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A tomographic measurement is a ubiquitous tool for estimating the properties of quan-
tum states, and its application is known as quantum state tomography (QST). The pro-
cess involves manipulating single photons in a sequence of projective measurements,
often to construct a density matrix from which other information can be inferred,
and is as laborious as it is complex. Here we unravel the steps of a QST and outline
how it may be demonstrated in a fast and simple manner with intense (classical) light.
We use scalar beams in a time reversal approach to simulate the outcome of a QST and
exploit non-separability in classical vector beams as a means to treat the latter as a “clas-
sically entangled” state for illustrating QSTs directly. We provide a complete do-it-your-
self resource for the practical implementation of this approach, complete with tutorial
video, which we hope will facilitate the introduction of this core quantum tool into teach-
ing and research laboratories alike. Our work highlights the value of using intense
classical light as a means to study quantum systems and in the process provides a tutorial
on the fundamentals of QSTs. © 2019 Optical Society of America
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1. INTRODUCTION

1.1. Basic Concept
One of the challenges in quantum optics is to unravel an unknown state [1–3], with the
difficulty arising primarily from the measurement problem in quantum mechanics
[4,5]. First, a measurement destroys the information of the state, or at the very least
perturbs it [6], negating the possibility of performing multiple measurements on the
same state [7]. Neither is it possible to clone the state one wishes to study: this implies
that measurements cannot be performed on exact copies of a state [8]. Moreover, a
state is generally unknown—it could be pure or mixed, high dimensional or low di-
mensional—and so the choice of basis and measurement sequence is not trivial
[9–12]. Consequently, we can infer only a little information at a time by probing
a particular aspect of a quantum state [13]. In other words, only one question can
be asked (by performing a measurement) from which we get one piece of information
(the measurement’s outcome). The standard approach for collecting information about
a quantum state is to perform multiple tomographic measurements, so-called projec-
tive measurements, in what is known as a quantum state tomography (QST) [see
Refs. [1,14] for good reviews]. A QST is very similar to the well-known computed
tomography or “CT” scans in medicine: once many projective measurements are
made, each probing a particular aspect of the possible state, the complete quantum
state is built up through a tomographic process. In essence, each unknown quantum
state is “sliced” and completely characterized through a series of projective measure-
ments in different bases, retrieving the information of a new dimension for each mea-
surement [15]. It is akin to building up an image of a complex object by making only
simple projections of its shadow, as illustrated in Fig. 1. In this picture, the unknown
shape of an object (i.e., the unknown state) can be worked out by the information
contained in the measured shadows (i.e., the results of projection measurements).
In the quantum case, the outcome is the complete set of observables whose proba-
bilistically weighted outcome fully describes the quantum state [16]. This then be-
comes an inverse problem: knowing the outcome of every question (the outcomes
of our measurements), can we work out what the “object” is? In the quantum world
this often translates into determining a density matrix for the quantum state from
which all other required information can be inferred [15,17,18].

QSTs (plural because they come in various guises) are time consuming and complex:
the number of measurements does not scale well with the dimension of the quantum
state [19,20], noise affects the outcome [21–24], and one must assume that identical
states are produced at the source, e.g., identical copies of photons from a spontaneous
parametric downconversion (SPDC) process [25]. Consider systems with N photons,
each in d dimensional states. The total dimension of the system is then D � dN and
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can be described by a density matrix of d2N − 1 independent real parameters. For
example, to characterize a N -qubit (d � 2) state one requires 22N measurements
of different observables [26,27], with each one performed more than once to accu-
mulate reasonable statistics, thus scaling unfavorably (exponentially) with the system
dimension. Often an over-complete tomographic measurement is performed [28,29],
i.e., more measurements than just the minimum required. For example, an over-
complete tomographic measurement of a two-photon (N � 2) high-dimensional qudit
state of dimension d would require �d�d � 1��2 measurements [30]. This is usually
done for accuracy, and in the rest of this tutorial we too will use over-complete sets
of measurements even though less would often suffice. Once the measurements are
complete, the reconstruction itself can be computationally intensive, as solving inverse
problems is not easy. For this reason there are many ingenious approaches to reduce
the number of measurements needed, or to extract as much information as possible
by a judicious choice of measurement [31–34]. To return to our shadow analogy:
How many projections do we need and what should they be to quickly find the object?
Addressing these issues remains a topic of active research: making a QST state in-
dependent, fast, robust, and compact for on-chip deployment [35–37].

1.2. Brief Historical Review
AQST as we know it today was introduced in the late 1980s to obtain the Wigner dis-
tribution by tomographic measurements of quadrature amplitudes [38], taking into ac-
count the direct correspondence between the Wigner function and the density matrix
of any desired quantum state [39,40]. Other methods to determine a quantum state were
proposed [41,42], studying also the open question of the impossibility to determine the
probability distributions of a superposition quantum statewith a directmeasurement [43].

Tomographic measurements have been used to characterize a myriad of quantum
states [44–50]. Importantly, QST has become essential in the characterization of

Figure 1

QST attempts to reconstruct a potentially complex quantum state by a series of simple
projective measurements. This is analogous to trying to reconstruct a complicated
object by considering only its shadow from various angles.
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entanglement sources, e.g., entanglement sources using photons [51–57], atoms
[58,59], and even with molecular vibrational modes [60]. However, the polarization
of a photon is the most common known degree of freedom used to encode a quantum
state. This is due to the great variety and availability of high-efficiency polarization
control elements. Consequently, many experimental milestones in quantum optics
have been accomplished by using the polarization degree of freedom [61–64].

Although QSTs have been performed on many quantum systems, in this tutorial we
will consider photonic quantum states, exploiting the spatial mode and polarization
degrees of freedom in light. QSTs have been performed extensively on the latter (see,
for example, Refs. [53,56,65,66]), while other degrees of freedom are becoming more
prevalent these days, e.g., entangled spatial modes [67–72] for improved communi-
cation security [73–76] and high-dimensional entanglement [77–80]. Although high-
dimensional quantum state generation is increasingly relevant, the characterization of
such systems is extremely complex due to the exponential increase of projections with
dimension. Nevertheless, QSTs have been successfully demonstrated on high-dimen-
sional spatial mode entanglement by using various projection approaches [81–83].

There are also advantages when mixing two degrees of freedom in the same photon,
also known as hybrid states [84–86]. One pertinent example that we will consider in
more detail in this tutorial is that of hybrid polarization and orbital angular momentum
(OAM) degrees of freedom [87]; they are relevant as natural modes of optical fibers
[88] and free space [89]. The generation of such states can be achieved by using holo-
grams [90], but also in a more straightforward way by using spin–orbit conversion
devices based on liquid crystals [91], or even based on metamaterial technology
[92,93]. On the other hand, instead of the most general case of generating entangle-
ment between two photons, we can study entanglement between two degrees of free-
dom in a single photon [94,95], paving the way for the use of quantum measurement
tools to characterize states generated with intense laser beams [96–98].

1.3. Outline of the Tutorial
In this tutorial, we will not only outline the core ideas of a QST, but will also show
how they may be performed in a fast and easy manner with intense classical light.
Classical laser light does not suffer from the aforementioned quantum measurement
woes: one can make as many measurements as one likes simultaneously on the same
intense light field. The use of classical light in quantum studies is not new [99–101],
while today there is a growing realization that non-separability, the quintessential
property of quantum entanglement, is not unique to quantum mechanics
[102–106]. As such, many classical systems exhibit properties usually associated with
quantum entangled states [107–109], also referred as nonquantum entanglement
[110,111], or non-separable states [112,113]. However, even though a particular
classical system can simulate most of the features of entanglement, it fails to simulate
quantum nonlocality [114]. In relation to QSTs, classical light has been exploited as
an alignment and predictive tool using the so-called backprojection with single pho-
tons [115–121], following the time reversal analogy given by Klyshko [122].

We exploit these similarities between some classical and quantum states to develop a
useful laboratory tool for teaching and demonstrating QSTs. First we outline the gen-
eral principles of quantum tomographic measurements, explaining in tutorial fashion
how to translate theory into experiment, how to perform the measurements, and how
to extract the required information. Next, we explain how to use the time reversal
concept to mimic the quantum system using backprojected scalar light. This allows
one to perform the measurement as if there were entangled photons. To actually use
the quantum toolbox directly, we make use of non-separable classical light, exploiting
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the fact that non-separability is the hallmark of quantum entangled systems. We use
vector vortex beams as our non-separable states of light, depicted on a high-order
Poincaré sphere [123–125], and perform a QST with standard optical components.
This allows us to create any state from fully separable to fully non-separable, and
treat it as a controlled source of entanglement, albeit entirely classical and with intense
laser light. As a consequence, however, the possibility of studying the quantum non-
locality is discarded. We show that we can easily reconstruct any quantum state by
automating the optical elements that perform each particular projection. We demon-
strate all the measurements typically performed in a quantum laboratory, such as the
Bell inequality measurements, but here with intense laser beams. We provide the com-
plete toolkit, from the software to the three-dimensional (3D) designs (see Ref. [126]),
for others to duplicate as a versatile teaching tool that can be 3D printed and automated
with all the designs and software used to obtain the results shown in this tutorial, as
well as a video (see Visualization 1 [126]) demonstrating the process in action. We
hope that this tutorial and associated resource will inspire the teaching of quantum
mechanics from an experimental perspective, a component sorely lacking in many
quantum courses, and be of value in realizing educational and research objec-
tives alike.

2. QST OF TWO-LEVEL STATES

2.1. Polarization Qubit
The quantum bit (qubit) is the fundamental unit of quantum information. Unlike a
classical bit that assumes one of two distinct states, 0 or 1, the quantum bit is a
weighted superposition of two orthogonal states of a given degree of freedom, for
example,

jψi � αj0i � βj1i, (1)

with probability amplitudes α and β so that jαj2 � jβj2 � 1. Spin states are the most
common example of qubits currently explored to realize quantum computation and
communication. For photons, these spin states can correspond to left- and right-cir-
cular polarization states [127]. In general, one can express the state of a polarization
qubit as

jψi � cos�θ∕2�jRi � exp�iφ� sin�θ∕2�jLi, (2)

where jRi and jLi represent the right- and left-circular polarization states, respectively.
The parameter φ ∈ �0, 2π� is related to the phase difference between the polarization
states, while θ defines the weighting factor. In the special cases of θ � 0 and θ � π,
the qubit state jψi corresponds to the polarization eigenstates jRi and jLi, respectively.
By manipulating both θ and φ, one can produce arbitrary polarization states. For ex-
ample, for θ � π∕2, one can prepare any linear polarization state as depicted graphi-
cally in Table 1.

The definition of the qubit state in Eq. (2) has an intuitive representation as a point on a
sphere, commonly referred to as the Poincaré sphere. Historically the Poincaré sphere
is the name used when describing classical polarization states, while the Bloch sphere
is used when the polarization is regarded as a quantum state. Nevertheless, they de-
scribe the same two-dimensional space. First let us look at the effect of tuning the
probability amplitudes, by varying θ. Normalization of the quantum state requires

Table 1. Linear Polarization States Produced for θ � π∕2

Phase φ 0 π∕2 π 3π∕2

Qubit state jψi. ↔ ⤡ ↕ ⤢
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conservation of probability; that is, the probability of finding the qubit jψi in any of its
eigenstates must be 1 (the qubit must be in some state after all). Mathematically, this is
expressed as

jhψ jψij2 � jcos2�θ∕2�j2 � sin2�θ∕2� � 1: (3)

By visual examination, one notices that Eq. (3) describes a circle of radius 1, where θ
parameterizes the position on the circle, as shown in Fig. 2(a). Let us refer to this as the
amplitude circle.

The phase term exp�iφ� is an oscillatory function, whose variable φ can be bounded in
the interval �0, 2π�. By plotting this oscillatory function on the complex plane, one
realizes that the angle φ maps to an angular position on a unit circle. Varying φ
changes the relative phase between the basis states, resulting in a rotation of the qubit
state on a unit circle, as shown in Fig. 2(b) for linearly polarized states (θ � π∕2). We
will refer to this circle as the phase circle.

The Poincaré sphere brings the description of amplitude and phase variation into a
single picture. Place a point on the amplitude circle by fixing θ, rotate it around
the phase circle by an angle φ, and one has the recipe for locating a position on
the surface of the Poincaré sphere. Thus, an arbitrary qubit state parameterized by
a unique set of coordinates (θ, φ) can be mapped to a point on the unit sphere, as
shown in Fig. 2(c). In the Poincaré sphere representation, the qubit state lives on
the surface of a sphere, and motion on the sphere transforms one qubit state into an-
other. To be useful in a quantum application, it is necessary to be able to manipulate
and characterize the qubit state. This requires locating the qubit on the sphere and
moving it to a different position. Given that the geometry is spherical, we simply need
a reference point on the sphere and a set of rotation transformations about the origin.
In three dimensions, one needs a set of rotations about the x, y, or z axis, as shown in
Fig. 3. Given that the initial state is known, the final state can be uniquely determined
by evaluating the influence of the various rotations: this is the objective of a quantum
state tomographic measurement (QSTM). But before we delve into the inner workings
of a QST, we first need an additional description of qubit states: the density matrix.

Figure 2

(a) (b) (c)

Intuitive description of the Poincaré sphere. (a) Control over the amplitude parameter
θ allows one to continuously change the position of the qubit (indicated by the arrow)
on the unit circle, resulting in a change of the relative amplitudes of left- and right-
circular polarizations. (b) Control over the phase parameter φ allows one to contin-
uously change the position of the qubit (indicated by the arrow) on a different unit
circle, this time resulting in a rotation of the polarization state. This is demonstrated
for θ � π∕2 in Eq. (2). (c) Simultaneous control of phase and amplitude results in a
description of the general qubit in Eq. (2) on a unit sphere where the poles are the
polarization states.
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The density matrix description of quantum states is more general than the state vector
description of Eq. (2). This is because density matrices allow one to describe the actual
outcome of measurements, and pertinently, for both pure and mixed states. Imagine
we have an ensemble of K independent single photons, each prepared in the qubit state
jψni with n � f1, 2,…,Kg. If all the photons are identical, that is, they are prepared in
the same state jψni � jψi, then every photon can be described using a single state
vector jψi as in Eq. (2). The state of every photon is said to be pure. Conversely,
if some (or all) of the K photons are prepared in different states, the result is a stat-
istical mixture of pure states. A photon randomly chosen in the mixture can be found
to be in a given pure state jψni with a certain probability. However, because all the
photons are independent and uncorrelated, there exists no phase relation between their
states. Consequently, the formalism in Eq. (2) cannot appropriately describe such a
mixture. A density matrix is a useful tool to overcome this hurdle.

