 0
0 e ikx

]
. (149)

Equation (149) describes a grating with only one diffraction order whose polariza-
tion matches that of the incident light. Propagating a grating of the form of Eq. (149)
through Eq. (20) of [79] gives an eigenvalue equation of with matrix of zeros, which
gives complete freedom to the polarization state of the first diffraction order.

A perhaps deeper issue is that in the analysis of [79], a sum (6n, over all diffraction
orders) has been dropped in going from Eqs. (19) to (20). The specific examples
treated in [79] all concern gratings with only two nonzero diffraction orders with
orthogonal polarizations so that Eq. (20) still holds. However, in more general sit-
uations, particularly those implemented with metasurfaces or with multiple passes
through LC SLMs, the polarization states of the diffraction orders will in general not
be orthogonal, and Eq. (20) will not take the form of a simple eigenvalue problem.

A method that avoids these issues, regardless of the circumstance, is to simply
compute the Fourier series of the spatially varying grating Jones matrix, the guid-
ing principle of this review; the resulting Jones matrices of each diffraction order
will reveal their polarization properties. A given order’s polarization will only be
independent of the incident light’s polarization if its Hermitian (or polarizer-like)
component has unity diattenuation.

4.7. Metasurface Optics
4.7a. Introduction

This section is dedicated to metasurfaces. A description and background of what
precisely is meant by that term follows in the next section, but suffice it to say, meta-
surfaces have become an influential force in optics and photonics. Metasurfaces form
the cornerstone of an academic and research community, not to mention increasing
interest in potential applications in both science and technology. Thousands of papers
have been published related to metasurfaces, metasurface design concepts, and related
matters.
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We begin this section, then, with a frank admission that, given this scale, we can
only hope to begin to scratch the surface here. No review could possibly capture
everything. The present review seeks to survey important concepts and work in meta-
surfaces specifically for spatially varying polarization control. This focus already
pares down the greater metasurface field significantly, but even this area is extremely
broad, and some scope must be defined. In this section, we aim to summarize devel-
opments in this area in terms of the level of polarization control exerted and the
various design strategies used, classified by level of abstraction. A focus on these two
aspects fits neatly with the classification scheme embodied in Subsection 4.1 and the
scalar/vector/matrix hierarchy described in Section 3, and moreover it permits easy
comparison with other non-metasurface technologies described previously.

However, a number of important works and topics will (necessarily and unfortu-
nately) pass without mention along the way. Among these are fascinating topics such
as exerting control over color and chromatic dispersion with metasurfaces, metasur-
faces for nonlinear optics applications, and so-called “Huygens metasurfaces” based
on Mie resonators and the Kerker conditions (see [230] for a recent review).

Fortunately, while this review may be somewhat unique in its exact focus, it is not
unique in being a review article about metasurfaces. The reader is directed to several
other review articles. The first is the review of Yu and Capasso [231] from 2014.
Three more recent reviews that focus specifically on dielectric metasurfaces (now
the main thrust of the metasurface community) are those by Genevet et al. (2017)
[232], Kamali et al. (2018) [233], and Qiao et al. (2018) [234] (which takes more of a
photonic crystal perspective). All of these devote some attention to polarization con-
trol. Several reviews treat holography with metasurfaces [235,236], and three recent
reviews are even dedicated entirely to polarization optics with metasurfaces. Two of
these, one by Hu et al. [237] and a second by Ding et al. [238], review spatially vary-
ing polarization control with dielectric metasurfaces. The third, by Intaravanne and
Chen [239], discusses metasurface approaches for polarimetry. A review of Zheng
et al. [240] also heavily focuses on polarization-dependent devices.

4.7b. What Is a Metasurface?

Working definition. A metasurface is an array of optical phase-shifting elements
whose transverse spacing and dimensions are smaller than the wavelength of interest
(subwavelength features). A distinguishing feature of a metasurface is that these
elements achieve the desired phase-modulating effect with variations in transverse
dimensions, rather than height. Metasurfaces—both the devices themselves and as a
research field at-large—are often referred to as “flat optics.”

Metamaterials. The definition just given will suit our purposes in this review.
However, we note that the word metasurface—and the wide-ranging topics now
categorized under that label—adeptly evades precise definition. “Metasurface” has
found itself today used as a label for a surprisingly broad array of optics and RF
research and applications, a body of work we can only review incompletely (at best)
in this section. First, it is worth considering, briefly, metasurfaces and their origin.
“Metasurface” evokes the word “metamaterial,” an umbrella term for a research area
that emerged in the early to mid-2000s. Research in metamaterials seeks to realize
optical media with exotic properties not present in naturally occurring ones, among
these negative refractive index (n < 0) and ε and µ values near 0. These properties
were shown to have theoretical implications that, if realized, could upend a number of
traditionally assumed limits of optics. Among these is the popular idea that a film of
negative index material could focus and amplify evanescent waves, beating the tra-
ditional diffraction limit [241]. Metamaterials rely on the concept of a “meta-atom,”
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a unit cell fashioned from a careful arrangement of traditional materials. In this way,
light with a wavelength is larger than the size scale of the meta-atoms can be made to
“feel” an effective medium that may have exotic constitutive properties.

The exact origins of the term metasurface, and metasurface research more generally,
are somewhat unclear. One of its first mentions in archival literature dates from the
abstract of a 2003 RF work [242], hearkening a version of metamaterials where,
instead of a 3D bulk, meta-atoms are constrained to lie on a 2D surface. It did not
appear again until 2007, but soon after it became a widely applied term in the RF and
microwave literature.

Metasurface origins. Around the same time, it became increasingly clear that
some of the initial promise of optical metamaterials—including the perfect lens—
faced severe practical difficulties. The large metamaterials community, alongside
researchers in the associated field of plasmonics (that is, the optics of metals host-
ing a plasma of free electrons [243]), was collectively eager to break new ground.
An explosion of metasurface research in optics can be traced to a 2011 work by Yu
et al. [244], showing that plasmonic (gold) antennas patterned with electron-beam
lithography for operation at ∼8 µm wavelength could act as optical phased arrays,
deflecting light in the manner of a blazed grating, made with a single lithographic
step (in contrast to multi-level diffractive approaches, which require multiple steps
of lithography). This work had its antecedents in efforts to collimate light from mid-
infrared semiconductor lasers using gold antennas patterned directly on the laser’s
edge-emitting facet [245,246]. Before long, many promising applications of these
metallic metasurfaces were proposed and demonstrated, among them vortex phase
plates [231,244], diffraction gratings, computer-generated holograms, and lenses
[247] (even a partial list of references would be impossible here). Metasurfaces imple-
menting lens profiles have taken on a life of their own, and these metalenses form a
significant area of study largely apart from the subject of this review.

Smaller wavelengths with dielectrics. As time went on, work that initially begin in
the mid-infrared range (5–8 µm) gradually crept to shorter wavelengths. It became
clear that metasurfaces based on metals—while appealing due to the extensive work
conducted on similar structures under the guise of plasmonic metamaterials—were
inherently lossy. Naturally, the community tended toward dielectric materials. This
work began initially in the telecom and near-IR spectral regions where amorphous
silicon is a high-index dielectric with low loss that is readily deposited as a thin film
and patterned with reactive ion etching. This is true of other materials in the visible
range, such as silicon nitride and titanium dioxide. Metasurfaces, including those for
polarization applications, can take on any number of different forms, some of which
are described in Subsection 4.7e; while the ideas presented here are general, this
review tends to skew toward metasurfaces structured from dielectric materials.

Toward widespread application. Metasurfaces lean on a well-established base
of knowledge and technological infrastructure from the semiconductor industry
developed over decades. Their fabrication is both an advantage and a challenge: The
subwavelength, sometimes asymmetric features of metasurfaces can pose a challenge
to production at-scale, but at the same time their top-down fabrication mirrors that
of integrated circuits and can borrow from the same methodology and facilities. As a
result, metasurfaces have attracted significant industrial interest beyond their status as
a subject of intense academic focus, promising applications from medical imaging to
remote sensing and even consumer electronics [248,249].

It should be said, of course, that diffractive optics and holography have a long history,
with metasurfaces being an especially promising new chapter. This too is true of
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polarization-sensitive metasurfaces, as has been discussed throughout the preceding
sections of this review. We note here that a number of important metasurface-like
works for polarization control emerged before the post-2011 period, and these are
described in Subsection 4.7d.

A (very) rough timeline of the discussion here, and the merger of ideas from various
fields giving birth to metasurfaces is provided in Fig. 26. In what follows, we review
work on metasurfaces that are polarization-sensitive, attempting to make sense of
what has become a voluminous subject. As with other sections of this review, we
categorize work on metasurfaces using the scalar/vector/matrix formalism embodied
in Subsection 3.3. We conclude with a discussion of applications demonstrated with
and enabled by polarization-sensitive metasurfaces.

4.7c. Form Birefringence

The individual structures comprising a metasurface can possess form birefringence.
This is the fundamental reason why metasurfaces are an interesting medium for
polarization optics.

Form birefringence is an effect that comes about when light interacts with a mate-
rial that is structured anisotropically on a size scale comparable to or smaller than
the optical wavelength. As a result of this anisotropy, interaction with the structures
resembles that of a bulk anisotropic medium even if the materials involved are (in
their bulk form) completely isotropic. Form birefringence specifically results when
orthogonal polarization states experience different phase delays, but similar effects
could yield form dichroism as well if differential losses are involved.

Any treatment of light’s interaction with structured media requires solution of
Maxwell’s equations. Unfortunately, except in certain situations, these are ana-
lytically intractable, though a number of numerical schemes exist, among them the
finite element method, finite differencing (in the time or frequency domains), and the
RCWA. While quantifying form birefringence generally requires these, a number of
different pictures can prove instructive in understanding its origins. We describe two
of these here, one known as effective medium theory, and the other a more heuristic
“waveguide”-like model common in metasurface works.

Effective medium theory picture. We first consider effective medium theory.
We consider Fig. 27(a), which depicts a grating of period 3 structured from a bulk
substrate of (isotropic) index n3 in a background medium of index n1; Fig. 27(a) is
assumed to continue infinitely into and out of the page. The duty cycle of the grating
is F with F ∈ [0, 1]. If the grating is subwavelength, that is, if λ0/(max[n1, n3]3)< 1
with λ0 the free-space wavelength, only zeroth-order reflection and transmission
will be experienced. Effective medium theory seeks to treat region 2 of Fig. 27 as

Figure 26

Metasurfaces emerged from research in a number of previously disparate fields of
optics, as shown in this (very approximate) timeline.
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a uniform thin-film slab with “effective” optical properties, so that the transmis-
sion through the structure can be treated using the Fresnel equations/transfer matrix
formalism, so long as an “effective” index can be found for region 2.

This proceeds as follows [250]: First, consider light incident from above whose
electric field is strictly along ŷ . We refer to this as the ‖ direction as the light’s
polarization points along the grating ridges. The boundary conditions of Maxwell’s
equations stipulate that the electric field perpendicular to the material interface
EE‖ between n3 and n1 is constant across the boundary. This, however, implies
that the displacement field ED‖ will experience a discontinuity since ED‖ = ε0n2 EE‖.
Next, a quasi-static approximation is made, reasoning that since 3 is much smaller
than the optical wavelength that the electric field EE‖ must be relatively constant
over the grating period. Averaged over the grating period, then, we have that
ED‖ = ε0(n2

3 F + n2
1(1− F )) EE‖ = ε0n2

eff,‖
EE‖, so that

neff,‖ =

√
n2

3 F + n2
1(1− F ). (150)

If instead the incident light is polarized along x̂ , the ⊥ direction, ED⊥ is now the con-
served quantity across material boundaries. Again we make a quasi-static approxima-
tion, given EE⊥ = 1

ε0
( 1

n2
1
F + 1

n2
3
(1− F )) ED⊥, so that

neff,⊥ =

(
1

n2
1

F +
1

n2
3

(1− F )
)− 1

2

. (151)

In other words, due to the grating’s anisotropy, orthogonal polarizations experience
different refractive indices despite the isotropic nature of all materials involved.
By a similar argument, an electric field polarized along z can be shown to also
experience neff,‖ so that region 2 really does approximate a thickness of uniaxial
crystal. Moreover, a more complete theory can be derived without a quasi-static
approximation, of which Eqs. (150) and (151) are only first-order approximations
[250,251].