Assume that the state of a single photon in the aforementioned ensemble can be
described by a 2 × 2 matrix, ρ, called the density matrix. In general, ρ can be decom-
posed in terms of its eigenvectors and eigenvalues:

ρmixed �
X
m

cmjψmihψmj: (4)

In this description each cm is real, positive, and corresponds to the probability of meas-
uring a photon prepared in the eigenstate jψmi. Conservation of probabilities requires
that

P
mcm � 1. By construction, density matrices must be Hermitian; that is, ρ† � ρ,

where superscript †, called “dagger,” refers to the complex conjugation and transpose
operation. This can be easily verified as �jaihbj�† � jbihaj.
The density matrix in Eq. (4) describes a statistical mixture of pure qubit states
jψmihψmj. Hence, we refer to ρ as a mixed state density matrix. In the special case
where all photons are identically prepared (pure state), there exists only one eigenstate
with unit eigenvalue. The pure state density matrix then reads ρpure � jψihψ j. For the
pure state in Eq. (2), the density matrix is expressed as follows:

ρ � jψihψ j � cos2�θ∕2�jRihRj � sin2�θ∕2�jLihLj
� cos�θ∕2� sin�θ∕2� exp�−iφ�jRihLj
� cos�θ∕2� sin�θ∕2� exp�iφ�jLihRj: (5)

One can now provide a matrix representation of ρ by assigning coordinate vectors
to the basis states. For example, assume the following representation of the

Figure 3

(a) (b) (c)

Elementary rotations on the surface of the Poincaré sphere. The qubit state, indicated
by the position vector colored orange, can be rotated on the surface of the sphere about
the (a) x axis, (b) y axis, and (c) z axis.
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polarization states: jRi ≡ �1 0�T and jLi ≡ �0 1�T where the superscript T refers to ma-
trix transpose. The density matrix thus assumes the following matrix representation:

ρ �
 

cos2�θ∕2� cos�θ∕2� sin�θ∕2� exp�−iφ�
cos�θ∕2� sin�θ∕2� exp�iφ� sin2�θ∕2�

!
: (6)

For density matrices, the conservation of probability in Eq. (3) is expressed as tr�ρ� � 1,
where tr�ρ� �P

iρii is the trace. For the density matrix in our example this becomes

tr�ρ� � cos2�θ∕2� � sin2�θ∕2� � 1: (7)

This is a physical requirement for any density matrix. However, one can conclude
whether it corresponds to a pure or a mixed state by computing the purity:

tr�ρ2� � tr

�X
m

X
n

cmcnjψmihψmjjψnihψnj
�

�
X
m

X
n

cmcnjhψmjψnij2: (8)

It follows that jhψmjψnij2 ≤ 1; this is because the probability of measuring a state jψmi
given that we prepared jψni is in general less than 1, except when jψmi � jψni, in
which case the overlap is 1. We can then bound Eq. (8) by

0 ≤
X
m

X
n

cmcnjhψmjψnij2 ≤
X
m

cm
X
n

cn � 1, (9)

where we have used the fact that
P

mcm � 1. One then arrives at the following
criterion for purity:�

tr�ρ2� � 1 for cm � cn � 1 ⇒ ρ is pure

0 ≤ tr�ρ2� < 1 for cm, cn < 1 ⇒ ρ is mixed:
(10)

The objective of a QST is to reconstruct the density matrix of an arbitrary state using an
appropriate set of measurements, regardless of whether the state is pure or mixed
[9,30,53,128]. It is this broad applicability that makes QSTs such a powerful tool in
quantum information and communication. The procedure behind a QST for two-dimen-
sional quantum states consists of locating the qubit state on the Poincaré sphere; that is,
as mentioned before, characterizing the rotation angles about the x, y, and z axes. Given
that the motion of our qubit state is restricted to rotations on the Poincaré sphere, the
density matrix can thus be expressed in terms of rotation operators about the x, y, and z
axes. In two dimensions, these rotation operators are the Pauli matrices, σi, plus the
identity

σ1 �
�
0 1

1 0

�
; σ2 �

�
0 −i
i 0

�
; σ3 �

�
1 0

0 −1
�
; I �

�
1 0

0 1

�
:

The Pauli matrices are traceless operators (tr�σi� � 0) that obey the following trace
relations:

tr�σiσj� � 2δi,j, for i, j � 1, 2 or 3: (11)

This is an expression of the completeness relation between the matrices. Unlike the
other Pauli matrices, the identity operator is not traceless, but obeys the trace relations
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I � σ0 �
�
1 0

0 1

�
; tr�σ0σ0� � 2; tr�σ0σi� � tr�σiσ0� � tr�σj� � 0:

That the σi matrices form a complete set means that one can express the density matrix ρ
as a linear combination of our σi matrices,

ρ � 1

2

X3
n�0

ρnσn, (12)

where ρn are the expectation values of the matrices σn and are obtained from

tr�ρσn� �
1

2
tr

�X3
m�0

ρmσmσn

�
� 1

2

X3
m�0

ρm tr�σmσn� �
X3
m�0

ρmδm,n � ρn: (13)

Therefore, provided one can obtain the expectation values, ρn, it is then trivial to
reconstruct the density matrix of the system. However, one first needs to clarify the
measurement procedure that leads to the computation of ρn. To do so, it is useful to
express the matrices σn in terms of eigenvalues and eigenvectors that, as we will show,
correspond to physical states that can be measured directly.

The matrices σn each have two eigenvectors, jλ0ni and jλ1ni, with eigenvalues α0n and α1n
and thus can be expressed as

σn � α0njλ0nihλ0nj � α1njλ1nihλ1nj: (14)

Based on this decomposition, we can express the expectation values in Eq. (13) as

ρn � tr�ρσn� � α0nhλ0njρjλ0ni � α1nhλ1njρjλ1ni: (15)

The matrices jλnihλnj are called projectors; these are Hermitian and positive operators
that form a complete orthonormal set [129]. This is a rather dense description, so let us
go through each property one by one.

(1) Hermiticity: Projectors are self-adjoint operators, i.e., they are equal to their
own conjugate transpose, and have real expectation values. This is a fundamental
requirement for projectors to be physical observables.

(2) Positivity: Positive operators have expectation values greater or equal to 0. This is
a natural requirement for projectors given that their expectation values correspond
to probabilities.

(3) Completeness:
P

mjλmn ihλmn j � σ0. This is a requirement for conservation of
probability

(4) Orthonormality: jλmn ihλmn jjλlnihλlnj � jλmn ihλlnjδl,m. This is not a physical require-
ment but implies that the eigenstates of two projectors within a complete set have
no overlap.

From their definition, one can easily compute the eigenvalues of the matrices σn and
show that they are�1, as shown in Table 2. Interestingly, the eigenvectors correspond
to the polarization states on the surface of the Poincaré sphere, previously shown in
Fig. 2. We now have the recipe to compute the expectation values of the σn matrices in
terms of direct measurement that can be performed on the quantum state, and it is as
follows:

ρ0 � tr�ρσ0� � hRjρjRi � hLjρjLi, (16)
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ρ1 � tr�ρσ1� � hH jρjHi − hV jρjV i, (17)

ρ2 � tr�ρσ2� � hDjρjDi − hAjρjAi, (18)

ρ3 � tr�ρσ3� � hRjρjRi − hLjρjLi: (19)

Observe, however, that the measurements required to compute ρ0 are the same as that
of ρ3. In fact, tr�ρσ0� is an expression of the conservation of probability. Given that
projectors of a given Pauli matrix form a complete set, the conservation of probability
is independent of the measurement basis. Thus, one can deduce that ρ0 can be obtained
in a similar manner from the projective measurements of ρ1 and ρ2. Thus, the over-
complete tomographic measurement of a single qubit requires a total of six projective
measurements: d�d � 1� as mentioned in the introduction, for d � 2. To illustrate the
reconstruction, we will consider two examples: a pure and a mixed qubit states.

• Pure state. Let us consider the state jψi expressed in the polarization basis as

jψi �
ffiffiffi
3

p

2
jRi � 1

2
exp

�
−i π

3

�
jLi, (20)

so that the density matrix ρ � jψihψ j reads

ρ �

0
B@ 3

4

ffiffi
3

p
4

exp
�
i π
3

�
ffiffi
3

p
4

exp�−i π
3
� 1

4

1
CA: (21)

We then perform the tomographic measurement of the state by performing the
necessary projections, as shown in Table 3.

Next we compute the expectation values ρn,

ρ0 � 1; ρ1 �
ffiffiffi
3

p

4
; ρ2 � − 3

4
; ρ3 �

1

2
,

Table 2. Eigenvectors and Eigenvalues of the Identity and Pauli Matrices in the
Polarization Basis

Matrices σn α0n jλ0ni α1n jλ1ni

σ0 1 jRi ≡
�
1

0

	
1 jLi ≡

�
0

1

	
σ1 −1 jV i ≡ 1ffiffi

2
p
�

1

−1
	

1 jHi ≡ 1ffiffi
2

p
�
1

1

	
σ2 −1 jAi ≡ −iffiffi

2
p
�

1

−i
	

1 jDi ≡ −iffiffi
2

p
�
1

i

	
σ3 1 jRi ≡

�
1

0

	
−1 jLi ≡

�
0

1

	

Table 3. Tomographic Measurements of a Pure State

hRjρjRi hLjρjLi hH jρjHi hV jρjV i hDjρjDi hAjρjAi
3/4 1/4 4�

ffiffi
3

p
8

4− ffiffi
3

p
8

1/8 7/8
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and reconstruct the density matrix:

ρ � 1

2

�
1 0

0 1

�
�

ffiffiffi
3

p

8

�
0 1

1 0

�
− 3

8

�
0 −i
i 0

�
� 1

4

�
1 0

0 −1
�

�
 

3
4

ffiffi
3

p �3i
8ffiffi

3
p −3i

8
1
4

!
�
 

3
4

ffiffi
3

p
4

exp
�
i π
3

�ffiffi
3

p
4

exp
�−i π

3

�
1
4

!
:

• Mixed state. Now we consider the case of a mixed state ρ expressed in the polari-
zation basis as follows:

ρ � 1

3
jRihRj � 2

3
jLihLj �

�
1
3

0

0 2
3

�
: (22)

Similarly, we perform a tomographic measurement of the state obtaining the pro-
jections shown in Table 4.

We then compute the expectation values ρn,

ρ0 � 1; ρ1 � 0; ρ2 � 0; ρ3 � − 1

3
,

and reconstruct the density matrix:

ρ � 1

2

�
1 0

0 1

�
− 1

6

�
1 0

0 −1
�

�
�

1
3

0

0 2
3

�
:

A graphical representation of the density matrix in terms of real and imaginary parts is
presented in Figs. 4(a) and 4(b) for the pure state jψi �

ffiffi
3

p
2
jRi � 1

2
exp�−i π

3
�jLi and

the mixed state ρ � 1
3
jRihRj � 2

3
jLihLj, respectively.

A useful way to visualize these measurements is to see that they are made up of pro-
jections into two orthogonal bases, say jLi and jRi, and into four mutually unbiased
bases (MUBs): jHi, jV i, jAi, and jDi. The MUBs can be constructed from superpo-
sitions of the two orthogonal bases, i.e., the horizontal MUB, jHi, can be written as a
superposition of jLi and jRi. Although obvious for polarization, we show them
graphically in Fig. 5 as we will build up this figure throughout the tutorial with
examples beyond polarization. The mutually unbiased states have the property that
the overlap with one of the orthogonal states always yields an outcome with a prob-
ability of 1∕d, where d is the dimension of the Hilbert space. For polarization d � 2,
so this is 1/2.

2.2. Spatial Mode Qubit
While in the above we have presented the qubit QST in terms of polarization, one
should note that the choice of degree of freedom is arbitrary. An alternative and topical
degree of freedom is the spatial mode of the photon [130]. The term spatial mode
refers to transverse solutions of the wave equation in the paraxial limit; that is, when
the variation in transverse momentum is negligible in comparison to its longitudinal
counterpart. In this regime, a family of solutions arise: Hermite–Gaussian, Laguerre–
Gaussian, and Bessel–Gaussian modes, just to name a few. Some of these modes carry

Table 4. Tomographic Measurements of a Mixed State

hRjρjRi hLjρjLi hH jρjHi hV jρjV i hDjρjDi hAjρjAi
1/3 2/3 1/2 1/2 1/2 1/2
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discrete units of a fundamental quantum number: the OAM. Conserved at the single
photon level [67], the OAM degree of freedom is particularly attractive in classical and
quantum information, communication, and computation [131–135]. Unlike polariza-
tion, the state space of OAM modes is infinitely large, allowing more information to
be encoded in photons [75,76,79,136–139].

Recall the polarization qubit state in Eq. (2). An analogous description can be pro-
vided in terms of spatial modes that carry OAM [140]:

jψi � cos�θ∕2�jl1i � exp�iφ� sin�θ∕2�jl2i, (23)

where the ket jli refers to a paraxial field that carries lℏ units of OAM. Such a field
can be expressed in cylindrical coordinates �r,ϕ, z� [141]:

jli ≡ A�r, z� exp�ilϕ�, (24)

where A�r, z� is an amplitude term that varies transversally and longitudinally. The
intensity and phase of some OAM modes of the Laguerre–Gaussian type are shown

Figure 5

Graphical representation of orthogonal and mutually unbiased states used in the QST
projections. Here only the polarization matters, shown overlaid on a Gaussian mode.

Figure 4

(a)

(b)

Graphical representation of the density matrix in terms of its real and imaginary com-
ponents for the (a) pure state and (b) mixed state examples as given in the main body
text.
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in Fig. 6. The azimuthal phase creates a twisted wavefront with a central discontinuity
where the phase is undefined, resulting in an intensity null.