Wavelength-scale structuring (in this example, through the duty cycle F ) presents
the possibility to tune this form birefringence. The grating vector can, moreover,
be rotated to change the eigenbasis of this polarization transformation. Changing
either or both of these on a spatially varying scale could yield a polarization-sensitive
metasurface.

The waveguide picture. Another intuitive picture, one that is widely invoked in
works on optical metasurfaces, is the notion of mode birefringence, i.e., appealing
to the notion of a waveguide modes. Figure 27(b) depicts a schematic of a dielectric,

Figure 27

(a) (b)

The origin of form birefringence.
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pillar-based metasurface. This is an especially popular variety of a polarization-
sensitive metasurface and will be described further in Subsection 4.7e; we introduce
it here because it typifies this way of thinking. Each individual element, a pillar, of
the metasurface of Fig. 27(b) possesses two perpendicular axes of mirror symmetry.
These pillars are usually on the order of one wavelength in height with subwavelength
transverse dimensions. Light’s interaction with the pillar is said to be similar to light
propagation in a 2D waveguide with anisotropic cross section. From the symmetry of
the rectangular geometry, light linearly polarized along one axis or another will excite
modes whose electric fields point along these directions as well. These modes expe-
rience different propagation constants, and accordingly different modal refractive
indices, yielding form birefringence.

The effective medium and waveguide mode pictures presented here are a helpful aid
to intuition and motivate form birefringence’s origins. But these, along with most
any other simple heuristic one could craft, are flawed in one way or another and can
only be approximately right. The effective medium picture, for its part, assumes a
quasi-static field and will fail especially as 3 approaches λ0. On the other hand, a
waveguide-like analogy is inaccurate for a host of reasons. For one, structures of
finite (especially wavelength-scale) length are not waveguides in the traditional sense,
and moreover it is not exactly accurate to say that the modes of a rectangular dielectric
waveguide are orthogonally polarized. TE (with E z = 0) and TM (with Hz = 0) modes
exist. To a very good approximation, however, we can treat a rectangular waveguide
as a superposition of two orthogonally oriented slab waveguide problems. In this
limit, TE modes are orthogonally oriented and our picture remains. This is widely
known as the Marcatili method [252].

The only foolproof solution is to apply rigorous simulation techniques that solve
Maxwell’s equations rather than applying any one simplified picture, and in fact, this
is precisely how most works on metasurfaces approach the problem. Numerical tools
are almost always used somewhere in the design loop and, in more contemporary
methods (under the umbrella of “inverse design”), can control the entire design itself.

4.7d. Pre-“Metasurface” Works Exploiting Form Birefringence

It is important to mention here that a number of metasurface-like diffractive optics
technologies were demonstrated prior to the emergence of the metasurface label itself.
Many of these share key features with metasurfaces, including fabrication in a single
lithographic step and subwavelength dimensions. We highlight here a collection
of papers from 2001 [253] on contemporary research in subwavelength diffractive
optics. Especially notable among these is a collection of papers by Lalanne et al.
[254–256] (c. 1999) on subwavelength pillar-like TiO2 phase shifters for operation
at visible wavelengths. Like metasurfaces, these structures imparted phase using
variations in lithographically patterned cross sections, as opposed to physical thick-
ness variation and anticipated current trends in metasurface research. This work
(along with most on subwavelength diffractive optics) did not explicitly seek to exert
polarization control.

Form-birefringent diffractive optics. Several works from this time period are,
however, notable for doing just that. Form birefringence, discussed in the last section,
has long been an interest of the diffractive community. Early investigations in the
1970s and 1980s sought to exploit form birefringence for anti-reflective properties
( [250,257–259], to name just a few examples; see [253]). Before long, the idea that
form birefringence could form the basis of thin “holographic” wave plates emerged
[260], from which the idea of an element with spatially varying form birefringence is
a natural conclusion. If the period of a grating varies with space, so too will its form
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birefringence. Throughout the late 1990s and early 2000s, this was explored by a
variety of groups. Some of these, including Fainman et al., had previously explored
structures etched into bulk anisotropic substrates (as discussed in Subsection 4.3).
The first such efforts focused on making binary gratings act as polarization beam
splitters, allowing x - and y -polarized light to be directed to different orders. The
earliest such effort is owed to Aoyama and Yamashita [261] in the visible region
(λ= 780 nm), who used periodic form-birefringent structures at opposite orientations
(albeit with low efficiency and polarization contrast). Later efforts by Fainman et al.
[98] (associated with a theoretical work [99]) at 10.6 µm showed binary gratings that
directed one polarization to the first order, while the other did not diffract at all. This
type of work gradually became more sophisticated, moving from gratings to arbitrary
computer-generated holograms. Zeitner et al. [262] showed that pixels containing
metal gratings (exhibiting form dichroism, rather than birefringence) could be used to
create polarization-selective holograms, while Mirotznik et al. [263] showed how, by
appropriate modulation of the duty cycle of 2D form-birefringent gratings, a variety
of phase levels (�2) could be achieved for orthogonal linear polarization states. This
latter work [263], realized by etching into silicon for operation at 10.6 µm, is notable
for its use of library of diverse pre-simulated structures from which “best fit” geom-
etries were selected. As we describe in Subsection 4.7g, this anticipated an approach
that has become a fixture of polarization-sensitive metasurface design and may be the
first example of its use. Figure 28(a) shows a graphical depiction of this best fit from a
library approach for the two phases φx and φy , as well as a generated design [top right
of Fig. 28(a)] and an SEM of a fabricated sample [bottom of Fig. 28(a)].

Work of Hasman et al . Of special note here, perhaps even beyond the above works,
is a body of work owed to Erez Hasman and colleagues from around the year 2000.
This formed the basis of a review article by Hasman et al. [267] published in 2005,
which describes this in great detail and, not unlike this review, briefly describes other
technologies for realizing polarization-dependent diffractive optics as well. In our
summary here, we highlight selected works of Hasman et al. (but not to the extent of
Hasman’s own review [267], so the reader is referred there). Hasman et al. focused
on the creation of polarization-sensitive subwavelength gratings, both metal and
dielectric. All of these were designed to operate at λ0 = 10.6 µm with GaAs as the
substrate and dielectric material. Notably, throughout Hasman et al.’s work, the grat-
ings act as spatially varying polarizers (for metal) or retarders (for dielectrics) whose
orientations vary with constant duty cycle. For the case of spatially varying retarders,
this means that these exhibit a constant retardance with variable fast-axis orientation.
As a result, these exploit the geometric phase, in which the fast-axis orientation of a
retarder (ideally with half-wave retardance) is used to impart a scalar phase profile
on incident circularly polarized light; this falls under type E of Table 4. Throughout
their work, Hasman et al. exploited this capability to create a variety of polarization-
sensitive optical elements, only some of which we mention here. Figure 28(b) shows
a typical example—a geometric phase grating. Here, the structure is designed to be
continuously varying, which mandates a change of the grating period while the duty
cycle is kept constant so that light feels the same retardance; this binary structure is
designed using an analytical method based on a zero-curl condition of the grating vec-
tor [264,267,268]. Light of opposite circular polarization states feels phase gratings
blazed in opposite directions and will diffract in the±1 orders. Figure 28(b) addition-
ally shows an SEM typical of this work, showing ridges etched into a GaAs substrate.
However, while having the ridges be continuous may be advantageous for smooth
phase profiles, small grating units of differing orientation that are (discontinuously)
stitched together are also possible. Geometric phase simply increases linearly with
orientation, as shown in Fig. 28(c). This enables, among other applications, geometric
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phase lenses [265] [see Fig. 28(d)] and computer-generated holographic imagery
[269], each intended to function for circularly polarized illumination. Hasman et al.
also showed how these types of geometric phase optics, when paired with a polar-
izer, can perform polarimetry (either on a whole beam or on light emerging from
a sample) by imaging an interference pattern [267,270–272]. This works by appli-
cation of Fourier analysis to the patterned formed by the interference of polarized
grating orders after a polarizer [270]. Relative to other polarimetric techniques using
diffractive optics discussed in this section, this has the disadvantage of requiring an

Figure 28

Pre-metasurface works approximating later work on metasurfaces.
(a) Computer-generated hologram comprising pixels with differing form bire-
fringence, etched into silicon. This work notably used a library-based approach to
choose structures that best realize a desired pair (φx , φy ). Reprinted with permission
from [263]. Copyright 2004 Optical Society of America. (b) A periodic, geometric
phase grating that directs |R〉/|L〉 to ±1 diffraction orders, including an SEM of the
structure as realized in GaAs. Reprinted from Opt. Commun. 209, Hasman et al.,
“Polarization beam-splitters and optical switches based on space-variant computer-
generated subwavelength quasi-periodic structures,” pp. 45–54, copyright 2002 with
permission from Elsevier [264]. (c) Discretely turning the grating imparts a geometric
phase that varies linearly with orientation angle. (d) This can be used to, for instance,
realize a geometric phase lens capable of focusing circularly polarized light. (c) and
(d) Reprinted with permission from Hasman et al., Appl. Phys. Lett. 82, 328–330
(2003), AIP Publishing LLC. (e) A geometric phase grating paired with a polarizer
and image sensor can be used as a detector of light’s polarization state. Reprinted
with permission from [266]. Copyright 2003 Optical Society of America. (f) Example
of a device fabricated by Hasman et al. that is, qualitatively speaking, particularly
reminiscent of later work on metasurface devices. Reprinted from Prog. Opt. 47,
Hasman et al., “Space-variant polarization manipulation,” 215–289, copyright 2005,
with permission from Elsevier [267].
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extended sensor to measure a beam’s polarization state and in its use of an absorptive
polarization element (the polarizer).

The work of Hasman et al., despite targeting the long-wavelength infrared, deserves
credit for anticipating later work on metasurface polarization optics we describe in
the sections to come. Figure 28(f) depicts two GaAs devices reported by Hasman
et al. from one of a handful of papers dedicated to creating vortex beam/structured-
light-generating devices with these gratings (e.g., [181], an aspect we do not delve
into here). This graphic is reproduced here to emphasize this qualitative similarity of
appearance to later metasurface works. Roughly speaking, these differed from meta-
surface works that followed only in their insistence on using purely geometric phase
effects (i.e., controlling the grating orientation); if these had also exerted control over
fill factor/duty cycle, thus permitting control over propagation-type phase as well,
these devices would have anticipated later work on metasurfaces almost completely.

4.7e. Some Typical Metasurface Architectures

It is worth remarking on a few typical geometries of the structures that make up
polarization-sensitive metasurfaces. Each individual structure, separated from its
neighbors by less than a wavelength (often on a lattice that is rectangular or hexago-
nal, but not necessarily so) is commonly referred to as the metasurface’s “unit cell,” or
the “meta-atom” in the language of metamaterials. These unit cells are then stitched
together to create a metasurface device, often with aid of a mathematical abstraction
that idealizes the transmission (or reflection) properties of the structure (as described
in Subsection 4.7g). To try to summarize every possible metasurface unit cell design
would be an impossible task; instead, we focus on just three examples here.

Dielectric pillar-based metasurfaces. The first of these is the dielectric pillar, as
depicted in Fig. 29(a). This consists of a structure of constant height across a metasur-
face device with a transverse cross section possessing two axes of mirror symmetry,
most commonly a rectangle or an ellipse and less commonly a cross, annulus, or
some other shape. These structures are usually of modest aspect ratio, around 5 or so.
Accordingly, in view of a “waveguide”-like abstraction of its physical phase-shifting
mechanism (as described in Subsection 4.7c), the polarization transfer function of
the pillar can be abstracted as that of a retarder imparting independent phase shifts

Figure 29

(a) (b) (c)

Some typical polarization-sensitive “unit cell” geometries used for metasurfaces.
(a) Dielectric pillars with cross sections possessing two axes of mirror symmetry
(e.g., rectangles, ellipses, or crosses). At each point on a metasurface composed of
these, transverse dimensions can be adjusted to affect different phase shifts on light
linearly polarized along the structures’ symmetry axes, while the structures can be
individually rotated. (b) Gap-plasmon resonator structures, with similarly variable
transverse cross sections, for operation in reflection. (c) Freeform structures—the
most general case in which all geometrical parameters can be regarded as variable and
polarization effects arise as a result of potentially complex modal interference.



926 Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics Review

on a basis of linear polarization states polarized along these symmetry axes with an
adjustable orientation. This is described by the Jones matrix,

J (x , y )= R(θ(x , y ))
[

e iφx (x ,y ) 0
0 e iφy (x ,y )

]
R(−θ(x , y )). (152)

Equation (152) describes an optical element whose polarization control is classified
as type F of Table 4. By varying the dimensions of a pillar, in consultation with a
library of pre-simulated structures, any overall phase and retardance can be realized,
ideally with equal (near unity) transmission for both eigen-polarizations; the struc-
ture can also be physically rotated. These pillar-based geometries are an extremely
popular choice in contemporary metasurface work and have been for some time—at
least some of their popularity is owed to the work of Arbabi et al. [273], which took
great pains to thoroughly characterize their properties and create a more systematic
description of their behavior. These structures are immensely flexible and can exhibit
quite high efficiency when designed using high refractive index dielectric materials
that permit a high degree of light confinement. Typically, these are fabricated on glass
(often fused silica) substrates with the pillars made of a dielectric material whose
choice is governed by the operating wavelength. Amorphous silicon is a natural
choice for the near-IR [233] (n ∼ 3.5), while titanium dioxide [274] (n ∼ 2.4), silicon
nitride [275] (n ∼ 2), and even single crystal silicon [276] have been demonstrated
for visible wavelengths (glass itself can even be used, permitted the structures can be
of high aspect ratio to compensate for the low refractive index contrast of glass with
air [277]). Recent metasurface research shows hafnia [278] (HfO2, n ∼ 2.2) to be a
suitable dielectric for the near-UV, while the long-wavelength IR can be targeted by,
e.g., GaAs as discussed in the last section. Depending on the materials involved, these
structures can be fabricated with a single step of lithography (commonly electron-
beam) and either a top-down etch or, in the case of TiO2 and other dielectrics that
permit conformal deposition, a more lift-off-like process [274,278]. Research using
these types of pillar-based geometries will, admittedly, occupy most of our focus here.

Gap-plasmon resonators. A second, somewhat less popular choice is so-called
gap-plasmon resonator structures [279], shown in Fig. 29(b). Metasurfaces composed
of these elements operate in reflection, as the substrate of the device is essentially a
mirror patterned with metallic structures (whose lateral dimensions can be adjusted)
separated from the substrate by a dielectric layer. Commonly, the metal is gold,
and the dielectric spacer is glass. These can be fabricated with relative ease using
lithography (again usually e-beam) and metallic lift-off. The dielectric gap sup-
ports a resonance that combines elements of Fabry–Perot and plasmonic effects
[280,281]; if this resonance is arranged to occur near the desired operating wave-
length, the reflected phase sweeps the range 0 to 2π over a modest range of size
parameters. In reflection, then, these structures ideally implement the same Jones
matrix expressed in Eq. (152). The method of phase accrual is the greatest difference
between gap-plasmon resonators (and structures like it) and the dielectric phase shift-
ers of Fig. 29(a) and is also a potential downside: the necessity of operating near a
resonance can make the task of achieving uniformly high transmission over the entire
desired range of φx and φy challenging.

Freeform geometries. A final broad class of metasurface geometries, which we are
obliged to mention here, is shown as “freeform” structures schematically depicted
in Fig. 29(c). These are less a specific class of unit cell geometries than a natural
conclusion of the mode of thinking used in metasurface design. As we describe in
Subsection 4.7g, a specific class of unit cell is often selected, simulated in terms
of a parameter sweep, and a metasurface designed based on some mathematical



Review Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics 927

abstraction of the physics at-play [Eq. (152) above is a perfect example], referenc-
ing the collection of simulated structures. However, this abstraction can be avoided
entirely by techniques, dubbed inverse design or sometimes “topology optimization”
(e.g., [282,283]), that treat the structure’s entire geometry (dielectric, metal, or
conceivably, even mixed materials) as freely varying, rather than just a few discrete
dimensions. The result, while not immediately interpretable in any intuitive sense,
can nonetheless realize a desired behavior and, if coupled with a rigorous solution to
Maxwell’s equations, circumvent any paraxial limit inherent in the use of the Jones
calculus or other simple amplitude transmittance models. This, of course, comes at the
cost of added simulation/computational burden.

In this review, we will not dwell much on these. But it should be kept in mind that
almost any possible single-layer structure that we can think up to which an intuitive
model can be ascribed is, in the end, a subcase of a more general, more complete
approach dealing at the level of Maxwell’s equations in which the entire structure
itself is variable. However, as we discuss in the next section, any planar structure is
nonetheless subject to certain symmetries that limit the extent of polarization control
achievable.

4.7f. Linear Birefringence, Matrix Symmetry, and the Question of Multiple Layers

The structures discussed in the previous section share three key properties:

• Unitarity—the Jones matrix J describing the polarization transfer characteristic of
the structure (ideally) does not attenuate any chosen orthogonal polarization basis,
or does so equally for all polarizations, so that J † J ∝ I everywhere.

• Reciprocity—light propagation through the structures obeys time-reversal
symmetry.

• Mirror symmetry—Assuming the presence of a substrate has only a weak optical
effect, any planar structures with vertical sidewalls, such as those comprising meta-
surfaces and described in the previous section, are symmetric about bisecting plane
parallel to the x − y plane.

Essential constraints imposed by the structures can be derived from these properties.
We begin with reciprocity. We consider the Jones matrix transformation affected
by traversing the structure at normal incidence from one of two sides: either bottom,
through the substrate, or top, from air or other encapsulating medium as depicted in
Fig. 30(a). These are described by the Jones matrix transformations J bottom and J top,
each defined with reference to the right-handed coordinate systems x y z and x ′y ′z′,
respectively.

We consider some polarization state with Jones vector | jbottom〉 that is modified by the
element to become | jtop〉 such that

| jtop〉 = J bottom| jbottom〉. (153)

Equation (153), which is written in the x y z coordinate system, is from the bottom’s
perspective. But it could just as well be written from the top’s perspective in x ′y ′z′

coordinates. However, the polarization states | jtop〉 and | jtop〉 require modification.
We suppose | jtop〉 = [ j̃ (1)top j̃ (2)top ]

T and | j̃bottom〉 = [ j̃ (1)bottom j̃ (2)bottom ]
T (again here, a tilde ∼

denotes a complex number). Then, it is true that

| j ′bottom〉 =

[
( j̃ (1)bottom)

∗

(− j̃ (2)bottom)
∗

]
and | j̃ ′top〉 =

[
( j̃ (1)top )

∗

(− j̃ (2)top )
∗

]
. (154)



928 Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics Review

The negation of the second element comes about from the reversal of y ′ relative to y ,
while the complex conjugation is a result of the change in the definition of handedness
from the reversal of z′ relative to z (this can also be stated as a reversal of the second
and third Stokes components, s 2 and s 3). Given this, we can equally well write

| j ′bottom〉 = J top| j ′top〉, (155)

or, equivalently,

| j ′top〉 = J −1
top| j

′

bottom〉⇔ | j
′

top〉 = J †
top| j

′

bottom〉, (156)

which is true if J top is unitary as presumed above. By complex conjugating the whole
of Eq. (156), we find that [

j̃ (1)top

− j̃ (2)top

]
= J T

top

[
j̃ (1)bottom

− j̃ (2)bottom

]
. (157)

Comparison of Eq. (157) to Eq. (153) shows that, if we assume

J bottom =

[
Ã B̃
C̃ D̃

]
, (158)

then it must be true that

J top =

[
Ã −C̃
−B̃ D̃

]
, (159)

with each written in its own coordinate system.

Next, we consider the mirror symmetry in the x − y plane. The effect of symmetries
on the Jones matrix transfer functions of optical systems, and metamaterial elements
in particular, can be considered in a general context far beyond our discussion here
[284]. In this specific example, the Jones matrix transformation should be preserved
regardless of the direction the structure is traversed. In the way the problem has been
constructed in Fig. 30(a), the coordinate systems x y z and x ′y ′z′ are, however, not mir-
ror symmetric, being 180◦ rotated from one another. Mirror symmetry can, thus, be
expressed as an equality of J bottom and J top under this rotation, expressed as follows:

Figure 30

(a) (b)

(a) Geometry forward and backward transmission through a planar metasurface
device, used for a discussion in Subsection 4.7f. (b) Theoretically, a double-layer
metasurface comprising, e.g., two layers of pillars whose dimensions and orientations
can vary independently at each point of a metasurface is sufficient to realize any
unitary Jones matrix, thus filling full retarder space as discussed in Subsection 2.6a.
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J top = Mxy J bottom M−1
xy , (160)

with

Mxy =

[
1 0
0 −1

]
. (161)

Again presuming J bottom is of the form of Eq. (158), this implies that

J top =

[
Ã −B̃
−C̃ D̃

]
. (162)

Comparing Eq. (162) with Eq. (159) above, one can immediately conclude that

J T
top = J top, (163)

with an identical conclusion for J bottom obtained by repeating the above argument.

A single-layer metasurface must implement symmetric Jones matrix transfor-
mations. In other words, the Jones matrix of a planar, metasurface-like structure is
symmetric. Paired with unitarity, this means that metasurface-like building blocks
have strictly orthogonal, linear eigen-polarizations, i.e., they are achiral and strictly
linearly birefringent. The assumptions underlying this result, however, break down at
off-normal incidence. A fuller version of this argument is provided in the supplement
to [285]. However, for our purposes (which are strictly paraxial), this statement is
true. This statement is consistent with the Jones matrix abstraction Eq. (152) provided
for the most common polarization-sensitive metasurface elements, dielectric pillars,
but also applies more broadly to planar elements for which the above conditions hold
(including freeform geometries).

A metasurface composed of such elements, then, must everywhere implement a
symmetric Jones matrix. Below, we discuss how this restriction can in theory be
surmounted by metasurfaces composed of two layers of such structures. But first,
since the vast majority of work reviewed here will involve single-layer metasurfaces
beholden to Eq. (163), it is worth considering what this matrix symmetry constraint
means for the functions obtainable with metasurfaces, especially as regards the
far-fields they can produce.

Far-field constraints imposed by unitarity. As described in Section 3, this is best
understood with the aid of matrix Fourier optics. Suppose a metasurface described
by J (x , y ) is illuminated with a normally incident plane wave. The matrix Fourier
transform Eq. (131) gives the Jones matrix angular spectrum A(kx , ky ) governing
the behavior of a specified direction with respect to the incident polarization state.
It is helpful to recall that, mathematically speaking, a Fourier transform evaluated
for a specific direction (kx , ky ) is essentially an infinitesimal sum of Jones matri-
ces weighted by exponentials (scalars). In the case of, e.g., a dielectric pillar-based
metasurface, this integral actually truly does reduce to a sum over the discrete pillar
locations. The far-field function of a metasurface, then, comes about as a result of
weighted sums of unitary, symmetric Jones matrices. What constraints does this
imply?