Observe that the field of the OAM mode is separable in both amplitude and
azimuthal phase, arg�exp�ilϕ�]; that is, the amplitude and azimuthal phase can

Figure 6

(a)

(b)

(a) Intensities and (b) phase maps of OAM modes carrying, from left to right,
l � −3, − 2,…, �2, and �3 units of OAM.

Figure 7

(a)

(c)

(b)

(d)

(a) Representation of polarization states on the Poincaré sphere. The poles represent
the eigenstates of the basis, from which all other states are constructed. An arbitrary
polarization state thus maps to a point on the surface of the Poincaré sphere. (b) The
normalized outcomes of projective measurements onto the eigenstates of the Pauli
matrices, for given horizontally polarized state. (c) Equivalently, one can construct
a similar sphere, a Bloch sphere, where the poles correspond to OAM eigenstates.
Here, the eigenstates of the Pauli matrices correspond to spatial modes. (d) From
projective measurement onto these spatial modes, one performs the quantum-state
tomographic measurement of an OAM state �jli � j−li�∕ ffiffiffi

2
p

with l � −1.
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be factorized. The orthogonality of OAM modes at a given z plane (say z � z0) may
be expressed by

hl1jl2i �
Z

∞

0

dr rA�r, z0�
Z

2π

0

dϕ exp�i�l2 − l1�ϕ� � δl1,l2
2π

Z
∞

0

dr rA�r, z0�:

(25)

Similar to polarization, OAM qubits can be represented on the surface of a sphere,
the OAM Bloch sphere [140], as shown in Fig. 7. Here the poles are the OAM states,
while the equator represents the Hermite–Gaussian modes, as detailed in Fig. 8, for
l1 � −l2 � 1. Observe that the superposition of two oppositely charged OAM
states leads to azimuthal fringes, which then rotate with the intermodal phase φ.
This is similar to the rotation of the linear polarization states in Fig. 2.

A QST of an OAM qubit follows the same procedure as that outlined previously. The
density matrix is expanded in terms of Pauli matrices and the identity. The eigenvec-
tors now take on a different meaning: rather than polarization states, they now cor-
respond to OAM modes and their superpositions, as shown in Fig. 9. Means to
perform projective measurements on these spatial modes have been extensively re-
ported for quantum [19,142] and classical light [143–147]. Progress in liquid crystal
technology and digital micro mirror devices has made it possible to generate and de-
tect arbitrary spatial modes using digital holograms (see Ref. [130] and Ref. [148] for

Figure 8

(a) (b)

(c)

Bloch sphere description of an OAM qubit in Eq. (23) with l1 � −l2 � 1. Control
over the amplitude parameter θ and phase parameter φ, as shown in (a) and (b), re-
spectively, leads to (c) a description of the general OAM qubit on a unit sphere where
the poles are the pure OAM states.
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a comprehensive review and tutorial, respectively). This has opened avenues for an
all-digital realization of QSTwith spatial modes. The core idea is to consider the pat-
tern creation step but in reverse. If a particular hologram were to convert a Gaussian
mode into a desired pattern, then in reverse the same hologram will convert the pattern
into a Gaussian. As Gaussians are the only modes that couple into single-mode fiber
(SMF), we have the means of a “pattern sensitive” detector, as illustrated in Fig. 10.
An example of projective measurements, together with the reconstructed density
matrix of pure OAM qubit state jψi � �j1i � j−1i� ffiffiffi

2
p

, is shown in Fig. 11.

Note again that we can see the link between orthogonal and MUB projections, this
time into jli and j−li states, plus the four MUBs made up of superpositions of
these: jli � exp�iθ�j−li for θ � �0, π∕2, π, 3π∕2�, as shown graphically in
Fig. 12. Because such MUBs require amplitude modulation to implement, one often
approximates them in the projective measurement as arg�jli � exp�iθ�j−li�,
producing a binary phase pattern rather than an amplitude function. This is why
all the Pauli matrices in Fig. 9 are phase-only patterns. In general the OAM example
can be replaced with arbitrary modes by substituting jli → jM 1i and j−li → jM 2i
everywhere in the above analysis.

Figure 9

Eigenvectors and eigenvalues of the identity and Pauli matrices in the OAM basis.

Figure 10

Detection of a spatial mode requires a “pattern sensitive” detector. This is achieved by
exploiting the reciprocity of light, passing the incoming beam backward through the
hologram that would detect it.
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2.3. Biphoton Qubits
Transitioning from single particles to multi-particle systems allows for the existence of
correlations, one of the most remarkable being non-local entanglement [149].
Mathematically, the states of entangled systems are non-separable, i.e., the states
in an entangled system do not factorize into product states. Physically this means that,
through non-local correlations, the unknown state of one particle can be uniquely
determined through measurements on its entangled partner(s). Entanglement is a valu-
able resource in quantum information and quantum computation, and as such requires
certification. While there exists various means to characterize entanglement, a stan-
dard and widely used approach is to first reconstruct the density matrix of the state
under study and then determine whether it is entangled or not. The tool of choice for
this task is a QST, first performed on OAM modes with physical holograms [67] and
later with digital holograms [142].

Here we look at a two-qubit system (N � 2 and d � 2) and go through the method
behind a two-particle QST. As discussed before, the choice of degree of freedom is

Figure 12

Graphical representation of the orthogonal and MUBs used in the QST projections for
(a) polarization and (b) OAM modes. In the case of the latter, the polarization is no
longer important and so is shown as horizontal everywhere. The patterns are shown as
intensity functions, while the actual projections are often done with phase-only ap-
proximations to these.

Figure 11

(b)

(a)

(a) Graphical representation of the outcomes of the projective measurements of a QST
on the state jψi � �j1i � j − 1i�∕ ffiffiffi

2
p

, shown in the inset. (b) Based on these tomo-
graphic measurements, one reconstructs the density matrix of the state.
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arbitrary and as such we will choose the OAM degree of freedom to illustrate the
tomographic measurements. We will work in a generic OAM subspace with eigen-
states j−li and jli (the same substitution rules apply as mentioned earlier should the
reader wish to adapt the basis to another mode type)

We start by describing a general two-particle system with a density matrix ρ as

ρ �
X
m

cmjψmihψmj, (26)

where the pure states jψmi are now two particle qubit states, described by

jψmi �
X
i, j

αijmjiiA ⊗ jjiB: (27)

The states jii and jji are eigenstates of the systems A and B, respectively, with as-
sociated complex coefficients αijm that define the mth state jψmi. The symbol ⊗ is a
tensor product operation that, in essence, is a way to multiply two state spaces of
dimensions d1 and d2, respectively, to form a new larger state space with dimension
d1 × d2. In the case of a two-qubit state, the joint system is four dimensional. It is
worth spending some time describing the computation of the tensor product
operation.

Given two matrices S and T (we will assume without loss of generality that these are
square matrices), the tensor product S ⊗ T produces a new matrix M computed by

M � S ⊗ T �

0
B@

S1,1 × T 	 	 	 S1,N × T

..

. . .
. ..

.

SN ,1 × T 	 	 	 SN ,N × T

1
CA: (28)

Using this procedure we can deduce the basis vectors for the two-qubit states of in-
terest, jψmi, by considering all the tensor product combinations jii ⊗ jji. In the spatial
mode basis of interest here, these are the OAM eigenstates j � li. We then obtain the
basis states for the joint system as follows:

jli ⊗ jli �
�
1

0

�
⊗
�
1

0

�
�

0
BBB@

1

�
1

0

�

0

�
1

0

�
1
CCCA �

0
BBB@

1

0

0

0

1
CCCA, (29)

jli ⊗ j−li �
�
1

0

�
⊗
�
0

1

�
�

0
BBB@

1

�
0

1

�

0

�
0

1

�
1
CCCA �

0
BBB@

0

1

0

0

1
CCCA, (30)

j−li ⊗ jli �
�
0

1

�
⊗
�
1

0

�
�

0
BBB@

0

�
1

0

�

1

�
1

0

�
1
CCCA �

0
BBB@

0

0

1

0

1
CCCA, (31)
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j−li ⊗ j−li �
�
0

1

�
⊗
�
0

1

�
�

0
BBB@

0

�
0

1

�

1

�
0

1

�
1
CCCA �

0
BBB@

0

0

0

1

1
CCCA: (32)

Now that we have an understanding of the tensor product operation, the state-tomog-
raphy measurement of the two-qubit state can be intuitively understood. The state of each
qubit can be characterized with the set of rotation matrices (Pauli matrices) plus the iden-
tity matrix. The joint state, therefore, follows a tensor product construction as follows:

ρ �
�
1

2

X3
m�0

ρmσm

�
A

⊗
�
1

2

X3
n�0

ρnσn

�
B

� 1

4

X3
m, n�0

ρmnσm ⊗ σn: (33)

The above construction naturally leads to the description of the qubit pair on the surface
of a higher order Bloch sphere, as shown in Fig. 13. From Eq. (33), the state of the qubit
pair is defined by a set of single-qubit rotations, together with single-qubit identity op-
erators. Similar to the case of a single qubit, these rotations occur on the surface of a
sphere, a higher order Bloch sphere. In this description, the states on the sphere follow the
same tensor product construction as that in Eq. (27), as shown in Fig. 13. In the case of
OAM states, the poles correspond to the tensor product of single-qubit OAM states.
While there are many tensor product combinations of single-photon qubit states, there
is only one rule for constructing the higher order Bloch sphere: each single qubit must
have orthogonal states on the poles of the sphere. For example, one cannot construct
a higher order Bloch sphere with the states jlij−li and jlijli on the poles. This is
because any two-qubit pair formed as a linear superposition of these two-qubit states
factorizes with respect to each subsystem. This simply means that one can write the
two-qubit state as jψi � �·�A ⊗ �·�B. This can be shown as follows:

Figure 13

Description of qubit pairs on the higher order Bloch sphere. States on the surface of the
higher order Bloch sphere are constructed from the tensor product of qubit states from
two Bloch spheres, each describing a subsystem (photon). The entire space is four
dimensional, shown here as two-dimensional subspaces for visualization purposes.
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jψi � cos�θ∕2�jliAj−liB � exp�iφ� sin�θ∕2�jliAjliB, (34)

⇒ jψi � jliA ⊗ �cos�θ∕2�j−li � exp�iφ� sin�θ∕2�jli�B: (35)

Observe that the two-qubit state is parameterized by θ and φ, and can be entirely char-
acterized by a single qubit rotation on subsystem B alone. We thus say that the two
subsystems factorize, or equivalently, that they are separable. The notion of separability
will be treated in more detail a little later.

Note that an arbitrary state on the surface of the higher order Bloch sphere cannot be
described by a single qubit rotation on one subsystem alone. In other words, the higher
order Bloch sphere describes a set of both separable and non-separable states. In the
case of two-qubit states, this non-separability is what we traditionally refer to as
“quantum entanglement.” In general, arbitrary states on the higher order Bloch spheres
in Fig. 13 are represented as

jψi � cos�θ∕2�jl1ijl2i � exp�iφ� sin�θ∕2�j−l1ij−l2i ≠ �·�A ⊗ �·�B: (36)

Fortunately, the separability of the state does not affect the reconstruction procedure
through QST. In what follows, we will outline the steps to perform a two-qubit QST
for an arbitrary state represented by the density matrix, ρ.

Once again, the task of a QST is to realize direct measurements to compute the expect-
ation values ρmn. We follow the same tensor product construction of the expectation
value to express ρmn in terms of eigenvalues and eigenvectors of the basis operators for
the joint system; these are σm ⊗ σn and can be expressed as follows:

σm ⊗ σn � �α0mjλ0mihλ0mj � α1mjλ1mihλ1mj� ⊗ �α0njλ0nihλ0nj � α1njλ1nihλ1nj�: (37)

By expanding the expression above, the measurements required in a QST can be
directly read as

σm ⊗ σn � α0mα
0
njλ0mihλ0mj ⊗ jλ0nihλ0nj � α1mα

1
njλ1mihλ1mj ⊗ jλ1nihλ1nj

� α1mα
0
njλ1mihλ1mj ⊗ jλ0nihλ0nj � α0mα

1
njλ0mihλ0mj ⊗ jλ1nihλ1nj: (38)

The projectors jλmihλmj have been discussed in the previous section and we have
shown that they can be realized through direct measurement on the quantum state.
In the case of two qubits, the tensor product jλmihλmj ⊗ jλnihλnj means that one must
perform joint projective measurements on both photons. Practically, this implies that
the projective measurements must be done in coincidence. This can be done using
single photon detectors and a counting module. The expectation values ρmn then take
the following form:

ρmn � α0mα
0
nhλ0mλ0njρjλ0mλ0ni � α1mα

1
nhλ1mλ1njρjλ1mλ1ni

� α1mα
0
nhλ1mλ0njρjλ1mλ0ni � α0mα

1
nhλ0mλ1njρjλ0mλ1ni: (39)

In the above, we have used a compact notation for the projective measurement, where
jλ0mλ0ni ≡ jλ0mi ⊗ jλ0ni. Note the order of the eigenstate in both the bra and ket in the
expression of the expectation value: the first state refers a measurement on particle A,
while the second state refers to a measurement on particle B. For example, the expect-
ation value hλ0mλ1njρjλ0mλ1ni is obtained by projecting photons A and B on the state jλ0mi
and jλ1ni, respectively, and measuring in coincidence. The eigenvalues αm and eigen-
vectors jλmi are known from the single-qubit QST; we can thus write the expression
of the expectation values ρmn in terms of direct projective measurements. With four
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measurements per expectation value, one would in principle perform a total of 64
measurements. However, upon close examination of the expectation values, one real-
izes that a total of only 36 measurements is necessary. This is because some of the
expectation values share a common set of measurements. Recall from single-qubit
QST that the projectors of the identity matrix are the same as that of any single
Pauli matrix. Therefore, by measuring the expectation value ρmn for m, n > 0, one
can compute ρ00, ρm0, and ρ0n. This is what reduces the number of necessary projec-
tive measurements from 64 to 36, the value given in the introduction for a biphoton
system as �d�d � 1��2, which for d � 2 yields 36.

Experimental implementation is, however, not without its own set of challenges.
Engineering quantum states is a probabilistic process. A standard method of generat-
ing two-photon states that are correlated is through spontaneous parametric down con-
version (SPDC), where a nonlinear crystal is pumped with photons from a laser, as
shown in Fig. 14(a). An entangled pair is produced with a certain probability depend-
ing on the type of nonlinear crystal used. This results in fluctuations in photon number
measured by the single-photon detectors, resulting in experimental errors that affect
the reconstruction of the quantum state. Statistical techniques can be employed to
mitigate these errors, one being the maximum likelihood estimation [142]. The prin-
ciples of the method are as follows:

Figure 14

Quantum-state tomographic measurement of a two-photon state. (a) An experimental
setup to generate entangled two-photon states through spontaneous parametric down-
conversion in a nonlinear crystal (NLC). The downconverted photons travel to two
OAM analyzers, and their quantum states are measured in coincidence. (b) Shows a
two-qubit QST where the projected state of each photon in the entangled pair is in-
dicated by its phase map. The color of each box represents the normalized coincidence
counts for a given set of projection on the two-photon state. Using the tomographic
data, the density matrix is computed, and its real and imaginary components are
shown in (c) and (d). The sum of the measurements enclosed by the red squares
defines the expectation value of the identity (probability conservation).
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1. Perform the tomographic measurements on the quantum state.

2. Guess a physical density matrix for the state (Hermitian with unit trace and non-
negative eigenvalues)

3. Computationally perform a tomographic measurement of the state based on the
guessed density matrix.

4. Compute the difference between the guessed and experimental tomographic mea-

surements: χ2 �
�P

36
i�1

Ci
exp−Ci

guessffiffiffiffiffiffiffiffiffiffiffi
Ci
exp�1

p
	
2
, where the subscript i refers to the ith tomo-

graphic projections. The experimental tomographic measurements are labeled
Ci

exp, while those simulated based on the guessed density matrix are labeled Ci
guess.

5. Update the guessed density matrix such that it minimizes the χ2 difference.

This procedure ensures that the reconstructed density matrices meet the criteria re-
quired to be physical; i.e., the density matrix is Hermitian with non-negative eigen-
values. An example of a tomographic measurement of the state of OAM entangled
photon pairs is shown in Fig. 14(b). Using the maximum likelihood estimation, one
reconstructs the real and imaginary components of the density matrix shown in
Figs. 14(c) and 14(d), respectively.

But how to actually perform the QST? A summary of the measurement settings for a
biphoton QST and the estimation of a Bell parameter (to be discussed later) is shown
in Fig. 15. For QST, a total of 36 projective measurements are required (highlighted

Figure 15

Concept diagram illustrating the measurements required on two photons, A and B, to
perform an over-complete QST (highlighted in yellow) and a Bell violation measure-
ment (highlighted in gray) for polarization and spatial mode correlations. The values
show the expected outcomes for a biphoton maximally entangled state. By following
the rows/columns through from one end to the other, one finds the equivalent mea-
surement in the alternative basis, i.e., from polarization to spatial mode and vice versa.
Measurements on hybrid states can be deduced by selecting a row of one degree of
freedom and a column of another, i.e., photon A from the polarization and photon B
from the OAM space. The spatial modes are shown with their phases as insets, the
latter actually used in the measurement process.
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yellow). The rows and columns in Fig. 15 are labeled with the eigenstates of the de-
gree of freedom onto which the projections are performed; these can, for example, be
the polarization or OAM of two entangled photons, or a hybrid polarization–OAM
combination (one photon from each degree of freedom). Similarly, the highlighted
gray areas show the required measurements for which the Bell parameter is maxi-
mized. These are the optimum measurements used to show possible violation of
the Clauser–Horne–Shimony–Holt (CHSH) inequality (see later). To translate this
to spatial modes, say OAM, one follows the same approach as one would with polari-
zation but with polarization measurements replaced by spatial mode measurements, as
illustrated in Fig. 15 (for jlj � �1), with the relation to an actual experiment shown in
Fig. 16 (for jlj � �3). As with polarization, 36 measurements are needed, consisting
of holograms that depict the two orthogonal modes as well as the four mutually un-
biased modes (superpositions of the orthogonal modes), for photon A and B, dis-
played on holograms A and B. A QST on OAM modes is shown in Fig. 17, with
varying degrees of entanglement. It is also possible to mix two degrees of freedom,
to form so-called hybrid entangled states [94,104,150,151]. An example of a maxi-
mally entangled hybrid state in polarization and spatial (OAM) modes may be ex-
pressed as

jψi � 1ffiffiffi
2

p
�
jliAjRiB � j−liAjLiB

�
, (40)

where we have labeled the states as photon A and photon B. The above state can be
described as a point on the surface of a new sphere, the high-order Poincaré sphere

Figure 16

Each entangled photon in the pair is directed to a SLM that displays a hologram. The
hologram is programmed with appropriate phase patterns to detect spatial modes. In this
example, the holograms are shown for OAM modes of jlj � �3 as well as the super-
positions thereof, all six required for over-complete tomographic reconstruction.
Running through six holograms on each SLM produces the 36 measurements required.
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(HOPS) [123–125]. The sphere is constructed from the tensor product of the eigen-
states of the individual subsystems, as shown in Fig. 18.

We can express the density matrix of this system analogously to before as

ρ �
�
1

2

X3
m�0

ρmσm

�orbit
⊗
�
1

2

X3
n�0

ρnσn

�spin
� 1

4

X3
m, n�0

ρmnσ
orbit
m ⊗ σspinn , (41)

Figure 17

Examples of QST measurements and the resulting density matrices for hybrid (left)
and OAM (middle and right) biphoton states, with varying degrees of entanglement.

Figure 18

Description of hybrid states on the HOPS. States on the surface of the HOPS are
constructed from the tensor product of OAM states from the Bloch sphere and polari-
zation states from the Poincaré sphere. The entire space is four dimensional but illus-
trated here by spheres representing the subspaces. The equator represents maximally
entangled states, whereas the poles represent non-entangled states.
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where σorbitm and σspinm refer to the Pauli and identity matrices, whose eigenstates cor-
respond to OAM and polarization states, respectively. To see how to perform the QST
we return to Fig. 15; we see that we should select projections from each degree of
freedom: spatial mode projections on photon A and polarization measurements on
photon B, to return the required data in the yellow block, following the same proce-
dures outlined for biphoton qubits in a single degree of freedom. An example of such a
measurement is shown in Fig. 19 for both maximally entangled and non-entangled
hybrid states.

It is worth noting that the principles of QSTs presented here can be extended to
higher dimensions. Beyond the qubit, one requires a generalization of the Pauli
matrices to higher dimensions: these are the Gell–Mann matrices. However, the
physical interpretations are not as straightforward as with the Pauli matrices
and require more acrobatics. A recipe to construct these matrices is presented
in Ref. [30] and has been used to perform state tomography of higher dimensional
states [19]. In this tutorial we wish to demonstrate how to perform a QST with
classical light, and, as we shall see, it is convenient to do so directly with two
degrees of freedom, restricting us to qubit states.

2.4. Extracting Information from QST Measurements
There are many ways to characterize the purity and quality of quantum states once the
density matrix has been reconstructed from a QST. Here we introduce some of the
widely known measures, namely, the fidelity, linear entropy, and concurrence [149].
Importantly, one can analogously apply these measures to classically entangled states
to test for non-separability between internal degrees of freedom of photons
[112,152,153].

First we introduce the fidelity that quantifies the equivalence or similarity between the
reconstructed and target density matrices. It can be expressed as [154]

F � Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pq �
2

, (42)

where ρ1 is the density matrix representing a target state and ρ2 is the predicted
(or reconstructed) density matrix. If the matrices are identical, then F � 1; conversely,
if they have no similarity, then F � 0. Also note that this definition is generalized
for both pure and mixed density matrices. For a target state that is pure, say
ρ1 � jψ1ihψ1j, Eq. (42) can be easily expressed as

Figure 19

(a) (b)

(a) Density matrix representation for a maximally entangled biphoton hybrid state and
similarly in (b) for a hybrid state that is not entangled.
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F � Tr�ρ1ρ2� � hψ1jρ2jψ1i, (43)

reducing to a simple inner product between the two states. This then asks the question:
is what I measured (ρ2) the same as ρ1? Often the comparison is made to maximally
entangled states so that the fidelity answers the question: is my state maximally
entangled?

To illustrate how the fidelity is computed, suppose we have the density matrix shown
in Fig. 19(a), which in matrix notation reads

ρ1 �
1

2

0
BB@

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1
CCA, (44)

while Fig. 19(b) corresponds to the matrix

ρ2 �

0
BB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCA: (45)

By applying Eq. (42) we obtain F�ρ1, ρ2� � 0.5. Equivalently, the result can be in-
terpreted as ρ1 and ρ2 having a 50% overlap. We will use this measure as figure of
merit for determining the overlap between density matrices.

Next we present the linear entropy. For any given density matrix, ρ, the linear entropy
is expressed as

SL � �1 − Tr�ρ2��: (46)

We see that SL � 0 for the density matrices ρ1,2 in Eqs. (44) and (45) since they satisfy
Tr�ρ2� � Tr�ρ� � 1. This is generally true for pure states (entangled or separable).
However, mixed states are not idempotent, i.e., ρ2 ≠ ρ and 0 < Tr�ρ2� < 1. For a
completely mixed state, that is, a sum of equally weighted pure state density matrices,
the purity attains a minimum bound of 1∕d, where d is the dimension of the density
matrix. Consequently, the linear entropy can be as large as �d − 1�∕d for a maximally
mixed density matrix. Moreover, SL → 1 as d → ∞ for maximally mixed states.

Next, we present a measure for the degree of entanglement, namely, the concurrence,
C. It can be expressed as [155]

C�ρ� � max

�
0,

ffiffiffiffiffi
λ1

p −X
i�2

ffiffiffiffi
λi

p 

, (47)

where ρ is the density matrix of the system being studied (mixed or pure); λi are the
eigenvalues of the operator R � ffiffiffi

ρ
p ffiffiffĩ

ρ
p

in descending order, with ρ̃ � Θρ
Θ where 

denotes complex conjugation. The operator Θ represents an anti-unitary operator sat-
isfying hψ jΘjϕi=hϕjΘ−1jψi for any states jϕi and jψi [149]. The concurrence can
take values from 0 to 1; with no entanglement corresponding to a value of 0, while
an increasing degree of entanglement reaches values up to 1.

As an example, we compute the concurrence of the density matrices from Eqs. (44)
and (45) We use the following anti-unitary operator for a two-qubit state given by
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Θ � σ2 ⊗ σ2 �

0
BB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCA, (48)

where σ2 is the spin–flip Pauli matrix with Θ satisfying Θ−1 � Θ†. Accordingly, we
compute ρ̃

ρ̃1 �
1

2

0
BB@

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1
CCA, ρ̃2 �

0
BB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1
CCA, (49)

for matrices ρ1,2 in Eqs. (44) and (45) [see Figs. 19(a) and 19(b) for illustrations],
respectively. Note that ρ̃1 � ρ1 but ρ̃2 ≠ ρ2. The R matrix can thus be computed as

R1 �
1

2

0
BB@

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1
CCA, R2 �

0
BB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCA, (50)

each with eigenvalues {1,0,0,0} and {0,0,0,0} respectively. Subsequently the concur-
rence is computed from Eq. (47) for both states, yielding C�ρ1� � 1 and C�ρ2� � 0.
Therefore, the density matrix ρ1 corresponds is a maximally entangled state while ρ2
corresponds to a separable state, as expected. Thus the concurrence suffices as figure
of merit for the measure of the amount of entanglement in a quantum system.
Furthermore, the concurrence can be simplified to C�ρ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1 − Tr�ρ2B��

p
, where

ρB is the reduced state in the case of pure states.

3. SIMULATING QST MEASUREMENTS WITH SCALAR LIGHT

The aforementioned examples of a QST were all performed on suitably entangled
quantum states from a SPDC source. To understand how entanglement arises in
the SPDC process, Klyshko put forward the idea of “time reversal” [122]. To see
the implication of this rather abstract notion, consider the illustrations in Fig. 20.
In the top panel we have the traditional quantum experiment: a noncollinear, degen-
erate SPDC process produces two photons (our biphotons), one in arm A and one in
arm B. Each of the two entangled photons travels in a particular direction, here arms A
and B, until they are measured by some projection on the spatial light modulator
(SLM), collected at the single-mode fiber (SMF), and resulting in a particular coinci-
dence rate with the outcome of a similar process in arm B. Because of the phase-
matching condition of our SPDC crystal, the ejection angles of the biphotons at
the crystal are equal and opposite, forming a ring-like structure of SPDC light.
For our entanglement studies, we collect photons from diametrically opposite sides
of the ring with suitably sized and placed apertures. Klyshko argued that to understand
this process one could imagine one of the photons, say that in arm A, traveling back-
ward in time, interacting with the crystal, and resulting in a new photon traveling in
arm B. In this scheme the crystal is treated as a mirror. This works because mirrors
reflect light at an angle equal to the angle of incidence, mimicking the SPDC phase-
matching condition for momentum. To realize this concept in the laboratory, one
merely needs to replace the detector in one arm, say arm A, with a source of pho-
tons—a laser at the same wavelength as the biphotons. The bright laser beam will pass
backward through arm A, reflect off the crystal surface (if flat and normal, otherwise a
pop-up mirror), and then continue in arm B as if it were photon B through to the
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detector. Rather than two measurements on spatially separated photons (A and B),
here we prepare the intense light in arm A to be in some state, and then detect
the state in arm B.

This tool is often exploited for alignment of quantum experiments, but recently has
been demonstrated as a versatile tool for actually predicting the outcome of quantum
experiments, including full QSTs. It has been used to understand QSTs using
spatial modes [118,156], to mimic pumping shaping of SPDC sources [121,157],
to study losses in high-dimensional quantum key distribution systems [74], and to

Figure 20

Top: conventional quantum experiment with biphotons using an SPDC source and
projections using SLMs to explore spatial mode entanglement. Here two photons
are produced at the crystal and travel in equal but opposite directions due to the crystal
phase-matching condition. Middle: the detector in arm A is replaced with a source of
bright light. The light travels backward through the system, bouncing off the crystal
and passing through arm B to the detector. Because the angle of incidence equals the
angle of reflection, the light in arm B has the correct properties to mimic the SPDC
photon in this arm. Bottom: this concept can be further extended to simulate different
SPDC processes by replacing the mirror by a third SLM, i.e., to simulate the mode of
the pump beam.
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understand ghost imaging [117,119,158–162]. This approach is sometimes called
“back-projection” [118].