As a simple example, consider two unitary matrices U1 and U2 and their
scalar-weighted sum6 = aU1 + bU2. Is6 also unitary? Consider that

6†6 = (aU1 + bU2)
†(aU1 + bU2)= (|a |2 + |b|2)I+ a ∗bU†

1U2 + b∗aU†
1U2 6= I.

(164)
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A device comprising only unitary operators can, through the Fourier transform (itself
realized through physical propagation away from the device), enact behavior that
is not necessarily unitary in specific directions. This enables considerable design
freedom. The form of A(kx , ky ) for a specific direction can be controlled by tweak-
ing J (x , y ) across a metasurface. That J (x , y ) is unitary for all (x , y ) is a global
statement of energy conservation, but when only specific directions of propagation
(kx , ky ) are considered, this energy conservation can be broken, and more general
polarization functions can be enacted.

Far-field constraints imposed by matrix symmetry. What about the second con-
straint of linear birefringence, or matrix symmetry? We consider again two matrices
S1 and S2 that are symmetric. Is a weighted sum of the two 6 = aU1 + bU2 also
symmetric?

6T
= (a S1 + bS2)

T
= a ST

1 + bST
2 = a S1 + bS2, (165)

so that 6T
=6: the symmetry of Jones matrices is preserved under addition, true for

a sum of any number of symmetric Jones matrices. Symmetry, if not unitarity, is a
property that propagates to the far-field. If J (x , y )= J T(x , y ) for all (x , y )—as is
the case for single-layer dielectric metasurfaces—then A(kx , ky )= AT(kx , ky ) for all
(kx , ky ). The far-field is everywhere governed by symmetric Jones matrices, too.

The requirement of Jones matrix symmetry is a statement of achirality, or an inability
to distinguish between circular polarizations at a basic level. Somewhat counterin-
tuitively, though, metasurfaces and other optical devices beholden to this constraint
can still realize “chiral”-like effects in their far-field. This is best demonstrated by an
example. Consider a polarizer that passes |L〉 and fully attenuates |R〉. This is given
by J = |L〉〈L |, a Hermitian matrix with |R〉/|L〉 as its eigenbasis, which—from our
discussion above—is not symmetric and cannot be implemented in the far-field of
a metasurface. Consider instead, however, J = |R〉〈L |, which is symmetric. This
has the same intensity transfer characteristic as the desired polarizer (high for |L〉
and 0 for |R〉 input) and only differs with respect to the polarization coming out (|R〉
instead of |L〉, preserving matrix symmetry). This operation, chiral inasmuch as it
distinguishes between chiralities, can be implemented by a linearly birefringent meta-
surface, which itself has no chiral properties—in fact, this is the transfer characteristic
of one diffraction order of a geometric phase grating.

Double-layer structures. As a final note, we discuss here how the constraint of sym-
metry/linear birefringence can be surmounted with a more complex metasurface unit
cell geometry. The polarization properties of media composed of several layers of
planar structures have been studied under the guise of metamaterials (e.g., [286]),
but considerably less so when these are allowed to vary spatially forming a metasur-
face. Here we consider how a pillar-based dielectric metasurface can be augmented
to enhance its polarization control beyond linear birefringence. This discussion is
presented in significantly more depth in [287], which clarifies the precise math-
ematical “value added” of a second layer of pillars for polarization purposes, an idea
that occasionally appears in the literature (e.g., [288]) usually without a general
treatment.

The simplest, almost trivial, addition to a pillar-based dielectric metasurface would
be to place the device between two bulk retarders whose retardances and eigenbases
could be arbitrarily selected, but whose properties would be constant with space
(e.g., placing the spatially varying metasurface between two slabs of uniaxial crys-
talline wave plates). It can be shown that the level of polarization control attainable
by doing so corresponds to any unitary operator within an origin-centered ellipsoid in
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retarder space. Any such ellipsoid can be obtained, given the correct choice of retard-
ers before and after the metasurface (though, once these are specified, the ellipsoid is
fixed). Any Jones matrix function J (x , y ) requiring control corresponding to such
an ellipsoid in the retarder space can be realized with just a single-layer metasurface
with suitable retarders on either side. To make this very abstract notion tangible, we
consider the example of creating a geometric phase optic (a grating, lens, or other-
wise) that operates on circular polarization while preserving its polarization state, an
application for which double-layer metasurfaces have been proposed [289]. However,
this can be achieved simply by placing an appropriately oriented half-wave plate after
the metasurface, thus converting the handedness of outgoing circular polarization,
without a need for two lithographically patterned layers.

It can be shown [287] that a double-layer metasurface affords the possibility to access
the entirety of retarder space (the entire sphere, with arbitrary overall phase control).
For this most general level of (unitary) control, two layers is sufficient, and in general
J (x , y ) could be realized regardless of matrix symmetry. To our knowledge, how-
ever, this has not yet been shown experimentally with metasurfaces for polarization
control.

4.7g. Implementing a Polarization-Sensitive Metasurface

Designing a polarization-dependent metasurface involves two distinct tasks: (1) deter-
mining the Jones matrix function J (x , y ) that will yield a desired behavior, and
(2) designing the geometry of a dielectric metasurface that implements it. The
former—methods of designing metasurfaces to achieve specific functions for par-
ticular applications—will be the subject of the next few sections. Here, however, we
concern ourselves with the latter problem, which can be reduced to a procedure that,
in many cases, follows a simple series of steps.

This starts with a given design J (x , y ). Ideally, J (x , y ) will already be unitary and
symmetric for direct implementation with a metasurface described by a Jones matrix
of the form of Eq. (152) (if not, several alternative strategies are discussed below). In
that case, J (x , y )—which is usually defined on a discrete lattice of points, or sampled
down to one—can be diagonalized to yield φd

x , φd
y (the desired eigen-phase shifts) and

θ at each point.

This procedure presupposes that a library of metasurface elements has been pre-
generated, comprising hundreds (or possibly thousands or more) of geometries with
different shape parameters (dx , dy ) that have been simulated using, e.g., finite-
difference time-domain (FDTD) simulation or RCWA on a lattice with a specified
spacing at a given design wavelength with periodic boundary conditions (the oft-
debated use of periodic boundary conditions relates to the fact that all of this design
presumes operation in the paraxial limit, in which interactions between neighboring
elements are neglected). For each, the phase shifts φx and φy experienced by light
linearly polarized along each symmetry axis of the pillar are determined from the
simulation, along with tx and ty , the transmission efficiency of each through the pillar.
The goal is to generate a library where any desired combination of (φx , φy ) yields an
element with high transmission efficiency, tx ∼ 1 and ty ∼ 1. A typical example of
such a library is depicted in Fig. 31(a).

Then, at each lattice location on the metasurface, we compute the metric

δ = |tx e iφx − e iφd
x |

2
+ |ty e iφy − e iφd

y |
2, (166)

where (φd
x , φ

d
y ) are the desired phases to be imparted on light linearly polarized

along the pillar’s symmetry axes and (φx , φy ) are the phases actually imparted by a
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given element, along with their corresponding amplitude transmission values (tx , ty ).
We choose the simulated geometry from the library that minimizes δ. Minimizing
δ is equivalent to minimizing the distance in the complex plane between the pha-
sor representing what we want—the correct phase and unity transmission—and
what the structure actually implements. This general scheme, including minimiza-
tion of Eq. (166), was pioneered by Arbabi et al. [273], though—as discussed in
Subsection 4.7d—it has a precedent in an earlier diffractive optics work of Mirotznik
et al. [263].

This minimization is performed at each point on the metasurface, mapping J (x , y ) to
a list of dimensions (dx , dy ) and rotation angles θ . These form basis of a CAD (draw-
ing) file to be fabricated.

4.7h. Realizing Hermitian Behavior (i.e., Amplitude Modulation)

As described above, the Jones matrix of conventional metasurface building blocks is
constrained to be (1) symmetric and (2) unitary, in accordance with Eq. (152). The
former constraint, that of matrix symmetry, fundamentally stems from the symmetries
possessed by the structures themselves, as described above. The requirement of
matrix symmetry can be relaxed by changing these symmetries, e.g., by utilizing two
layers of pillar-like structures rather than one (again as described above).

But what about the former constraint, that of unitarity? To implement a structure that
is not strictly unitary is to imply that the structure imparts loss (or gain, though here
we focus only on passive structures)—that is, one which can have Hermitian behav-
ior. This is reminiscent of a class of problems that emerges in scalar diffractive optics
as well, generally termed “the phase problem,” in which one wants to implement an

Figure 31

(a) (b)

(a) Typical “library” of polarization-sensitive metasurface elements, often presented
in this format in metasurface works. A polarization-sensitive structure, in this case a
rectangular pillar with two orthogonal dimensions, is simulated using, e.g., FDTD
or RCWA for a variety of different configuration of dimensions (Dx , Dy ) at a given
design wavelength (here 532 nm, with the pillars being made of TiO2. Phase shift
and transmission are shown for x -polarized light, with the plots for y being the same
given an exchange of the plot axes. This is visualized on the complex plane, showing
that geometries exist for phase shifts from 0 to 2π with relatively high transmis-
sion. Figures 1, 2, 3, and S3 reprinted with permission from Mueller et al., Phys.
Rev. Lett. 118, 113901 (2017) [290]. Copyright 2017 by the American Physical
Society. (b) Dual matrix holography for polarization-dependent amplitude control. As
described in Subsection 4.7h, two unitary matrices when added together can realize
Hermitian behavior in general, affecting polarization-dependent amplitude control
when viewed from the zero-order perspective.
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optical element with a phase-only diffractive optical element, which requires mixed
amplitude and phase modulation. A suite of solutions has emerged in diffractive
optics (e.g., with SLMs, conventional film-based holograms, or other platforms) by
which complex functions can be realized with platforms that exert phase-only control.
Some of these aim to implement a phase-only solution e iφ(x ,y ), which is “closest” (in
a variational calculus sense, relative to some distance metric in the space of func-
tions) to the desired amplitude/phase profile (e.g., [291]). Iterative phase retrieval,
often in the form of the Gerchberg–Saxton algorithm [292,293], also falls under this
class of techniques (we will see below that it can apply to polarization-dependent
problems, too).

Double-phase holography. A second class of techniques aims to implement ampli-
tude modulation in a selected part of the far-field, while conserving energy overall.
One such technique is known as “double-phase holography,” conceived of in the
1970s [294] for use with conventional holograms and now widely used with other
platforms, such as SLMs [295]. Double-phase holography stems from the realization
that two phase-only quantities, e iφ1 and e iφ2 , when coherently added, can realize a
scalar quantity with non-unity amplitude. When viewed only from the zeroth diffrac-
tion order, the fields from two adjacent, displaced phase shifters can simply add
together, effectively realizing amplitude modulation. However, light will diffract
from the periodicity of “super-cell” comprising the two phase shifters so that this
amplitude modulation is only realized on the zeroth order with higher diffraction
orders (or reflected light, in the case that the periodicity is subwavelength and the two
structures form a standalone meta-atom in their own right) acting as a “reservoir” to
conserve overall energy conservation.

“Dual-matrix” holography. This concept has recently been generalized to meta-
surface polarization control; with aid of the SVD, it can be shown that two unitary
matrices, when added together, can realize any matrix (which may have both unitary
and Hermitian components in general) [296]. In the case of metasurface-like pillar
elements, this means that a super-cell of two pillars, each of which implements unitary
and symmetric Jones matrices, can be added together to realize any (passive) sym-
metric Jones matrix [296] [Fig. 31(b)]. A similar approach has been used to realize
scalar amplitude control over orthogonal polarization states [297,298], a subcase of
the “dual-matrix holography” approach described here and in [296]. In essence, this
is a type of “spatial multiplexing,” a popular approach in the metasurface field that
always carries some trade-offs. This is discussed further in the next section.