To see why the QST is accurately mimicked, consider the example of OAM shown
schematically in Fig. 21. The biphotons are created from a SPDC process that is ex-
cited with an l � 0 pump, so that lA � lB � 0. Here, if lA � 1 is the measurement
in arm A, then a coincidence occurs only if the hologram in arm B is given by
lB � −1. Now consider the classical light equivalent. The laser beam from source
A passes through the same hologram A but backward, so that after the hologram
the OAM state of the light is given by lA � −1. After reflection from the mirror
the helicity inverts, so the light is now lA � 1 and traveling toward hologram B.
This light now encounters the detection in arm B, programmed as lB � −1.
Modulating an incoming OAM of lA � 1 with a hologram of lB � −1 results in
zero OAM since the helicity is removed. Since the SMF couples in light of l � 0

(Gaussian beams with no OAM), the result is detection of the light. If the hologram
in arm Awas changed to lA � 10, then at the SMF the helicity of the beam would be
l � 9, which would result in no “click.” One can run this thought experiment for all
projections required for a QSTand find that in all cases the classical experiment imple-
ments the process as it would be seen in the quantum case. In Fig. 22(a) we show
results for OAM correlations performed on quantum states and on bright classical
light, respectively, with full QSTs for the hybrid state shown in Fig. 22(b). It is clear
that this is a very powerful tool to study QSTs with all the advantages of intense light,
e.g., strong signals for fast and accurate QSTs. Further examples of higher dimensions
and ghost imaging are shown in Figs. 23 and 24.

Figure 21

In the usual SPDC process the OAMmodes in arms A and B have opposite sign due to
conservation of OAM (assuming a Gaussian pump mode). In the classical experiment
with one detector replaced by a laser, the extra reflection off the mirror suffices to flip
the sign of the OAM that travels to arm B, thus mimicking the physics correctly for a
QST.
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4. QSTS WITH CLASSICALLY ENTANGLED LIGHT

The hallmark of the biphoton quantum states that we have written in the earlier sec-
tions is their non-separability. This gives rise to the concept of entanglement: that a
measurement on one photon affects the outcome of a measurement on the other. Now
we will show that non-separability is not unique to quantum mechanics, and that this

Figure 23

Example of actual classical signals at the detector (left) together with the resulting full
QST on the classical beam (middle) and the corresponding quantum case (right). The
agreement is excellent. Here the QST was performed on a d � 3 Hilbert space.

Figure 22

OAM spiral bandwidth shown for (a) the SPDC experiment with single photons (left)
and the classical backprojection experiment (right). In (b) we show the outcome of a
full QST (with differing degrees of freedom), again with quantum on the left and
classical on the right.
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fact can be exploited to perform “quantum” measurements on purely classical light,
observing all the salient features as if the state under study were really quantum. This
facilitates a pedagogical approach to teaching QSTs with easy implementation for
experimental demonstration.

Previously, we have used the density matrix approach to describe a quantum system of
one and two qubits. However, this description is not in itself quantum; it is simply a
mathematical tool to arrive at a physical description of reality. As such, it should also
be applicable to non-quantum states. How does a single-qubit description vary from
that of a classical state? The answer is not much, since photons are elementary ex-
citation of the electromagnetic field. More interesting is the case of two entangled
photons: can this be described classically?

Through “spooky action at a distance,” the states of two systems can be coupled in a
non-separable manner, such that they cannot be described independently from each
other, regardless of how far apart they are located. One way to test the “quantumness”
of correlations arising from entanglement is through the CHSH inequality, and this has
successfully been demonstrated experimentally [163]. However, how does the nature
of the entangled parties come into the description of entanglement? We have described
entanglement correlation as existing between two distinct systems that can be physi-
cally separated. What is the physical reason behind such a requirement? Can non-
quantum systems exhibit entanglement correlations? These questions have become
topical recently [105,106,108,109,164,165]. In this section we will present our view

Figure 24

The backprojection approach can also be used to demonstrate other quantum experi-
ments, for example, ghost imaging. Here we illustrated examples of ghost imaging
with position and momentum correlations using SPDC photons as well as a classically
equivalent backprojection experiment. Copyright 2014 from “Experimental demon-
stration of Klyshko’s advanced-wave picture using a coincidence-count based, cam-
era-enabled imaging system,” Aspden et al. [119]. Reproduced by permission of
Taylor and Francis Group, LLC, a division of Informapic.
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on the issue and, more practically, show how to exploit so-called classical entangle-
ment for research and teaching purposes.

4.1. What is Entanglement?
The quintessential property of entanglement is non-separability, the notion that two
systems cannot be described independently from each other, or put another way, that a
measurement on one system is strongly (i.e., beyond classical correlations) linked to
the outcome of the measurement of the other. Mathematically we say that the joint
state does not factorize; that is, given two systems A and B, the joint density matrix ρAB
cannot be expressed as the tensor product of the individual density matrices ρA and ρB.
Thus any state that is not separable is said to be entangled. Note at this point that we
have not specified anything about the nature of the systems A and B (whether they are
classical or quantum). Yet, we have logically arrived at a condition for separability and
entanglement. So where does the “quantumness” of entanglement originate? The rea-
son is none other than context. We believe the issue lies in understanding what is
entangled.

Suppose you were to deliver pairs of identically prepared entangled photons to two
experimentalists, Alice and Bob, who are both tasked to test for violation of the CHSH
inequality. In our picture, Alice and Bob cannot agree on what to measure: Alice
wishes to perform her measurement in the polarization basis, while Bob prefers to
do it in the spatial degree of freedom basis. They both proceed and return their results
to a third party, Eve, as one of two possibilities: “entangled” or “not entangled.” Eve
can draw the following conclusions:

(1) Both or none of the outcomes handed by Alice and Bob show the violation of the
CHSH inequality. In this case, both experimentalists agree and Eve can logically
confirm or rebuke the presence of entanglement.

(2) Either one of the outcomes handed by Alice or Bob show the violation of the
CHSH inequality. In this case, Eve is in a difficult position: by not knowing
whether Alice and Bob performed an entanglement test using the same basis
(i.e., whether their measurement was made using different degrees of freedom),
she is faced with ambiguous and potentially conflicting results, and thus cannot
establish the presence (or absence) of entanglement.

Therefore, it is imperative that one specifies the degree of freedom in which the pho-
tons are entangled. This brings us back to the question of what it is that is entangled:
are the photons entangled? Or are the states of the photons entangled? Based on our
imagined experiment involving Bob, Alice and Eve, it is clear that it is the latter: the
states are entangled and the objects that happen to carry those states are not! This is an
important distinction because it brings us to a current topical issue, that of classical
entanglement: can a classical state of light be entangled? We can now reformulate the
question in terms of our criterion for separability, namely, “Is it possible to construct a
classical state of light that is non-separable?” If the answer to that question is yes, then
the classical state can be said to be entangled in the non-separable degree(s) of free-
dom, which in the case of vector modes would be polarization and OAM, as discussed
in the next section.

4.2. Non-Separability, Vector Beams, and Classical Entanglement
Optical fields may be scalar or vector, with the latter now topical classical states of
light [166,167]. For a thorough and up-to-date discussion of vector beams, the reader
is directed to the review article by Rosales-Guzmán et al. [168], and all references
therein. The vector nature of these beams stems from the fact that they possess
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spatially varying polarization in the transverse plane, i.e., inhomogeneous polarization
states of light. This coupling of space to polarization can be expressed as a non-sepa-
rable superposition of spatial mode and polarization. To see what this means, consider
the example vector beams shown in Fig. 25(b). If one of them, say the first on the left
(radially polarized light), were passed through a polarizer, the intensity pattern ob-
served by a detector (for example a camera) would change, shown in Fig. 25(c).
We understand this as filtering out only particular polarization directions from the
field. Put into the language of quantum mechanics: a measurement on one system
affects the outcome of a measurement on the other. In other words, the measurement
on the spatial mode (as observed by the camera) was affected by the prior choice of a
measurement on the polarization (as performed by the polarizer). In contrast, this de-
scription does not apply to scalar beams, which are completely separable (i.e., the
spatial properties are not affected by a change in polarization). For instance, inserting
a polarizer in the path of a scalar beam will cause the intensity detected by the camera
to globally increase or decrease according to the angle of the polarizer, but the spatial
pattern of light as detected by the camera will not be affected. We therefore say that the
spatial and polarization states of scalar modes are completely separable, as one does
not affect the other.

Figure 25

(a) Illustrative experiment able to reveal the separability and non-separability of vector
and scalar modes, consisting of a light source, a vector/scalar beam generator, an
adjustable polarizer, and a spatially resolved camera detector. (b) Intensity and polari-
zation map of a few vector beams. The non-separability of the space and polarization
degrees of freedom is reflected in the space variant (inhomogeneous) polarization.
(c) The non-separability of the two degrees of freedom manifests itself if one passes
the beam through an adjustable polarizer and measures the resulting spatial mode on a
camera as the polarizer is rotated, as represented here for two vector beams.
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The vector beams shown in Fig. 25(b) can be conveniently expressed using a notation
borrowed from quantum mechanics as follows:

jψi � cos�θ∕2�jliAjRiB � exp�iφ� sin�θ∕2�j−liAjLiB: (51)

Note that this expression of a vector beam is reminiscent of that in Eq. (36), which we
used to describe an arbitrary state on the surface of the higher order Bloch sphere. One
of the conclusions we drew was that such a state is non-separable, and we can now call
it an entangled state. In Eq. (40) we saw that the non-separability of a hybrid entangled
state was expressed across two photons, A and B. Here we have only one intense beam
of light that is non-separable in two degrees of freedom: A and B. Once again we
highlight that entanglement is the presence of a strong correlation between states.
Thus we can conclude that a vector beam also carries a form of entanglement in
its two degrees of freedom, albeit local. We call this “classical entanglement.”

Entanglement between the quantum states of two particles exhibits non-locality: it
persists even when the particles are space-like separated; that is, the particles are suf-
ficiently far apart that in the event of a joint measurement, a field would need to propa-
gate faster than light from one detector to the other to influence the measurement
outcome. It is because of this non-locality that entanglement cannot be classified
as exchange of information between the correlated particles; measuring the OAM
of one photon in the OAM entangled pair does not result in a signal traveling to
the other photon that tells it to assume a particular state. Such non-locality does
not exist in the classically entangled fields we are describing here.

The degrees of freedom of the vector beam are defined locally and thus cannot exhibit
non-local correlations. So can one still maintain that vector beams are entangled
states? Yes, because the definition of entanglement was linked to the separability
of the state and made no mention of non-locality. The issue of non-locality arose only
when we added additional constraints to the description of the system: we specified
the nature of the carriers of the entangled state. It is only when the entangled states are
given properties of particles that the issue of non-locality emerges. When considering
an inherently local system there is naturally no chance of non-local correlations. This
being said, correlations do still exist in both systems. It is thus useful to make a dis-
tinction between these two “flavors” of entanglement: i.e., quantum and classical en-
tanglement. More specifically, since non-local correlations are inherently quantum,
we can logically refer to the entanglement of quantum particles as quantum entangle-
ment and that of local classical systems, such as vector beams, as classical entan-
glement.

4.3. Controlled Classical Entanglement by Spin–Orbit Coupling
How should we produce such controlled “classically entangled” vector beams? The
task is to do so in a manner that is tunable, moving freely around the HOPS, from
separable modes on the poles to non-separable modes on the equator. Further, we wish
to do so with intense light fields. It is possible to do so by employing the tools of
structured light in general [134], for example, with dynamic phase using SLMs
[169], directly from custom lasers [170], and by the use of spin–orbit coupling
[171–173]. Devices called spin-to-orbital angular momentum converters (SOCs) al-
low to convert a Gaussian beam into a helical beam with an OAM related to the spin
state of the input light, as illustrated in Fig. 26(a). This is possible in optically inho-
mogeneous and anisotropic media, such as oriented liquid crystals [91,174,175–178].

A completely different approach consists in using metasurfaces [179–181]. The
general idea of metasurfaces is to have a nanostructured interface to shape the light
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wavefront at will [182,183], being able to implement not only SOCs but also lenses,
axicons, and even ultrathin gratings [184,185]. For mid-IR light, metallic nanostruc-
tures can be used [186]. However, metals are too lossy in the visible, where they must
be replaced by dielectric materials. A possible design approach for a dielectric meta-
surface in the visible is based on nanoposts made of a dielectric material [187] that has
high refractive index and low losses in the visible. Later in this tutorial we will dem-
onstrate how to perform a QSTwith intense laser light in the visible. With this in mind,
our material of choice is titanium dioxide (TiO2) with a refractive index of ∼2.4 at
green wavelengths (λ � 532 nm) and negligible losses in the whole visible range
[180]. When the dimensions of such dielectric nanoposts are smaller than the light
wavelength, each post behaves like a truncated waveguide with most of the light just
passing through, with negligible reflection at the interfaces. For a fixed height of the

Figure 26

(a) Representation of a SOC based on a dielectric metasurface for visible light. This
device converts a left-circularly polarized light Gaussian beam into a right-circularly
polarized helical beam with OAM m � 2. (b) Design of a rectangular-section dielec-
tric nanopost (nanofin). If the material is TiO2, and the height of the post (H) is
600 nm, in order to achieve structural birefringence value of π at 532 nm incident
wavelength, the width (W) and the length (L) must be, respectively, 90 and
250 nm. (c) SEM micrograph of a TiO2 metasurface SOC that produces helical beams
of OAM�1. (d) Beam profile generated by the device in (c). (e) and (f) Interference of
the helical beam in (d) with a reference beam. The spiral interference handedness
depends on the sign of the helical beam OAM.
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post, the width and length can be then adjusted to impose a certain phase delay during
the propagation. Let us call this propagation phase (Ψ). In the case that the transverse
section of the nanopost is not cylindrically symmetric (width and length are different),
as shown in Fig. 26(b), also a phase delay (ΔΦ) can be accumulated between the field
components along the axes of the post. If this is the case, the nanopost behaves like a
waveplate with an effective birefringence (ΔΦ), called form or structural birefrin-
gence. The effect of a nanopost oriented by the angle α to the propagating light
can be described by the Jones formalism as