4.7i. Scalar Regime

Starting with this section, we review past work on metasurface polarization optics. In
this and the two sections that follow, this literature is cast in terms of the hierarchy of
the scalar, vector, and matrix pictures described in Subsection 3.3 and Fig. 15.

We start here with the scalar picture, which by a large margin describes most past
work on polarization-sensitive metasurfaces. Generally speaking, designs that fall
under this scalar regime assume a priori that light incident on a metasurface of a given
polarization state evokes a distribution of an electric field whose polarization ellipse
is constant everywhere but whose amplitude and/or phase may vary across the meta-
surface device—Hence the name, since a spatially varying polarization-dependent
problem, by way of assumption, is simplified into one involving only scalars.

In what follows, we provide a semi-chronological review of work in this scalar regime
and how thinking about it—what it can do and how it is understood—has evolved
over time.
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The design strategy used in a wide swath of this work can be described as intuition-
based. In this work, the metasurfaces are designed using scalar techniques that
we term propagation phase and geometric phase designs. We describe each of
these separately, and then we discuss how in a more general picture these can exist
simultaneously.

Pure propagation phase designs. In propagation phase designs, arbitrary and inde-
pendent phase (and/or amplitude) profiles are imparted on an arbitrarily selected basis
of linear polarization states. In a pillar-based metasurface relying strictly on propaga-
tion phase, all pillars are aligned at the same angle (to address a chosen basis of lin-
ear polarization states with azimuth θ and θ + π/2) with only the lateral dimensions
of each pillar varying, shown schematically in Fig. 32(a). This is the sense in which
using the propagation phase constitutes an intuitive design strategy—simply by look-
ing at the metasurface, it is clear that the device imparts independent phase (or ampli-
tude) profiles on orthogonal polarization states. A metasurface based on a propagation
phase approach has a design (assuming phase-only control) of the form

J (x , y )= R(θ)
[
e iφ1(x ,y ) 0

0 e φ2(x ,y )

]
R(−θ)= e iφ1(x ,y )|θ〉〈θ | + e iφ2(x ,y )

∣∣∣θ + π
2

〉 〈
θ +

π

2

∣∣∣,
(167)

which counts as control of type J with a fixed retardation axis that can lie any-
where in the equatorial plane. In other words, a propagation phase metasurface
imparts independent phase profiles φ1(x , y ) and φ2(x , y ) on a fixed, pre-determined
orthogonal basis of linear polarizations while preserving their polarization state upon
transmission (or reflection).

Many examples of polarization-sensitive metasurfaces in the literature fall under
this category. Generally speaking, any work that demonstrates a “polarization-
switchable” device that can behave as two different optical elements (lenses,
holograms, gratings, axicons, etc.) depending on whether x or y polarized light
is incident (or any other set of orthogonal linear polarizations) will fall under this
approach. As such, there are too many examples to name here. Instead, we try to
identify examples most characteristic of what has been done.

A first possibility enabled by a propagation phase design is the ability to construct a
device that acts as different blazed gratings for orthogonal linear polarization states,
thus directing them to different directions. This has been proposed and demonstrated
extensively [273,280,281,303–307], with one example shown in Fig. 32(b). Similarly,
a propagation phase-only design can impart two separate lens phase profiles on x and
y allowing incident light of each polarization to focus at a separate on- or off-axis
focal point [273,308], as depicted in Fig. 32(c). Lastly, in the most general case, the
phase profiles of two independent phase holograms can be imparted on orthogonal
linear polarization states, yielding polarization-switchable far-field holographic
images [273,299,309,310] [an example is shown in Fig. 32(d)]. Beyond these applica-
tions, polarization-switchable metasurfaces based on the propagation phase strategy
are beginning to find their way into practical optical systems, such as phase contrast
microscopes to name just one recent example [311].

Pure geometric phase designs. The second intuitive design strategy, one that
captures a wide swath of work on polarization-sensitive metasurfaces, is the geo-
metric phase approach. We have already encountered so-called “geometric” or
“Pancharatnam–Berry” phases many times throughout this review, a concept that
claims a significance in physics far beyond problems of polarized light [312–314].
The name geometric phase is indicative of the fact that phase is acquired by path-
dependent effects, i.e., differences in the path by which polarization is transformed
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rather than differences in actual, physical propagation length. In a geometric phase
metasurface, the form this takes is a device composed of structures of identical shape
whose orientations vary. Thus, a geometric-phase-only metasurface implements a
design of the form

J (x , y )= R(θ(x , y ))
[

e i 12 0
0 e−i 12

]
R(−θ(x , y )), (168)

wherein light encounters a structure whose retardance 1 is fixed but whose ori-
entation θ is variable (type E of Table 4). In the case that 1= π—half-wave
retardance—it can be shown that one handedness of circularly polarized light
experiences a phase profile given by 2θ(x , y ), while the other automatically expe-
riences −2θ(x , y ). It is in this sense that a geometric-phase-only strategy is said to
be intuitive: The phase profile imparted by a geometric-phase-only metasurface is
immediately apparent just by looking at the angular orientations of its individual
elements. The typical appearance of a geometric-phase-only metasurface is sketched
in Fig. 32(e).

Figure 32

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Examples of propagation (a)–(d) phase-only and (e)–(h) geometric-phase-only meta-
surface designs and applications. (a) Figures 1, 2, 3, and S3 reprinted with permission
from Mueller et al., Phys. Rev. Lett. 118, 113901 (2017) [290]. Copyright 2017 by the
American Physical Society. (b) Reprinted by permission from Macmillan Publishers
Ltd.: Pors et al., Sci. Rep. 3, 2155 (2013) [280]. Copyright 2013. (c) Reprinted by
permission from Macmillan Publishers Ltd.: Arbabi et al., Nat. Nanotechnol. 10,
937–943 (2015) [273]. Copyright 2015. (d) Reprinted with permission from Chen
et al., Nano Lett. 14, 225–230 (2014) [299]. Copyright 2014 American Chemical
Society. (e) Figures 1, 2, 3, and S3 reprinted with permission from Mueller et
al., Phys. Rev. Lett. 118, 113901 (2017) [290]. Copyright 2017 by the American
Physical Society. (f) Reprinted by permission from Macmillan Publishers Ltd.:
Khorasaninejad and Crozier, Nat. Commun. 5, 5386 (2014) [300]. Copyright 2014.
(g) From Lin et al., Science 345, 298–302 (2014) [301]. Reprinted with permission
from AAAS. (h) Reprinted under a Creative Commons License [302].

https://creativecommons.org/licenses/by/4.0/
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The geometric phase operates so simply on circularly polarized light by converting
its handedness, in the manner of a half-wave plate. This mechanism of action con-
fers a number of other advantages, too: If 1 deviates from the half-wave retardance
condition, light exiting the device is elliptically polarized. But the exiting light can be
expressed as a superposition of both handednesses of circular polarization, one con-
verted and one unconverted. The converted part picks up the desired geometric phase
profile, while the unconverted part contains no spatial phase modulation and is leaked
into the zero order. For this reason, i.e., the design’s forgiveness of imperfections in
retardance perhaps stemming from fabrication errors or an off-design wavelength, the
geometric-phase-only approach is popular for applications that, strictly speaking, do
not even require its polarization sensitivity. In these cases, the need to use circularly
polarized light can then be regarded as a 50% efficiency trade-off to be made (as in
Subsection 4.5 as well). This is true of a number of works on metalenses [315,316].

The geometric-phase-only approach has been used to create a variety of circular
polarization-switchable metasurface optics. In each case, it must be kept in mind
that, while the designer can dictate a phase profile for one handedness, the geometric
phase’s symmetry automatically constrains it for the other. For instance, a blazed
grating can be created deflecting one circular polarization to the +1 order, while the
other must diffract to the −1 order [300,301,317]. An example of a geometric phase
grating (fabricated with Si on glass) is shown in Fig. 32(f). The same principle can
be used to implement a focusing lens profile for one circular polarization, while the
opposite circular polarization will be constrained to experience a diverging lens phase
profile [301,315,316]. When imaging natural light (which is generally unpolarized),
one circular polarization will create an unfocused background; if this is unacceptable,
the lens must be preceded by a circular polarizer. An SEM of an example geometric
phase metasurface lens is shown in Fig. 32(g). Finally, phase profiles of far-field
holographic images can be encoded with the geometric phase, too. However, this
comes with the caveat that the hologram evoked can only be controlled for one circu-
lar polarization state; for the other, symmetry dictates that a hologram point-inverted
about the zero order will appear [302,318–323]. An example is shown in Fig. 32(h).
Finally, to mention only one specific application area, we note that recent work has
used geometric phase metasurfaces for atom trapping/cooling [324,325].

We also note here that a body of work has been published in the metasurface literature
under the term “Malus metasurface”—see, e.g., [326]. These Malus metasurfaces are
essentially geometric-phase-only devices as described here consisting of identical ele-
ments of variable rotation angle, with the device placed in-between polarization ana-
lyzers. Then, some measure of both amplitude and phase modulation can be achieved
due to Malus’ law.

Control of arbitrary orthogonal polarization states. As described above, the
geometric-phase-only approach—for imparting a given phase profile on one of two
circular polarizations—and the propagation phase approach—for imparting arbi-
trary phase profiles on any orthogonal set of linear polarization states—are intuitive
in nature. The mathematical relations between phase profiles and structures are
straightforward, and the devices themselves reflect this. In some ways, then, the Jones
calculus is not really even required.

Much of the early work in polarization-sensitive metasurfaces (including the earli-
est work, described in Subsection 4.7d above) made use of one of these two simple
approaches. However, even when limiting ourselves to a scalar picture, neither
approach is fully general. Questions naturally arise that hint at this: Can the geometric
phase approach be modified so that independent phase profiles can be imparted on
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both circular polarizations, rather than being constrained to be the negates of each
other? And what about elliptical polarization states in general?

It is indeed possible to design a pillar-based metasurface that imparts independent
phase profiles (and/or amplitude profiles, using tricks such as those described in
Subsection 4.7h [297,298]) on an arbitrary orthogonal basis of elliptical polarization
states. A 2015 work by Arbabi et al. [273] first recognized this possibility and gave a
theoretical sketch of how this could work in its supplement, shown with one specific
example (described below). A later 2017 work by Mueller et al. [290] demonstrated
this explicitly for arbitrary elliptical polarization states and explained that is enabled
by a combination of geometric and propagation phase effects in a way that, unlike the
two effects separately, is not readily intuited.

This proceeds as follows. We first choose an arbitrary, orthonormal polarization basis
(linear, circular, or elliptical) given by | j 〉 and | j⊥〉. Our goal is at each point to find a
Jones matrix such that

J (x , y )| j 〉 = e iφ(x ,y )
| j ′〉 and J (x , y )| j⊥〉 = e iφ⊥(x ,y )

| j⊥,
′

〉 (169)

simultaneously. Here, φ(x , y ) and φ⊥(x , y ) denote independent phase profiles
imparted each incoming state, and | j ′〉 and | j⊥,

′

〉 denote the spatially uniform out-
put polarization states evoked by the two chosen basis states. The requirement that
J (x , y ) be unitary mandates that | j 〉 and | j⊥〉 also form an orthonormal basis of
polarization states. As described in [290], the symmetry of J (x , y )moreover requires
that, for Eq. (169) to be have a solution, it must be true that

| j ′〉 = |( j )∗〉 and | j⊥,
′

〉 = |( j⊥)∗〉 (170)

with ∗ again the complex conjugate. In other words, Eq. (170) mandates, that for
arbitrary control over an arbitrary orthogonal basis of polarization states to be achiev-
able, the output polarization states evoked must be of reversed handedness relative to
the chosen basis states | j 〉 and | j⊥〉. This can be explained analytically but also with
purely geometric arguments using the Poincaré sphere (see [290] and its supplement).

Given these constraints, once a basis | j 〉 and | j⊥〉 and corresponding phase profiles φ
and φ⊥(x , y ) are selected, the Jones matrix of a metasurface realizing Eq. (169) can be
straightforwardly written as [290]

J (x , y )=

 | |

e iφ(x ,y )
|( j )∗〉 e iφ⊥(x ,y )

|( j⊥)∗〉
| |

 | |

| j 〉 | j⊥〉
| |

−1

, (171)

where | denotes that a given ket forms the column of a matrix. It can be shown that this
is equivalent to writing

J (x , y )= e iφ(x ,y )
|( j )∗〉〈 j | + e iφ⊥(x ,y )

|( j⊥)∗〉〈 j⊥|, (172)

which has a physical interpretation, showing that any incoming polarization state is
projected into its components in the chosen orthonormal basis, with unique phase pro-
files applied to these components, and with each component exiting as a polarization
with reversed handedness.

Once the Jones matrix is determined by Eq. (171) or (172), the physical parame-
ters of each metasurface element φx , φy , and θ can be determined as described in
Subsection 4.7g. The result is a structure where the link between the underlying func-
tion and the device’s physical appearance is often not intuitive. In this most general
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case, control over arbitrary orthogonal polarization states is achieved through a com-
bination of the propagation and geometric phases in a single element, in a way that
depends on the incident polarization state. We note that a theory exists to rigorously
quantify the individual contributions of geometric and propagation phases for a given
J and incident polarization state [327]. However, knowing the unique contributions
of each is not necessary to design and work with these metasurfaces. In most meta-
surface works, then, the Jones matrix mathematics is, for better or worse, treated as
a machinery that yields the correct result without taking great pains to interpret the
mechanisms behind it. This is depicted in Fig. 33(a).

Applications of more general control. Applications demonstrated using this more
general combined approach mirror those discussed before (gratings, lenses, holo-
grams) albeit with certain constraints eliminated. As mentioned above, the possibility

Figure 33

Combining geometric and propagation phases in a single metasurface.
(a) Arbitrary phase (and/or amplitude) profiles can be imparted on an arbitrary basis
of elliptical polarization states, so long as the output polarizations are of reversed
handedness relative to the input. Figures 1, 2, 3, and S3 reprinted with permission
from Mueller et al., Phys. Rev. Lett. 118, 113901 (2017) [290]. Copyright 2017 by the
American Physical Society. (b) Conversion of |R〉 into a vortex beam while leaving
|L〉 unchanged. Reprinted by permission from Macmillan Publishers Ltd.: Arbabi
et al., Nat. Nanotechnol. 10, 937–943 (2015) [273]. Copyright 2015. (c) Circular
polarization-switchable holograms. (d) Elliptical polarization beam splitting gratings.
(c) and (d) Figures 1, 2, 3, and S3 reprinted with permission from Mueller et al.,
Phys. Rev. Lett. 118, 113901 (2017) [290]. Copyright 2017 by the American Physical
Society. (e) Conceptual sketch of a “J-plate,” an arbitrary spin–orbit converter. From
Devlin et al., Science 358, 896–901 (2017) [182]. Reprinted with permission from
AAAS.
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of imposing arbitrary phase profiles on an arbitrary basis of polarization states was
first recognized in [273]. However, most of the examples demonstrated therein used
purely propagation or geometric phase designs with the exception of two devices
{Fig. 5(b) and 5(c) of [273]}. These examples can be said to be the first polarization-
sensitive metasurfaces employing a combination of propagation and geometric
phases. However, in both cases, these are primarily geometric phase devices to which
a polarization-independent propagation phase has been added. One of these, shown
in Fig. 33(b), imparts a phase profile e i2φ to |R〉 (a topological charge of 2) while
imparting no azimuthal phase profile on |L〉. The working principle of the device as
explained in [273] is that of a q-plate-like geometric phase device imparting e±iφ on
|R〉/|L〉 coupled with an overall, polarization-independent phase profile of e iφ . Still
more is possible, however, by breaking this degeneracy and exploiting Eqs. (171) and
(172) to the fullest. In [290], the possibility of creating an arbitrary hologram switch-
able on the basis of circular polarization was shown [Fig. 33(c)]. Mueller et al. [290],
moreover, demonstrated experimentally the ability to address arbitrary orthogonal
elliptical polarization states by creating blazed gratings to split these. Figure 33(c)
shows grating periods of six different beam splitters and the elliptical polarization
states they are designed to split, which are also shown on the Poincaré sphere at right.
This combined approach can also be used to create circular polarization-switchable
lenses where both chiralities can be focused at any desired locations, in contrast to
geometric-phase-only lenses [328]. Finally, this combined approach can be used to
surmount the limits of a geometric-phase-only approach in converting polarization
states to OAM states of light. Recall that a q-plate (Subsection 4.5c) is constrained to
impart equal and opposite topological charges on |R〉/|L〉. The generalized approach
here, however, enables so-called “J-plates” in which any polarization basis (not only
circular) can be mapped into any desired set of topological charges [182] [Fig. 33(d)],
a possibility anticipated in part by [273].

Limitations of the scalar approach: To conclude, the scalar approach as described
in this section is limited in that a particular basis is chosen a priori and the polari-
zation state distribution created by the metasurface in response to each polarization
in this basis is assumed to have a uniform polarization ellipse everywhere. The
consequences of this are best illustrated by considering the polarization response of
the far-field given by the Fourier transform of Eq. (172) as

A(kx , ky )=F(kx ,ky ){e
iφ+(x ,y )

}|(λ+)∗〉〈λ+| +F(kx ,ky ){e
iφ−(x ,y )

}|(λ−)∗〉〈λ−|. (173)

The assumptions inherent in the scalar approach mean that any such metasurface will
be limited to two unique far-field responses for two orthogonal polarization states that
are fixed with the metasurface’s design. Any other incident polarization state evokes a
weighted superposition of the two. Thus, the device’s polarization-dependent function
is limited to a device whose function switches on the basis of just two chosen orthogo-
nal polarization states. We will see that the matrix approach generalizes this consid-
erably, allowing the device to create functions that “switch” on the basis of arbitrarily
many polarization states across its far-field, as well as devices exhibiting behavior that
is far more general than “polarization-switchability.”

“Spatial multiplexing.” Many works, conscious of the fact that the scalar approach
limits the polarization-based multi-functionality of a metasurface to just two dis-
crete behaviors for two polarization states (but perhaps unaware of the more general
matrix picture) have attempted to enhance the polarization functionality of a meta-
surface through spatial multiplexing. Spatial multiplexing, sometimes also called
“interlacing” or “shared aperture” (among other terms), involves designing two or
more scalar regime metasurfaces separately to enact separate functions for separate
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polarization bases. These are then interlaced in the same metasurface plane to allow a
scalar regime metasurface to exhibit a multitude of polarization-dependent behaviors.
However, this spatial multiplexing always has a trade-off. First, if the individual
metasurfaces are interlaced closely together, this will create superperiodicities, which
will support their own diffraction orders, creating unintended loss. If instead the
metasurfaces are interlaced to occupy wholly separate regions, the design may well
be several separate devices, and its function will entirely depend on where it is illu-
minated. Finally, interlacing always introduces switching based on sets of orthogonal
polarization states. It can never introduce a dependence on one polarization without
also adding dependence on its orthogonal counterpart. The matrix approach, on the
other hand, can surmount this restriction, permitting addressing of sets of polariza-
tion states, which are in general non-orthogonal. Some less abstract, more practical
consequences of spatial multiplexing for metasurface polarimetry are discussed in
Subsection 4.7l below. A case-in-point of this discussion is embodied by the GPH of
Fig. 32(h)—here, two metasurfaces have been interlaced to impart separate geometric
phase profiles on |R〉 and |L〉. However, incident light “feels” both, so both images
are produced in the far-field [302], with the images point-inverted through the origin
when the incident chirality changes.

4.7j. Vector Regime

General description and examples. A key limiting assumption of the scalar design
strategy above is that it assumes that an orthogonal basis of polarization states
each creates a field that is everywhere uniform in polarization. This need not be
the case—for a given incident plane wave polarization state | jin〉, we can write

| jout(x , y )〉 = J (x , y )| jin〉, (174)

itself corresponding to a far-field with a spatially variable polarization state given by

|a(kx , ky )〉 =F{| jout(x , y )〉}, (175)

with F distributing over both elements of the Jones vector. In designs classified under
the vector approach, then, the ability of the metasurface to create a spatially varying
distribution of polarization states for a given input | jin〉 is explicitly acknowledged.

A wide body of past metasurface work falls under this category. These have a wide
variety of motivations and goals but share the notion that a suitably designed meta-
surface can create a far-field with an arbitrary distribution of amplitude and/or
polarization state, given an incident polarization state that is decided upon a priori.
This engineered far-field can consist of just a few discrete diffraction orders (for
a periodic metasurface) or it can be continuous (if the metasurface is aperiodic).
It can be shown that, for a metasurface (where J (x , y ) is linearly birefringent),
Eq. (174) permits an arbitrarily selected input | jin〉 to be mapped to a | jout(x , y )〉
with an arbitrary phase and polarization ellipse (but whose amplitude matches that
of | j 〉in respecting unitarity). A near-field | jout(x , y )〉 best creating a desired far-field
polarization and amplitude distribution |a(kx , ky )〉 is often found using iterative phase
retrieval or some other optimization scheme, and a metasurface is designed to produce
| jout(x , y )〉 for the chosen | jin〉.

While the exact details and implementation can vary (some, for instance, apply spa-
tially multiplexed designs) the description above generally applies to a wide body of
past metasurface work; rather than explaining every possible variation, we cite these
as a whole here [329–338]. We additionally show some examples of this far-field
polarization control in Fig. 34.
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Comparison to the more general matrix picture. In the scalar approach above,
function is allowed to vary with incident polarization, but fixed output polarization
state is assumed in the mathematical treatment, creating a scalar-valued problem. By
contrast, in the vector approach, a fixed input polarization is assumed with output
polarization allowed to vary, permitting mathematical analysis at the level of Jones
vectors. This also means that if the incident polarization changes, so too will any
carefully designed behavior of the device. The matrix approach, the subject of the
next section, neither makes assumptions about the polarization state of the input nor
output, permitting a top-level analysis at the level of the Jones matrix.

It is worth mentioning that several works classified above under this vector regime
do anticipate this matrix approach, with Zhao et al. [331] perhaps coming closest. In
[331], the metasurface is treated in terms of a Jones matrix, which the authors (much
as in this work) explicitly acknowledge is limited to a unitary and symmetric form
everywhere. However, generality is lost when the specific input polarization states
are assumed (namely, |x 〉, |y 〉, |45◦〉, |135◦〉, |R〉, and |L〉) and the problem is treated
primarily in terms of Jones vectors. A case in point is Eq. (4) of [331] in which the
derived form of the Jones matrix at each pixel has only two free parameters (rather
than the full three). Using a scheme that couples several Gerchberg–Saxton loops
together (described in its supplement), the authors of [331] successfully demonstrate
holograms that can address more than one orthogonal polarization basis at once (in the
authors’ words, “twelve polarization channels”), surmounting restrictions inherent
in other past work. However, the a priori assumption of specific incident polariza-
tion states limits the scheme’s generality. Instead, with the matrix approach, no such
restriction exists, enabling effectively an infinite number of these channels.