R�−α�
�
eiψ 0

0 ei�ψ�ΔΦ�

�
R�α�: (52)

If circularly polarized light, left or right, passes through each of such elements and the
structural birefringence is fixed at a value ΔΦ � π, the output fields become

Ein �
�
1

i

�
→ Eout � eiψe−i2α

�
1

−i
�
, (53)

Ein �
�
1

−i
�
→ Eout � eiψei2α

�
1

i

�
: (54)

The output light is then still circularly polarized but with opposite handedness with
respect to the input field. Moreover, the output beam has accumulated an overall phase
that depends not only by the propagation phase (Ψ) but also by the orientation of the
element (�2α). If we now place on a surface all equal nanoposts but differently ori-
ented [Fig. 26(c)], the wavelets emerging from each nanopost are dephased only by
means of the orientations 2α. This phase term is a particular manifestation of the
Pancharatman–Berry (PB) phase or geometric phase (see Ref. [188] for a popular
review). Note that here, α ≡ α�x, y�, i.e., it is a spatially variant function according
to the desired phase change. For example, to generate a helical beam with OAM
jmj, the azimuthal phase gradient mϕ must be imposed:

2α�ϕ� � mϕ: (55)

This results in a metasurface made of identical nanoposts, each with an orientation
given by the equation above. Figure 26(c) shows a scanning electron microscope
(SEM) image of a device that converts right- and left-circularly polarized light into
left- and right-circularly polarized light and angular momentum �1 and −1, respec-
tively. Such a metasurface-based device has several advantages with respect to the
equivalent liquid crystal devices in terms of reproducibility, degradation, and accuracy
in encoding the azimuthal phase profile as well as the complexity of the possible de-
signs. These devices are fabricated by means of electron beam lithography followed
by atomic layer deposition (see Ref. [180] for further details on the fabrication
process)

The metasurface approach also allows more exotic conversions with a single device.
In fact, the propagation phase can also be made a of the azimuthal coordinate
Ψ ≡Ψ�ϕ�. With the metasurface design there is then an extra “knob” to adjust to make
more complex transformations. For example, a device can be produced to convert two
circularly polarized Gaussian beams into helical beams of opposite spin momentum
and arbitrary values of OAM. For instance, Fig. 27(a) shows the SEM micrograph of
part of a device that converts left-circularly polarized light into a right-circularly po-
larized helical beam with OAM 3, while it converts right-circularly polarized light into
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a left-circularly polarized helical beam with OAM 6. In this case, since both the PB
phase and the propagation phase have to change in the transverse plane, the nanoposts
are not just differently oriented, but they also have different widths and lengths. Such
device allows then transforming the spin base into an arbitrary subspace of the total
angular momentum J [93]. For this reason, these recently demonstrated devices are
called J -plates. An example of a transformation allowed by a J -plate designed for
circularly polarized input states is generated when such device is illuminated with
linearly polarized light. In this case in the spin base, the input beam polarization state

Figure 27

(a) SEM image of a J -plate. This dielectric metasurface device is made of different and
differently oriented nanoposts with the same height. This allows to control both the
propagation phase and the geometrical phase to map the spin base into an arbitrary
subspace of the OAM. For instance, as represented on the HOPS, left-circularly po-
larized light is converted into right-circularly polarized light with OAM �3, while
right-circularly polarized light is converted into left-circularly polarized beam with
OAM of �6, shown in (b) and (c). When the input polarization state is not a pure
state, both helical beams are generated. These two beams are in orthogonal polariza-
tion states and do not interfere. However, when they are both projected into the same
polarization state by means of a polarizer, they produce complex interference pictures.
(d) The interference picture obtained from incident horizontal polarization state.
(e) The same as (d) when the incident light is vertically polarized.
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has complex weights that depend on the orientation of the polarization direction
[Eq. (2)]. The output beam is then a complex superposition of two helical beams with
different OAM, as shown in Figs. 27(d) and 27(e).

The design of a J -plate can be further generalized to accept any pair of orthogonal
polarization states as input states, not necessarily the spin base. A J -plate can be de-
signed to work, for instance, with input linear polarization states as well as with two
orthogonal elliptical polarization states. However, to obtain such general mapping,
making both the PB phase and the propagation phase function of the nano-element
position on the surface is not enough. Such degree of conversion needs to also even-
tually change the birefringence of each nano-element [93]. Such condition in fact
means that the wavelets from each of the nano-elements are potentially in different
polarization states. Considering that each nanopost has subwavelength transverse di-
mensions, i.e., millions of them are illuminated by the incident beam simultaneously, a
J -plate allows to generate complex polarization patterns in the output beam, i.e., com-
plex vector beams.

The result of such devices is the ability to access arbitrary HOPS of a more general
form. First, having shown the ability to create arbitrary intense beams with variable
“entanglement,” we need to complete the tool-kit with the classically equivalent de-
tection of such beams.

4.4. Exploiting the Mathematical Similarity
Given the mathematical similarities between quantum entangled states and vector
beams, there has been interest in using classical states of light to model local quantum
entanglement dynamics [104,189,190,191]. This requires some commonality between
the quantum and classical systems in the way they are analyzed to make a fair com-
parison. In the previous section we have identified a QST as the tool of choice for
quantum state reconstruction. Fortunately, the procedure behind a QST of a biphoton
state can be directly applied to vector beams [152,153,192,193] following the same
approach as for the hybrid entangled states. This is because of the mathematical equiv-
alence of the two functions. The only adaptation is in terms of the projective mea-
surements required: now in series on one classical beam rather than on two photons.
So let us go through the procedure of the tomographic measurement of the state of a
vector beam. Recall the expression of a vector beam:

jψi � cos�θ∕2�jlijRi � exp�iφ� sin�θ∕2�j−lijLi: (56)

We have shown previously that the above state can be described as a point on the
surface of a sphere. We have demonstrated that the sphere is constructed from the
tensor product of the eigenstates of the individual subsystems. Here, the two systems
correspond to degrees of freedom of a classical beam; these are hybrid states of OAM
and polarization. Previously we expressed the density matrix of a two-photon hybrid
state as

ρ �
�
1

2

X3
m�0

ρmσm

�orbit
⊗
�
1

2

X3
n�0

ρnσn

�spin
� 1

4

X3
m, n�0

ρmn σorbitm ⊗ σspinn , (57)

and now we see that this must work for our vector beam, too, except that we have two
degrees of freedom rather than two photons. Similar to the biphoton case, one can
place the vector beam on the surface of one of two distinct spheres, known as
HOPS [123,125,194]. The states on the poles are separable eigenstates of OAM
and polarization and can be of the form

104 Vol. 11, No. 1 / March 2019 / Advances in Optics and Photonics Tutorial



jS1i � jlijRi,
jS2i � jlijLi,
jS3i � j−lijRi,
jS4i � j−lijLi,

spanning a four-dimensional space. The states on the equator are of particular interest,
as they correspond to maximally entangled vector beams, otherwise known as the
cylindrical vector vortex beams, of which four common examples are the fiber modes:

jTMi � 1ffiffiffi
2

p �jlijRi � j−lijLi�,

jTEi � −iffiffiffi
2

p �jlijRi − j−lijLi�,

jHEoi �
1ffiffiffi
2

p �jlijLi � j−lijRi�,

jHEei �
i ffiffiffi
2

p �jlijLi − j−lijRi�:
These spatial modes have been used in various applications, such as quantum met-
rology and communication [89,103,104,138,195–200].

The projective measurements necessary for a QST of the classical vector beam are
the same as those of the biphoton case, with the exception that one set of eigenstates
corresponds to polarization and the other to the spatial mode, as depicted in
Figs. 28(a) and 28(b). This is the same approach as was explained earlier with

Figure 28

(a) (b)

(c) (d)

Graphical representation of the tomographic projections onto both eigenstates of the
OAM and polarization Pauli matrices for (a) a maximally non-separable vector mode
and (b) a left-circularly polarized OAM mode with l � 1 (scalar mode). (c) and
(d) show the reconstructed density matrices for the classical vector and scalar modes
in (a) and (b), respectively.
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the aid of Fig. 15. Rather than two photons, A and B, we replace “photons” with
“degrees of freedom.” Then the measurement of the hybrid quantum state and the
classically entangled vector beam are identical. Let us return to the usual entangle-
ment case, say biphotons entangled in OAM: we have one degree of freedom and
two photons. The QST is then based on projections in one degree of freedom on each
of the two photons, following Fig. 15. In the classically entangled case we have two
measurements on one intense beam of light. In the former, the measurements are in
general non-local, while in the latter they are local. The measurements again follow
the rules of Fig. 15.

Consider the outcome of this process, shown in Fig. 28(a). The set of measurements
from the eigenvalues of the identity operator σ0 ⊗ σ0 are shown to be enclosed by one
of the red squares; this is a consequence of the completeness of projectors that ensure
conservation of probabilities. From these measurements, one computes the density
matrix, whose real part is shown in Fig. 28(c).

In the context of QST, the joint measurements hλmi λnj jΩjλmi λnj i on the subsystems
A and B translate into joint measurement of spatial modes shown on the OAM
Bloch sphere and polarization states shown on the Poincaré sphere. These mea-
surements are graphically depicted in Fig. 28(a) for a vector mode with
l1 � −l2 � 1, α � 1∕2, and φ � 0 in Eq. (51). Similarly, Fig. 28(b) shows
graphically the outcomes of the 36 measurements for a scalar beam with
l2 � −1, α � 0, and φ � 0. One then computes the expectation values Ωmn

and obtains the density matrices shown in Figs. 28(c) and 28(d). Note that
the reconstructed density matrices in Figs. 28(c) and 28(d) using intense laser
beams are identical to those corresponding to the two-photon hybrid quantum
states shown earlier in Fig. 19. It is owing to this resemblance to quantum en-
tanglement that vector beams are coined nonquantum entangled states. With re-
gards to a QST, nonquantum entangled states provide useful insights in the
measurement procedure for the expectation values of the density matrix without
having to work with single photons.

4.5. Measurement in a Classical QST
AQST requires the experimentalist to perform a series of tomographic measurements.
We have shown in the quantum cases of single and bi-qubit states that these measure-
ments can be realized using polarization optics or holographic filters. When transfer-
ring the principles of QST from the quantum to the classical world and applying them
to vector modes, we have shown that the tomographic measurements now required
projections on both space and polarization degrees of freedom [94,201]. It thus is
interesting to examine how these are practically performed in the laboratory.
Let us start with polarization projections.

Recall that measurements of the Pauli matrices σi in the polarization basis require
projections on various states on the Poincaré sphere. Naturally, one might ask
what optical elements are required to perform such projections. Taking advantage
of linear optics, one can turn the question around and ask: how can one generate
an arbitrary state on the Poincaré sphere? This is because a linear transformation
M that takes jAi to jBi through MjAi � jBi necessarily takes jBi back to jAi
by simply reversing the process. Mathematically, this implies that such a
map is unitary and can therefore be reversed by applying the adjoint transforma-
tion M†:

M†jBi � M†MjAi � jAi, (58)
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given that unitarity implies M†M � 1. Thus, if we know how to linearly map
state jAi to jBi (preparation), reversing the transformation takes us from jBi to
jAi: detection. Here is how this is used in the case of polarization.

First we need a state on the Poincaré sphere. This will be our reference state. Let us
take it to be the horizontally polarized state jHi. Motion on the Poincaré sphere can be
achieved through a series of rotations, as shown in Fig. 2. This is achieved using two
polarizations optics: a quarter-wave plate (R̂λ∕4) and a half-wave plate (R̂λ∕2).
Assuming a 0 angle along the horizontal direction, the matrix representations of these
two optics are

R̂λ∕4�ξ� � exp�−iπ∕4�
�
cos2�ξ� � i sin2�ξ� �1 − i� sin�2ξ�∕2
�1 − i� sin�2ξ�∕2 i cos2�ξ� � sin2�ξ�

�
, (59)

R̂λ∕2�ξ� � exp�−iπ∕2�
�
cos�2ξ� sin�2ξ�
sin�2ξ� − cos�2ξ�

�
: (60)

By using the two waveplates in tandem, one can generate arbitrary states on the
Poincaré sphere, some of which are shown in Table 5. Thus, one can produce arbitrary
states on the surface of the Poincaré sphere using a polarizer to fix the reference (in our
example, horizontally polarized light), and a combination of a quarter- and half-wave
plates. Given that the generation setup is known from Table 5, namely, polarizer–quar-
ter-wave plate–half-wave plate, the setup for the detection is deduced to simply be the
reverse: half-wave plate–quarter-wave plate–polarizer.

We use a similar approach to perform projections on the spatial degree of freedom,
extensively studied using liquid crystal based spin–orbit converters [202–205]. To
manipulate the spatial degree of freedom in our case, we make use of spin–orbit cou-
pling with a geometric phase element in the form of our metasurface, as discussed
earlier [93]. As the name implies, the state produced has coupled spatial and polari-
zation degrees of freedom, coupling that also depends on the initial polarization state.
First, we need to decouple the two degrees of freedom; that means we need to gen-
erate/detect spatial modes independently of their polarization. Given that spin–orbit
coupling changes the polarization state, we can fix a reference before and after the
geometric phase element. Just as in the previous demonstration with polarization, this
can be achieved by using a polarizer.

Next, we select our spatial mode by accounting for the transformation of our geomet-
ric phase element, for example: jlijRi → jl − 2mijLi and jlijLi → jl� 2mijRi,
where m is the topological charge of the plate. Assume that we start with an arbitrarily
polarized Gaussian beam (l � 0). The selection of spatial mode is as described in the
following four steps.