Figure 34

Summary examples of work using the vector approach to demonstrate metasur-
face devices producing far-fields or (discrete diffraction orders) whose polarization
state and intensity distributions can be controlled through the metasurface’s design.
(a) Reprinted with permission from Deng et al., Nano Lett. 18, 2885–2892 (2018)
[329]. Copyright 2018 American Chemical Society. (b) Reprinted with permission
from Arbabi et al., ACS Photonics 6, 2712–2718 (2019) [330]. Copyright 2019
American Chemical Society. (c) Reprinted under a Creative Commons Attribution
4.0 International License from [331]. (d) Reprinted under a Creative Commons
Attribution 4.0 International License from [332]. (e) Reprinted with permission
from Wen et al., Nano Lett. 21, 1735–1741 (2021) [333]. Copyright 2021 American
Chemical Society. (f) Reprinted with permission from [334]. Copyright 2018 Optical
Society of America.
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4.7k. Matrix Regime

In the most general picture, a polarization-sensitive metasurface can be designed
operating consistently at the level of Jones matrices, with no assumptions made con-
cerning the input or output polarization states. Only a few relatively recent works in
the metasurface field can be classified at this level of generality. Below we review
these and the new functions and optical components they enable. However, we first
briefly discuss why pillar-based metasurfaces, in the larger scheme of this review, are
perhaps the ideal polarization-sensitive diffractive optical element for description and
design with this matrix generalization of Fourier optics.

Metasurfaces and Jones matrix Fourier optics. The Jones matrix approach for
analyzing polarization-sensitive diffractive optics has been a common thread of this
review. Primarily, it has been used here as an explanatory tool to help classify (along-
side the matrix polar decomposition) different technologies and approaches from
the literature over the years (as in Table 4). However, less commonly it has served as
a design tool unto itself among all the different types of optical elements discussed
so far.

It is worth considering why this is, and why metasurfaces are slightly different. Many
optical elements discussed previously only had one or two degrees of freedom. Take,
for instance, a LC SLM (Subsection 4.5d). Every pixel of an SLM has a common
eigenbasis, so J (x , y ) (and, by extension, A(kx , ky )) can be expressed as a diagonal
matrix in a common basis everywhere across the device, at all (x , y ). There is little
benefit to introducing a more complicated notion when these can just as easily be
handled by considering only |x 〉 and |y 〉 polarizations separately. The same is true
for the elements etched into birefringent substrates (Subsection 4.3), which have two
degrees of freedom at each location—φx and φy —and can similarly be expressed in
terms of diagonal matrices everywhere.

Geometric phase elements, such as those realized with LCs (Subsection 4.5b), are a
slightly different story with the same conclusion. These are expressed as a spatially
rotating half-wave plate, described by

J (x , y )= R(θ(x , y ))
[

i 0
0 −i

]
R(−θ(x , y )). (176)

Only one degree-of-freedom is available: control of θ(x , y ), the elements’ angular
orientation. The matrix-valued Fourier transform of Eq. (176) is proportional to

F{e i2θ(x ,y )
}|R〉〈L | +F{e−i2θ(x ,y )

}|L〉〈R |. (177)

Equation (177) tells us something we already knew about geometric-phase-only ele-
ments before going through the trouble of the matrix approach—a geometric phase
element imposes one phase profile on the |R〉 component of incoming light and a
conjugate one on |L〉, flipping the handedness of each in the process. The polarization
dependence itself appears as a constant in Eq. (177) that cannot be changed with
θ(x , y ), the sole degree-of-freedom. In this case, the matrix approach still poses no
real value, since in the end matrix Fourier transforms are simplified to scalar-valued
ones weighted by constant Jones matrices.

Dielectric metasurfaces of the kind discussed in this review instead have three degrees
of freedom at each location: two phases and one orientation angle, described by

J (x , y )= R(θ(x , y ))
[

e iφx (x ,y ) 0
0 e iφy (x ,y )

]
R(−θ(x , y )). (178)



Review Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics 943

Equation (178) possesses enough complexity that nothing can be said about the
nature of A(kx , ky )=F{ J (x , y )} (it is not diagonalizable in a common basis across
the device, nor do the matrices “pass through” the Fourier transform). Pillar-based
dielectric metasurfaces are flexible enough that nothing is set in stone at the outset
about A(kx , ky ) (except that it must be symmetric, as described in Subsection 4.7f).
More complex polarization-dependent behavior can manifest that truly requires this
matrix picture to understand and realize, and so metasurfaces (unlike several previous
technologies reviewed here) stand to exploit it in a way that other technologies cannot.

Metasurface examples using the matrix approach. We discuss three examples of
this here (since, to the best of our knowledge, only three metasurface examples have
been reported using this most general strategy).

Metasurface-based polarization-dependent beam splitting gratings were discussed
throughout Subsection 4.7i. The examples shown there—whether based on propaga-
tion phase, geometric phase, or a combination of the two—are fundamentally subject
to the constraint that only orthogonal polarization states can be “split.” For instance,
if x -polarized light is directed to one diffraction order of the grating, y -polarized light
must be directed to another. While the polarization basis addressed is flexible using
the combined approach, the fact that orders can only be created for orthogonal polari-
zation states is not. In [339], an approach that uses the matrix picture of this review is
adopted. A more general beam splitting grating is one in which a desired set of diffrac-
tion orders behaves as “analyzers” for a desired set of polarization states [Fig. 35(a)].
That is, each diffraction order can be described by a far-field Jones matrix given by
|(λ)∗〉〈λ| whose intensity transfer characteristic matches that of a polarizer for an
arbitrarily selected polarization | j 〉 (outputting |(λ)∗〉 to preserve matrix symmetry).
In [339], a metasurface grating was realized with four orders acting as analyzers for
polarization states corresponding to the vertices of a tetrahedron inscribed in the
Poincaré sphere [Fig. 35(b)]. Contrary to what could be accomplished using previous
strategies, no member of this set of states is orthogonal to any of the others, and a
single metasurface handles all of the beam splitting (with no need for, e.g., spatial
multiplexing). This grating can function as a component for realizing full-Stokes
polarimetry, so it is described below as well (Subsection 4.7l).

A second work [340] takes these ideas to their natural conclusion, considering instead
aperiodic metasurfaces (i.e., beyond gratings). In [340], a method is given based
on the matrix polar decomposition to design metasurfaces whose far-fields exhibit
continuous polarization dependence A(kx , ky ) that can be engineered. Two classes of
examples are considered: “polarizer-like” and “wave-plate-like.” In the former, meta-
surfaces are demonstrated whose far-fields act as polarization analyzers, where the
polarization analyzed can vary arbitrarily over the far-field [as sketched in Fig. 35(c)].
As a concrete example, this enables computer-generated holograms with arbitrary
polarization-dependent intensity variation (subject to Malus’ Law) with polarization
state—far from the simple binary polarization-switchability mandated by the scalar
approach. An example is shown in Fig. 35(d) of a hologram that projects different
drawings of polarization ellipses to its far-field. The area comprising each drawing
is actually an analyzer for the depicted polarization state, so the polarization state
incident on the metasurface can simply be read out by inspection, making these
holograms a sort-of “visual-polarimeter.” In [340], a “wave-plate-like” example is
also shown, in which it is demonstrated that the far-field can implement polarization
transfer functions that are unitary. A hologram is designed in which light diffracts
uniformly into a solid disk with the transfer function’s retardance increasing from the
center of the disk and its fast-axis orientation angle rotating around its perimeter (thus
containing all possible linearly birefringent wave plate transformations, the equator
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of retarder space, in the far-field). These possibilities—dubbed “Jones matrix holog-
raphy” [340]—demonstrate new optical components enabled by metasurfaces and
the use of this matrix approach specifically, and could find applications in correcting
(or generating) custom polarization-dependent transfer functions for whole optical
systems.

A third work [296] considers these notions along the optical axis (instead of in a far-
field plane). The conventional Fourier integral is taken in [296] over kz in cylindrical
coordinates with Bessel functions [341] to enact control along the propagation direc-
tion [Fig. 35(e)]. This expansion can contain Jones matrix coefficients to describe
polarization dependence, and the profile of an optical element implementing a
desired polarization transfer function along the optical axis can be described with
a Jones matrix and subsequently converted to a metasurface design. The resulting
element implements this designer-specified polarization transfer function along the
optical axis by carefully managing the distribution of light in sidelobes [296,341]
[Fig. 35(f)]. In analogy to [340], an example is shown in Fig. 35(g) of a device that
directs light along the optical axis as though a “virtual” linear polarizer were located
there that rotates between 0◦ and 90◦ over some range along z. If the incident light is
x -polarized, locations closer to the element are brighter and become dimmer along
z in accordance with Malus’ Law. The opposite is true of incident y -polarized light.
Examples are also shown in [296] of wave-plate-like transformations. These devices
may find application in, for instance, microscopy or particle manipulation.

4.7l. Polarimetry with Metasurfaces

The use of metasurfaces for polarimetry has recently garnered significant interest,
with a large number of studies [323,334,339,342–351] and brief reviews [239,352]
dedicated to the subject. Recall from Subsection 2.7 that polarimetry refers to the
measurement of light’s polarization state using a series of measurements in which
the polarization of an unknown beam is projected onto a series of known polarization
analyzers and the resulting intensity is measured. Measuring the full-Stokes vector
ES = [S0, S1, S2, S3]

T—the most general description of a plane wave polarization
state—requires at least four such measurements. The advantage of metasurfaces here
lies in their ability to parallelize this process. Past works employ different methods
of doing just that, at different wavelengths and using different metasurface material
platforms.

Spatial multiplexing strategy. We have seen in previous sections that a metasur-
faces can be designed to create gratings acting as “polarization beam splitters.” For
instance, a geometric phase grating divides an incoming plane wave into its |R〉 and
|L〉 components. For a beam limited in size, these can be separated in space and
measured independently. The sum of the two gives the overall intensity S0 while
their difference gives S3, the chiral Stokes component. With a single metasurface
polarization-switchable grating paired with two detectors, already two of the four
Stokes components can be measured. By a similar arrangement, a grating splitting
|x 〉/|y 〉 (or |45◦〉/|135◦〉) linearly polarized light could determine both S0 and S1 (or
S2) using a propagation-phase-only type design.

A logical conclusion, then, is that three such gratings (each designed using the scalar
approach, Subsection 4.7i) should be used to determine ES in full. A scheme such as
this with six measurements (|x 〉/|y 〉/|45◦〉/|135◦〉/|R〉/|L〉) mirrors Stokes’ own
definition of the Stokes parameters. Consequently, a number of metasurface works
have been demonstrated in which a metasurface is designed in which three gratings
(one geometric phase grating for |R〉/|L〉 and two propagation phase-only designs for
the others) are spatially multiplexed (interlaced) on a single substrate. Each grating is



Review Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics 945

designed to have a slightly different deflection angle (period) so that the beams do not
overlap in the far-field and can be separately detected. A schematic of this idea and
an example SEM of a metasurface device that implements it are shown in Figs. 36(a)
and 36(b). The first metasurface example using this strategy was shown by Pors et al.
[342], later replicated by other works [343,346,349]. Accurate laser beam polarime-
ters have been shown using this strategy, both at a single wavelength [342,343] and
for broadband spectropolarimetry [346,349]. A similar device has even been applied
to quantum optical correlation measurements of polarization entanglement [351].

As discussed in Subsection 4.7i, the spatial multiplexing approach, however, always
carries some trade-off. The exact trade-off depends on how this is done: If the meta-
surfaces are interlaced [342,343,346] (a few periods of one grating, then a few periods
of another, and so on), extraneous diffraction orders will be produced owing to the
periodicity introduced by the interlacing [note the periodicity introduced along the y
direction in Fig. 36(b)]. If the interlacing is carried out at very large periods so that the
gratings are effectively in separate spatial locations [349], the extra diffraction orders
disappear at the expense that the device becomes highly sensitive to alignment and
beam-size, depending on which areas of which gratings are illuminated.

From a purely polarimetric point-of-view, this spatial multiplexing approach carries
trade-offs as well. The minimum number of measurements necessary to determine
ES is four. The spatial multiplexing approach described here, however, requires six.
This is in fact a fundamental limitation of the technique. In order for a system’s 4× 4
instrument matrix to be invertible (enabling a given set of polarization-sensitive
measurements to serve as a full-Stokes polarimeter), it can be shown that the polari-
zation states analyzed, when drawn as points on the Poincaré sphere, must form a
shape enclosing volume. The larger this volume is, the higher fidelity the polarimeter
so-constructed will be in terms of noise propagation from intensity measurements to
ES [25,353–355]. However, using a spatial multiplexing approach, no configuration of
two gratings can be assembled so that this is the case. This is true whether two grat-
ings of the three from the typical spatial multiplexing strategy are used [as in region (i)
in Fig. 36(c), i] or for any set of two orthogonal polarization states in general [region
(iii) in Fig. 36(c)], as could be realized by the combined propagation/geometric phase
approach; either way, these can only ever form a plane of zero volume in the Poincaré
sphere and cannot be used for a full-Stokes measurement. If all the diffraction orders
are to be used, using the spatial multiplexing strategy described here mandates at least
six measurements.

Full-Stokes polarimetry with a single grating. A different strategy described in the
last section enables full-Stokes polarimetry with a single non-spatially multiplexed
grating [339]. With awareness of the full Jones matrix approach, a grating can be
designed whose inner four diffraction orders act as polarization analyzers for an
arbitrary set of four polarization states. These can be arranged to correspond to a tetra-
hedron inscribed in the Poincaré sphere [e.g., iii in Fig. 36(c)], the optimum choice
for a four-measurement full-Stokes polarimeter. This approach, too, carries its own
trade-offs. The exact Jones matrix needed to losslessly perform this function is not in
general unitary and symmetric everywhere, so a metasurface can only implement an
optimized “best fit” version. This means that light must necessarily be leaked in part
to extraneous diffraction orders, albeit in a way that potentially enacts less of an effi-
ciency penalty than the spatial multiplexing approach (see [339] and its supplement
for details).

Polarization imaging with metasurfaces. Polarimetry has been discussed here in
terms of determining the Stokes vector of a single plane wave. However, the most
promising applications of polarimetry require polarization imaging (often called



946 Vol. 13, No. 4 / December 2021 / Advances in Optics and Photonics Review

imaging polarimetry) in which the Stokes vector of light is determined over a photo-
graphic scene. Thus far, only two works have demonstrated full-Stokes polarization
imaging with metasurface polarization optics [339,343].

Converting from a laser beam polarimeter to a polarization imager requires the merger
of the metasurface with imaging optics, i.e., a camera. In addition to differences in
metasurface design strategy (spatial multiplexing [343] versus the single grating
approach described above [339]), these works also differ in their approaches to doing
so. One approach is to design the metasurface as a focal plane element, as in [343].
The metasurface device of [343] combines interlaced polarization-sensitive gratings
with a polarization-independent lens phase profile. The device is intended to serve as
a polarization filter just above the sensor’s pixels, much like the common division-of-
focal-plane approach with pixelated polarizers but ideally without a 50% loss [343]
associated with absorptive components. Groups of adjacent pixels are combined into
one “super-pixel,” which experiences different polarization analyzers, from which the
Stokes parameters can be determined [Fig. 36(d)]. A second method taken by [339]
entails placing the grating in the optical system’s path, ideally in a pupil plane. Here,
light from a faraway scene is collimated. Each ray over the camera’s angular FOV is
split into four rays, forming four completely separated images on the camera’s sensor
corresponding to different polarization channels. Provided the camera’s FOV is lim-
ited, these can be registered to each other and analyzed pixel-wise to determine ES over
the scene [Fig. 36(f)]. Based on this approach, a portable metasurface polarization
camera has been demonstrated, capable of outdoor and indoor full-Stokes polarization
imagery (some examples of which are featured in Fig. 37).

Discussion and technical challenges. As described here, metasurface approaches
have been widely demonstrated. It is worth briefly commenting on how these com-
ponents compare to conventional polarization optics widely used in polarimetric
applications in, for instance, atmospheric science [50] or astronomy [48,51,356,357].
One clear difference is that the polarization extinction ratio enacted by the diffraction
orders of metasurface gratings is, at best, on the order of 102 (or a diattenuation of
0.99) [339], very modest compared to the best film (104) and the best prism-based
(106) polarizers available. This is actually less of a problem than it may sound, so long
as a metasurface device can be suitably calibrated—the accuracy of a polarimetric
system is more strongly governed by the precision to which diattenuation is known
than by its absolute value. Another technical challenge faced by metasurfaces is
size—it is hard to manufacture a metasurface (especially using e-beam lithography)
reliably over an area comparable to the aperture sizes of real optical systems (cm to
meters), but this is a problem that is in theory (and, increasingly, in practice) solvable
by stepper-based UV lithography and careful process control. Finally, the metasurface
devices here are inherently chromatic, not only in the phase shifts their individual ele-
ments impart but also in the fact that they are by their very nature diffraction gratings
whose orders will disperse in angle over a broad bandwidth. This is an effect that must
be dealt with depending on a given end-application, or instead turned to the designer’s
advantage by using this dispersion to construct, e.g., a hyperspectral camera.

5. CONCLUSION AND OUTLOOK

In this review, we have discussed optical elements with spatially varying polari-
zation properties. We have presented a conceptual framework for understanding
these—Fourier optics coupled with the Jones calculus—and a mathematically ori-
ented classification scheme—retarder and diattenuation space, based on the matrix
polar decomposition—for comparing them. Through this lens, we have considered
developments in this subject occurring over roughly the last half-century.
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Any attempt to predict the future is by definition speculative, a task that without the
benefit of hindsight is far more challenging than anything we have undertaken in this
review so far. Consequently, this section will be short. Nevertheless, it is necessary to
provide some comments and predictions regarding work still-to-come, albeit in terms
that may be brief and perhaps even vague.

Throughout this work, different technologies have been categorized based on the
extent of polarization control they can realize. This notion can be made rigorous by
representing the eight degrees-of-freedom of the Jones matrix as three geometrical
spaces (Subsection 4.1) and the type of polarization control that can be realized spa-
tially across the device depicted as subspaces of these, which themselves affect the
far-field polarization behavior possible. But as remarked in Subsection 4.7k, dealing
at the level of abstraction afforded by the Jones matrix is not even truly necessary for
most of the technologies discussed here, which only have one or two free parameters
whose design can well be treated as a scalar-valued problem. Metasurfaces (and,
technically speaking, polarization holographic films, Subsection 4.2) instead intro-
duce three, creating a degree of complexity that necessitates and can benefit from a
matrix approach. Three, however, is less than half of the eight available, and single-
layer pillar-based metasurface-like elements only occupy a small fraction of possible
polarization responses.

Flexible solutions for implementing the most arbitrary, most general local polari-
zation responses could form an active area of research, including structures with
custom-polarization-dependent loss (or gain), that is, full control over the Hermitian
component of the Jones matrix. These may well come about through the use of inverse
design techniques, rather than through a reliance on readily intuited structures as has
been the course of this field so far. Moreover, it is possible that much may be gained
through the combination of more than one of the different technologies described in
this review.

The treatment of this review, and of work in the field up until now, has largely
neglected a critical characteristic of polarized light: depolarization. That light is
purely polarized has been a tacit assumption of most of the theory and previous work
described throughout this review. Generalizations of past work to handle spatially
varying, depolarizing optical elements is a potentially fruitful future area of investi-
gation. This would require instead the use of Mueller matrix methods generalized to
diffractive elements.

Finally, on a more practical note, there is hope that these polarization-sensitive
diffractive optical elements will make their way into new types of optical systems that
enable some new function beyond the components’ intrinsic novelty itself (including
scientific instruments such as novel telescopes and microscopes, polarimetric or oth-
erwise, as well as systems for any number of potentially high-volume technological
needs). One overarching constraint in this review, and of conventional polarization
optics in general, is that of linearity with respect to incident polarization state (e.g., in
the form of Malus’ Law). It may be that in the future the optical elements described
here can be paired with nonlinear and/or gain media whose underlying physics allow
this to be surmounted, enabling new functions and designs.
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Figure 35

(a) (b)

(c) (d)

(e) (f )

(g)

Examples of metasurface devices designed with the full Jones matrix approach.
(a) Metasurfaces can act as diffraction gratings whose orders may have specified
polarization sensitivity, emulating through diffraction functions that would ordinarily
require bulk birefringent and dichroic optics. (b) One example of these is a 2D peri-
odic grating (shown here made of TiO2 pillars for use at visible wavelengths) whose
innermost four orders act as analyzers for the set of four non-orthogonal polariza-
tion states shown at left. This capability is enabled by the matrix approach described
here. (a) and (b) from Rubin et al., Science 365, eaax1839 (2019) [339]. Reprinted
with permission from AAAS. (c) Similar ideas can be used to create aperiodic meta-
surfaces that realize Jones matrix holograms where each point in the far-field can
be ascribed its own designer Jones matrix transfer function. One example of this in
action is a hologram in which the hologram takes the form of a collection of polariza-
tion ellipses, where each polarization state drawn acts as an analyzer for its depicted
state. (d) This means that the hologram rearranges light on the basis of its polariza-
tion: Each drawing will be bright or dark depending on its state’s projection onto the
incident light’s polarization state so that the polarization of incident light can be read
out from the hologram by inspection. No external polarization analyzer is present. (c)
and (d) from Rubin et al., Sci. Adv. 7, eabg7488 (2021) [340]. Reprinted with permis-
sion from AAAS. (e) Similar control can be exerted along the optical axis if a Jones
matrix-weighted expansion is carried out in kz using Bessel beams of variable cone
angle as a basis. (f) This enables an optical element wherein a custom optical transfer
function is created at each point along the optical axis. (g) One example of this is
a device that acts as a linear polarizer that virtually “rotates” along the optical axis
from 0◦ to 90◦, as shown by the amplitude profile in z for incident x - and y -polarized
light. Reprinted by permission from Macmillan Publishers Ltd.: Dorrah et al., Nat.
Photonics 15, 287–296 (2021) [296]. Copyright 2021. All scale bars are 1 µm.
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Figure 36

Polarization imaging using polarization-sensitive metasurfaces. (a) Schematic
example of using a spatial multiplexing approach to create a grating that analyzes
incoming polarization with respect to |x 〉, |y 〉, |45◦〉, |135◦〉, |R〉, and |L〉 simulta-
neously for independent measurement. (b) Example SEM of a grating interlaced to
realize the function in (a). (a) and (b) reprinted with permission from [342]. Copyright
2015 Optical Society of America. (c) Shapes swept out by various sets of four polari-
zation states. (i) and (ii) are not suitable for full-Stokes determination, while (iii),
the tetrahedron, represents an optimum choice for full-Stokes polarimetry. (d) One
approach to polarization imaging is to use the metasurface as a focal plane element,
combining polarization-analyzing gratings (in this case using a spatially multiplexed
approach) with focusing power to dedicate a superpixel (e) to the determination of ES.
(d) and (e) reprinted with permission from Arbabi et al., ACS Photonics 5, 3132–3140
(2018) [343]. Copyright 2018 American Chemical Society. (f) In a second approach
to metasurface polarimetry, the grating is placed in collimated space, ideally in a
pupil plane. Then, if the system’s FOV is limited, several images each analyzed
with respect to a particular polarization state are formed, which when registered
permit determination of ES over a scene. Using this approach, a compact metasurface-
based polarization camera has been demonstrated. From Rubin et al., Science 365,
eaax1839 (2019) [339]. Reprinted with permission from AAAS.
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Figure 37

Examples of polarization imagery with a metasurface-based polarization
camera. Real-world examples of polarization phenomena visualized through a
metasurface polarization camera, described in full in [339]. The top row shows the
raw sensor exposure in each case, displaying four quadrants corresponding to four
polarization channels. When registered, a full-Stokes image can be computed from
which the intensity (S0), azimuth angle, and degree-of-polarization are derived. From
Rubin et al., Science 365, eaax1839 (2019) [339]. Reprinted with permission from
AAAS.