1. Use the polarizer to set your desired reference (our choice in the example is
horizontal):

aj0ijRi � bj0ijLi!polariserj0ijRi � j0ijLi � j0ijHi: (61)

Table 5. Transformation of an Input Horizontally Polarized State on the Surface of the
Poincaré Sphere Using Wave Plates

R̂λ∕4 ξ1 � −π∕4 ξ1 � −π∕4 ξ1 � 0 ξ1 � 0 ξ1 � π∕4 ξ1 � π∕4

R̂λ∕2 ξ2 � 0 ξ2 � 0 ξ2 � 0 ξ2 � π∕4 ξ2 � π∕8 ξ2 � −π∕8
State jRi jLi jHi jV i jDi jAi
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2. Introduce spin–orbit coupling with the J -plate (or equivalent element):

j0ijRi � j0ijLi!J -platej − 2mijLi � j2mijRi: (62)

3. Use polarization rotators to control the coupled space–polarization basis states:

j−2miR̂λ∕2�ξ2�R̂λ∕4�ξ1�jLi � j2miR̂λ∕2�ξ2�R̂λ∕4�ξ1�jRi: (63)

Examples of vector modes produced for different orientations of the half- and
quarter-wave plates are shown in Table 6.

4. Select a particular state with a linear polarizer at the reference orientation (we use
horizontal). In our case, the states selected after the polarizer are as shown in
Table 7.

Exploiting the linearity of our wave plates and the fact that the reference states
(horizontally polarized) at both ends of the transformations remain unchanged, the
detection procedure is exactly as highlighted above, but in reverse. Note that in
the above, we have purposely omitted normalization constants to avoid cluttering
the description.

In the case of the tomographic measurement of a state of classically non-separable
light, projections on the space and polarization degrees of freedom are performed
in tandem using the optics described above. The reverse operations applied to perform
the tomographic projections can be expressed as an inner product measurement be-
tween an input state ψ�r� and a post-selected scalar projection with spatial pattern u�r�
and polarization ŝi. After passing through the various optics, the resulting field is given
by the product ψ�r� · u
�r�ŝ†i . By Fourier transforming the output and probing the
beam on the optical axis (that is, setting the spatial frequency to 0), one can express
each tomographic projection as an inner product measurement between the incident

Table 6. Spin-Orbit States Produced through Polarization Control

R̂λ∕2 R̂λ∕4 State Produced

ξ2 � 0 ξ1 � π∕4 j−2mijHi � j2mijV i
ξ2 � 0 ξ1 � −π∕4 j−2mijV i � j2mijHi
ξ2 � 0 ξ1 � 0 j−2mijLi � j2mijRi
ξ2 � π∕4 ξ1 � 0 j−2mijLi−j2mijRi
ξ2 � π∕8 ξ1 � −π∕4 j−2mijDi−ij2mijAi
ξ2 � −π∕8 ξ1 � −π∕4 j−2mijDi � ij2mijAi

Table 7. Post-Selected Horizontally Polarized State

State before Polarizer State after Polarizer

j−2mijHi�j2mijV i j−2mi
j−2mijV i�j2mijHi j2mi
j−2mijLi�j2mijRi j−2mi�j2mi
j−2mijLi−j2mijRi j−2mi−j2mi
j−2mijDi−ij2mijAi j−2mi−ij2mi
j−2mijDi�ij2mijAi j−2mi�ij2mi
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beam and the post-selected state (see Refs. [130,143,148,206] for an overview of this
approach): ����

Z
dr ψ�r� · u
�r�ŝ†i

����2 � jhu, sijψij2: (64)

4.6. Bell Measurement with Classical Light
One test of “quantumness” is a violation of a Bell’s inequality [207], in optics the
adapted CHSH inequality [163], devised to test for local hidden variables that would
underpin the seemingly counterintuitive predictions of quantum mechanics. One of
the main assertions of quantum mechanics is that correlations between two entangled
particles persist, irrespective of the physical separation between the particles. This
statement is rather profound as it rules out entanglement as an interaction, but rather
embraces Einstein’s description of “spooky action at a distance.” It is to rule out (or
confirm) a theory based on local hidden variables that the Bell parameter, S, places a
bound on local realism. In the case of two-qubit entanglement, S is defined as

S � E�θ1, θ2� − E�θ1, θ 0
2� � E�θ 0

1, θ2� � E�θ 0
1, θ

0
2�, (65)

where θi and θ 0
i are different angle projections and admits an upper bound jSj ≤ 2 for

any classical hidden variable theory. However, quantum entangled states are allowed
to violate this bound, with maximally entangled states reaching a maximum value of
jSj � 2

ffiffiffi
2

p
in two dimensions.

The adapted CHSH inequality was originally devised for quantum states entangled in
polarization, considering a source emitting pairs of entangled photon in opposite di-
rections. To perform the measurement, photon A is passed through a rotating polarizer
with transmission axis at θ1, while photon B is passed through a similar polarizer with
transmission axis at θ2. The photon correlation functions E�θ1, θ2� are given by

E�θ1, θ2� �
I�θ1, θ2� � I�θ⊥1 , θ⊥2 � − I�θ⊥1 , θ2� − I�θ1, θ⊥2 �
I�θ1, θ2� � I�θ⊥1 , θ⊥2 � � I�θ⊥1 , θ2� � I�θ1, θ⊥2 �

, (66)

where θ⊥i � θi � π∕2, and I�θ1, θ2� is the probability of measuring the two photons in
coincidence, when polarizers A and B have their transmission axes at θ1 and θ2, re-
spectively. The violation is indicative of how entangled the state is, as dictated by the
non-separability of the degrees of freedom in which the entanglement is expressed. In
Fig. 29 we show the result of such a measurement on biphotons entangled in OAM.

An analogous measurement can be performed on the non-separable vector beams.
Here, I�θ1, θ2� does not represent a probability of coincidence measurements, but
rather intensity measurements on the classical beam. Recall the analogy between
the Poincaré and Bloch spheres. A vector beam is a hybrid state of polarization
and OAM. By mapping polarization states on the Poincaré sphere to OAM states
on the Bloch sphere, one deduces the classical analogy of I�θ1, θ2�; namely, it is
the joint probability of projecting the vector mode onto a linear polarization state
on the equator of the Poincaré sphere, jθ1i, parameterized as follows: jθ1i �
�jRi � exp�−2iθ1�jLi�∕

ffiffiffi
2

p
. The angle θ2 can be viewed as describing a state jθ2i

on the equator of the Bloch sphere, such that jθ2i � �jli � exp�2iθ2�j − li�∕
ffiffiffi
2

p
.

For an arbitrary vector vortex mode described by Eq. (56), one then obtains

I�θ1, θ2� � jhθ1, θ2jΨij2 �
1� sin θ cos�2θ1 − 2θ2 � ϕ�

4
: (67)
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From Eqs. (65) and (66), one can show that the Bell parameter reaches a maximum
values of 2

ffiffiffi
2

p
for θ1 � 0, θ2 � π∕8 and θ0i � θi � π∕4. Theoretical simulations of

I�θ1, θ2� for our “classically entangled” vector beams are shown in Fig. 30. This
works because we are measuring the non-separability of the state, which is not an
intrinsically quantum property.

What we have shown in this and the previous sections is that there is no difference
between the classical non-separable state and a quantum entangled state insofar as a
QST or Bell violation is concerned, so long as we replace the concept of two photons
with two degrees of freedom. This means that all biphoton qubit QSTs can be dem-
onstrated pedagogically with vector beams, the core message of this tutorial. We will
now demonstrate how to actually do this in the laboratory in the next section.

4.7. Experimental Demonstration
In this section we wish to set up an experiment and perform the required measure-
ments to demonstrate the theory we have covered so far. Importantly, we wish to do it
on purely classical light. We wish to proceed as if we had two photons entangled in
some degree of freedom, but rather than a quantum experiment we will perform the
tests with a much simpler classical experiment. Both quantum-state tomographic mea-
surements and the CHSH Bell-like inequality measurements can be achieved with the
experimental configuration detailed in Fig. 31, dividing the process into two core
parts: the generation of the non-separable classical states and projection of these states
into the proper bases for QST and for violation of a Bell-type inequality. We wish to
compute the density matrix, degree of entanglement, fidelity, and the S parameter.
Further, we wish to control the mode at the generation step to illustrate that the
entanglement can be varied very easily, as well as changed from one subspace to
another with simple optics. Here we will use the term entanglement, whereas it should

Figure 29

Bell measurement with spatially separated photon pairs generated from a spontaneous
parametric downconversion source. Local measurements were performed using spatial
analyzers that project each photon onto superposition states defined on the equator of
the Bloch sphere. The projections were mapped onto the states �jli � exp�−2iθ1�j −
li�∕ ffiffiffi

2
p

and �jli � exp�2iθ2�j−li�∕
ffiffiffi
2

p
. Subsequently, the signals of the projected

photons were measured in coincidence with an amplitude proportional to I�θ1, θ2�.
The high visibility of the amplitude variation is indicative of non-local interactions
between the spatially separated photons [208].
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now be understood that we are referring to non-separability of the vector state, a local
entanglement, as a proxy for what one would see with true quantum entanglement
between two photons.

In the generation step we need to prepare vector beams of the form given by Eq. (51).
Wewill control the parameters to control the degree of non-separability, moving freely
around the HOPS. Moreover, we will switch from one HOPS to another by use of
geometric phase optics, as explained earlier. The essential task is that the outcome
is some desired state on a HOPS that can then be analyzed.

In our example setup we used a green laser (λ � 532 nm, Verdi G5, Coherent) that
was directed to the setup through the fiber and collimated with a collimation package
(F220 HPC-532, Thorlabs), yielding a Gaussian beam (l � 0) of radius 1.05 mm. A
demagnification of the beam radius is needed to keep the beam within the dimensions
of the geometric optic, J 1. The new beam radius of 175 μm was obtained with a tele-
scope formed by lenses L1 (f � 300 mm) and L2 (f � 300 mm). The output was then
vertically polarized with P0. Waveplates HWP0 and QWP0 allowed manipulation of
the polarization state incident on J 1, generating the desired state on the HOPS.

The HOPS states were generated by using a nano-structured dielectric spin-to-orbital
angular momentum converter of radius 250 μm and designed for green light. This
optical device, J 1, correlates the OAM of the vortex beam with the polarization of
the incoming light, being able to flip the sign of the OAM charge contribution by
illuminating the device with a particular circular polarization state (see section on
spin–orbit coupling). The devices used in our tests performed the transformations

j0ijRi ⇒ j−1ijLi,
j0ijLi ⇒ j�1ijRi: (68)

That is to say, the handedness of the incoming circularly polarized light induces
a handedness on the topological charge l in the vortex beam at the output. For example,
incident with a superposition of circular polarization states results in the generation of

Figure 30

Simulation of Bell measurements on an input vector vortex beam. The angles θ1 and
θ2 parameterize the states used to compute the projection. These are polarization
and OAM superposition states on the equator of the Poincaré and Bloch spheres,
�jRi � exp�−2iθ1�jLi�∕

ffiffiffi
2

p
and �jli � exp�2iθ2�j−li�∕

ffiffiffi
2

p
.
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vector modes as given by Eq. (56) with θ � π
2
and ϕ � 0. The degree of non-separabil-

ity may consequently be made to vary from purely scalar to maximally non-separable. It
follows that generation of the HOPS states may be accomplished simply by manipu-
lating the circular polarization weightings of the beam being directed through the geo-
metric phase plate. For example, in the experiment, the laser beam polarization was set
to horizontal, using P0, allowing full control of the polarization being passed to the
phase plate by manipulation of waveplates before J 1, as shown in the generation
step of Fig. 31(a). Accordingly, for the generation of a scalar state, QWP0 placed at
45° resulted in circularly polarized Gaussian input, which was then converted to a single
OAM beam with opposite circular polarization. In the case of generating a classically
entangled state, adjusting the angle of the HWP0 (with QWP0 removed) allowed
one to tailor the phase difference between the circular polarization superposition com-
prising the linear states chosen. This circular-polarization superposition thus results
in the generation of an OAM superposition once passed through J 1.

For state projection, we performed a QST and Bell measurement as described earlier.
The 36 configurations of the optics required for an over-complete tomographic
measurement of the state are listed in Fig. 32. The capital letters R, L, H, V, D, and
A refer to right-circular, left-circular, horizontal, vertical, diagonal, and anti-diagonal

Figure 31

Experimental setup scheme: (a) state generation and (b) automated state projection.
LS, laser source (532 nm fiber-coupled light from Verdi G5, Coherent); Li, Fourier
lenses; P0,1&2, polarizers; HWP0,1&2, half-waveplates; QWP0,1&2, quarter-waveplates;
CCD, Chameleon3 CCD camera (Point Grey, FLIR). The waveplates HWP1&2

and QWP1&2 are mounted on roto-flip mounts. The lenses L1 (f � 300 mm) and
L2 (f � 50 mm) demagnify the laser beam to match the size of J 1, L3&4

(f � 300 mm) relay the plane of J 1 onto J 2, L5 (f � 150 mm) Fourier transforms
the J 2 plane to spatially project into the Gaussian mode (l � 0) or, replacing it
by L6&7 (f � 75 mm), the plane of J 2 is relayed onto the CCD for alignment pur-
poses. Polarizers P1&2 are polarizing beam splitters, providing extra output from port
orthogonal to the optical axis for convenience during alignment.
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polarizations, respectively. In our experimental realization, the polarization states and
OAM states shown in Fig. 32 are related to the angular positions of optical compo-
nents QWP1, QWP1 and HWP2, QWP2, as shown in Fig. 33.

In our experiment we used 3D printed and home-automated optics to make the entire
experiment inexpensive and DIY (see the section to follow for the resources on how to
do this). First, the combination of waveplatesQWP1 andHWP1 (both automated), and
the polarizer P1 is used to project only the polarization degree of freedom from the
input state without affecting the OAM. Accordingly, one is able to select each polari-
zation state shown alongside the rows in Fig. 28(b) just by clicking a button. For
example, consider the first row of Fig. 28(b), which corresponds to the first row
of Fig. 32. Here the selection of jRi is achieved by placing these waveplates at
the angles specified by R1. jRi is then converted to horizontal polarization, resulting
in the jRi component of the generated beam being isolated by P1 and carrying the
unaffected OAM information through.

Projection of the chosen polarization state onto the OAM states illustrated alongside
the columns of Fig. 28(b) was then obtained through the use of a second geometric
phase optic, J 2. As the incoming polarization controls the OAM states generated
[see Eq. (68)], reversing the process can result in a projective measurement.

Figure 32

Thirty-six angular arrangements of the polarization optics. The subscript-1 and sub-
script-2 terms indicate the polarization states and the OAM states created with the first
and second pairs of QWPs and HWPs, respectively.

Figure 33

In our experimental realization, the indicated angular positions in radians of QWP1,
QWP1 and QWP2, HWP2 allow to generate the desired polarization states. The
subscript-1 and subscript-2 terms indicate the polarization states and the OAM states
created with the first and second pairs of QWPs and HWPs, respectively.
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Specifically, by transforming the polarization state after P1 with the automated rota-
tion of HWP2 and QWP2, the OAM mode experienced by the polarization state tra-
versing the second geometric phase optic may also be altered as governed by the
selection rules in Eq. (68). With only J 2, however, the mode experienced is vectoral
in nature and, thus, by placing P2 afterward, the correct projective OAM mode
superposition may be construed as seen by the spatial modes in the HOPS.
Capturing the outcome with the CCD camera in the Fourier plane after L5

(f � 150 mm) and measuring the on-axis intensity then allows the weighting for each
projection to be measured according to the rotational angles listed in Fig. 32.

For example, if we consider a scalar mode at the input of our automated state pro-
jection section, such as jl � −1ijLi, we will have a horizontally polarized state
jl � −1ijHi, with the OAM contribution still intact after P1, independently of
the chosen polarization projection. This state is transformed by HWP2 and QWP2
with the angles at the configurations described as V 2, converting it into vertical polari-
zation 1ffiffi

2
p jl � −1ifjRi − jLig. It is then trivial to see that, by directing jV i through J 2

and P2, the OAM information carried by the initial jRi subsequently experiences
OAM transformation (jl � −1i → jl � 0i), following the selection rules of
Eq. (68), retaining only the Gaussian mode contribution after spatially filtering the
resulting intensity profile at the Fourier plane.

Alignment of the system was simplified by imaging J 1 onto J 2. Replacement of L5

with L6 and L7 allowed the geometric phase optics to be further imaged onto the CCD
such that the positions may be adjusted to achieve a centered superposition of the
singularities. Figures 34–37 show the experimental data of example QST measure-
ments and the resulting density matrices when choosing various input states on
the HOPS. In the QST data, each row corresponds to a particular polarization

Figure 34

Quantum-state tomography measurements (a) theory and (b) experiment, with result-
ing density matrices in (c) and (d), respectively, for a scalar mode of the form
jψi0 � jl � 1ijRi.
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Figure 35

Quantum-state tomography measurements (a) theory and (b) experiment, with result-
ing density matrices in (c) and (d), respectively, for a horizontally polarized mode of
the form jψi0 � �jl � 1i � jl � −1i�jHi.

Figure 36

Quantum-state tomography (a) theory and (b) experiment, with resulting density
matrices in (c) and (d), respectively, for a vector mode of the form
jψi0 � 1ffiffi

2
p �jl � 1ijRi � jl � −1ijLi�.
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projection, and each column to the OAM degree of freedom projection. For example,
the results shown in Figs. 34 and 35 are the reconstructed graphical representations of
tomographic projections for a separable scalar mode [Eq. (69)], while the results
shown in Figs. 36 and 37 are the reconstructed graphical representation of the tomo-
graphic projections for a maximally non-separable vector mode [Eq. (70)], both in
agreement with the theoretical simulation. The states are given below:

jψiscalar � jl � −1ijLi, (69)

jψivector �
1ffiffiffi
2

p �jl � 1ijRi � jl � −1ijLi�: (70)

The CHSH inequality measurement for our hybrid input state requires selecting two
polarization projections, θ1 and θ01 of Eq. (65), and two OAM projections, θ2 and θ02,
also considering all their orthogonal angle combinations as detailed in Eq. (66). The
first degree of freedom that is projected is the spin, and it is performed by fixingQWP1
and rotating HWP1, selecting the proper polarization angle, i.e., θ1 of Eq. (66). Then,
the OAM degree of freedom is projected, but, in this case, also by using polarization
control elements (fixingQWP2 and rotatingHWP2), and decoding its spatial degree of
freedom with J 2. In this case, the OAM state is correlated with the previously
selected polarization state, being able to project it after the second polarizer (P2),
by measuring also the Gaussian mode (l � 0) intensity with a CCD camera in
the Fourier plane.

The relation between the projection angles (θ) from Eq. (65) is not arbitrary, and must
always fulfill the following condition:

θ ≡ θ2 − θ1 � θ02 � θ01 � −θ2 − θ01, (71)

Figure 37

Quantum-state tomography (a) theory and (b) experiment, with resulting density
matrices in (c) and (d), respectively, for a vector mode jψi0 � 1ffiffi

2
p �jl � 1ijRi�

ijl � −1ijLi�.
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giving a maximum value of S � 2
ffiffiffi
2

p
when choosing θ � 22.5° and having a max-

imally non-separable state, but the angle θ at which to find the maximum of S in-
creases if the degree of non-separability of the input state decreases [150]. The
angles usually chosen to violate the CHSH inequality are θ1 � 0°, θ01 � −45°,
θ2 � 22.5°, and θ02 � 67.5°. The high number of projections when considering the
orthogonal angles makes the measurement tedious to perform. We show all the curves
containing all the necessary values to extract the S parameter value.

As can be seen in Fig. 38, the results of the projection curves used to extract the S
parameter of Eq. (65) mimic closely the simulated curves. The normalized intensity is
plotted as a function of OAM projection θ2, having different angles of spin projections
θ1 under consideration. Experimentally, we performed a full -tomographic measure-
ment for two vector modes input states (i.e., “classically entangled”), as shown in
Figs. 38(a) and 38(b), and two scalar modes (i.e., “non-entangled”) input states,
as shown in Figs. 38(c) and 38(d). As expected, for the two classically entangled states
we computed S � 2.60� 0.08 and S � 2.57� 0.09, violating the CHSH inequality
by more than 7 and 6 standard deviations, respectively. In the case of the two non-
entangled input scalar modes, we computed S � 1.42 and S � 0.10, respectively,
leaving the CHSH inequality unscathed.

In the case of classical light, the experimental error associated to the measured inten-
sity values is not subject to shot noise, as the system operates with a very large number
of photons. One would therefore expect a very small standard deviation in the esti-
mated Bell parameters. This was indeed the case in our implementation. However, the
S parameter reported above is shown to beat the CHSH inequality by only 7 standard
deviations. The reason for this is that we decided to relate the experimental error to the

Figure 38

Experimental Bell measurement curves for (a), (b) two “classically entangled” vector
modes, and (c), (d) two “non-entangled” scalar modes. The solid lines represent the
expected theoretical values, whereas the scattered data points represent the experimen-
tally measured values.
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ability of the roto-flip stages to repeatedly reproduce the full set of angular positions
required for a Bell measurement. Consequently, instead of computing the errors based
on multiple frames acquired for each angular position of the polarization optics, we
allowed instead for only one frame to be acquired at each angular position, repeating
the whole procedure for a number of times. This is why the error associated to our
estimation of the S parameter is still appreciable, as it now depends on the combined
ability of the four roto-flip stages to reproducibly position themselves over multiple
runs of the experiment, instead of depending on the small readout noise of the a CCD
detector operating with a bright light source and hence at an optimal dynamic range (in
the case of our 10 bit CCD camera, the read noise was ≈5 counts, for a full dynamic
range of 4096 counts)

The conclusion from these results is that it is possible to perform a QSTand associated
measurements as if one was operating on a biphoton quantum state. The mathematical
formalism means that the process requires no amendments, while physically the re-
sults are likewise equivalent: we are measuring the non-separability of the state. This
allows the user to perform all tests on intense light beams, a useful approach both for
teaching and for research, e.g., initial tests prior to experimenting on single photons.

Perhaps a comment on the limitations of the approach is necessary. While our classical
approach accurately mimics the quantum world, it does not replace it. There are many
quantum processes for which classical light is not suitable. For example, while the
measurement process and probabilities of a quantum key distribution experiment
can be simulated (say with the backprojection approach as shown earlier), it is clearly
not possible to guarantee the security without true quantum entanglement or true sin-
gle photons. There are many such examples and it is not necessary to dwell on them
all; suffice it to say that what we offer here is an additional resource when performing
quantum experiments rather than a replacement for existing quantum approaches.

In the experimental realization outlined in this section we have used home-built 3D
printed optical components to allow for easy implementation. As the final part of the
tutorial, we now provide the resources for this to be implemented by others.

5. DIY LABORATORY IMPLEMENTATION

State-tomography experiments can be a tedious experimental task, involving the
painstaking collection of several measurements in order to reconstruct the density
matrix of an input state. It may be possible to choose a suitable set of states to con-
veniently automate these experiments, for instance by using a digital SLM to display
computer-generated holograms of an OAM basis. However, SLMs may not be avail-
able or may not be suited to the experiment at hand. The alternative is to revert to
polarization optics and the meticulous tuning of the angular positions of half-wave-
plates and quarter-waveplates. In this case, the mere process of manually adjusting
each component for each iteration of the experiment becomes an uncomfortable hin-
drance, which, unless plenty of time is at hand, either prevents the busy experimen-
talist from obtaining the best set of data, or it makes it hard to appreciate and enjoy the
physics, which ends up being diluted over hours and hours of repetitive procedure.

In this section we describe how to produce with a 3D printer inexpensive electro-
mechanical roto-flip stages that allow automation of the angular positioning of polari-
zation optics, and to fully automate the state projection measurements required to
reconstruct the density matrix of an unknown input state.

5.1. 3D-Printed Roto-Flip Stages
An obvious advantage of automating an experiment is the resulting speed and reli-
ability of the results, as well as the ability to perform a larger number of incremental
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fine adjustments. To fully automate our polarization-based state-projection measure-
ment, four motorized roto-flip stages were designed, 3D printed, and linked to an
automated data-acquisition program written in LabVIEW (available for download,
together with the Arduino code and data processing LabVIEW code (Code 1, Ref.
[126]; Code 2, Ref. [126]; and Code 3, Ref. [126]), as well as the 3D schematics
at Ref. [126]). As the name suggests, each roto-flip stage can both rotate an optical
component along the transverse plane, and also act as a flip mount, pivoting 90° away
from the beam path. The rotary motion was achieved with a combination of 3D-
printed spur gears with a 4∶1 gear ratio and a stepper motor, obtaining a maximum
angular resolution of 0.17°. The pivoting motion was achieved by using a servo. The
combination of four motorized roto-flip stages allowed to quickly automate the posi-
tioning of two HWPs and two QWPs over 36 angular configurations, performing a full
state reconstruction in approximately 2 min, as shown in the video demonstration of
our automated tomography system in action, accessible from Ref. [126].

Excellent angular resolution as well as a sturdy and compact design were the main
mechanical requirements for the rapid-prototyped angular stages. These requirements
can be easily fulfilled by plastic 3D-printed parts and cheap electronics components
[209–213]. We used an Ultimaker 2+ 3D printer, loaded with polylactic acid (PLA)
filament to print the motion components. The 3D models were designed with
Autodesk Inventor. Each stage employed an Arduino Nano microcontroller, to actuate

Figure 39

Detailed description of the 3D-printed roto-flip stage. (a) Front and back views;
(b) 3D-printed parts assembly. The numbers in the figure indicate the following:
(1) roto-flip stage support board; (2) parallax standard servo; (3) servo connection
board; (4) 28BYJ-48 stepper motor; (5) back-support board for stepper with ball-bear-
ing slot; (6) small spur gear with 26 teeth; (7) ball bearing (17 mm inside diameter,
26 mm outside diameter, 5 mm race width); (8) big spur gear with 104 teeth and ball-
bearing slot; (9) clip for SM1 optical components. The various 3D printed parts are
assembled by both pressure fitting and by using commonM4 screws and nuts. (4), (5),
(6), (7), and (8) can be pressure fitted. The screw holes in (1) and (5) were threaded
with a tapping tool to complete the assembly.
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the driver (ULN200xx chip) of the stepper motor (28BYJ-48) and operate the servo
(Parallax Standard Servo), as well as handling communication with the LabVIEW
automation program via the serial port. A detailed representation of the motorized
roto-flip mounts is shown in Fig. 39, and the electronics component description is
in Fig. 40.

5.2. Video Demonstration of the Automated State-Tomography System in Action
A video demonstration of our automated tomography system in action is provided.
Both the projected states, as acquired by the CCD camera, and the angular positions
of each roto-flip stage are highlighted, as schematically represented by a few extracted
frames in Fig. 41. In the video, the system can be seen iterating over the 36 angular
positions of the polarization optics (two pairs of quarter- and half-waveplates), which
are required to identify an unknown input state. We hope that this video demonstration
may facilitate the assimilation of the concepts covered in this tutorial and help the
reader appreciate what, from a practical point of view, the tomographic measurement
of a state involves.

Figure 40

Electronics schematic diagram. The numbers in the figure indicate the following:
(1) 28BYJ-48 stepper motor; (2) 1 A, 12 V power supply socket; (3) ULN200xx chip
stepper-driver board; (4) Arduino Nano microcontroller; (5) parallax standard servo.

Figure 41

Video demonstration of the automated state-tomography system. (a)–(c) Three angu-
lar arrangements of the polarization optics as performed during a tomographic mea-
surement are shown. In the video (see Visualization 1 [126]), we show our automated
tomography system in action: both the projected states, as acquired by the CCD cam-
era, and the extracted intensities are displayed, as the system iterates through the 36
programmed angular positions of the polarization optics.
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6. CONCLUSION AND OUTLOOK

In this tutorial we have outlined the basic concepts of a quantum state tomography, an
essential tool in any quantum laboratory for inferring information on quantum states.
We have outlined the ideas using polarization and spatial modes of light as bases, as
well as hybrid states of the two. Importantly, we have emphasized that a QST may be
simulated with bright classical light in two ways: first, using scalar light in a back-
projection approach, in which one detector in the quantum setup is replaced with an
intensity laser beam. This allows the entire QST to be mimicked very accurately.
Second, we have shown that a QST may be performed without any procedural adjust-
ments with vector beams—classically entangled bright laser beams. In this approach,
all the essential features of a QST may be demonstrated, which we believe will be an
invaluable tool in teaching experimental quantum science without the complexity of
handling single photons. We have 3D printed the core components and automated
them with home-built systems, and provide all the necessary detail (designs and code)
for this to be repeated by others. We hope that this will inspire the introduction of
experimental tomographic measurements in undergraduate quantum courses, while
the core of the tutorial will be useful to researchers.
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