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Metasurfaces are a new class of diffractive optical elements with subwavelength elements whose behavior can be
lithographically tailored. By leveraging form birefringence, metasurfaces can serve as multifunctional freespace
polarization optics. Metasurface gratings are novel, to the best of our knowledge, polarimetric components that
integrate multiple polarization analyzers into a single optical element enabling the realization of compact imaging
polarimeters. The promise of metasurfaces as a new polarization building block is contingent on the calibration
of metagrating-based optical systems. A prototype metasurface full Stokes imaging polarimeter is compared to a
benchtop reference instrument using an established linear Stokes test for 670, 532, and 460 nm gratings. We pro-
pose a complementary full Stokes accuracy test and demonstrate it using the 532 nm grating. This work presents
methods and practical considerations involved in producing accurate polarization data from a metasurface-based
Stokes imaging polarimeter and informs their use in polarimetric systems more generally. © 2023 Optica Publishing

Group
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1. INTRODUCTION

Polarization is a fundamental property of electromagnetic
radiation that is key to the study of optics and science more gen-
erally. Consequently, instruments designed to measure light’s
polarization state—known as polarimeters—are important
tools for a wide spate of technological and scientific problems
[1,2] in areas as diverse as remote sensing of clouds and aerosols
[3,4], characterization of solar magnetic fields [5], liquid crystal
panel quality control [6], 3D image reconstruction [7], and as a
possible future means of biometric authentication in consumer
electronics [8] (to name only a few).

Metasurfaces are a new class of freespace optics that manipu-
late light using subwavelength-spaced, single layer diffractive
optical elements [9,10]. The individual subwavelength struc-
tures comprising a metasurface can be designed with form or
shape birefringence, that is, birefringence resulting from the
anisotropic shape of otherwise isotropic materials rather than an
effect of crystalline structure. When suitably designed, metasur-
faces can realize a variety of multi-functional polarization optics
[11]. More specifically, polarization metasurface gratings—also
referred to as polarization metagratings—can direct polarized
light into diffraction orders that act as polarization analyzers
for a selected set of polarization states [12,13]. In this way, a

metasurface grating can be used as a single element polarimetric
component that analyzes incoming polarized light along several
polarization states in parallel, yielding sufficient information
to determine its polarization state (in the form of the full Stokes
vector). As polarimetric components, metasurfaces offer several
design advantages: reduced system complexity/fewer optical
elements, the ability to realize analysis along an arbitrarily
selected set of polarization states, and the potential for increased
efficiency over absorptive polarization elements.

While metasurfaces have been extensively demonstrated as
polarimetric components and even in working polarization
cameras for imagery of real-world scenes, relatively little con-
sideration has been given to the accuracy (beyond a qualitative
sense of correspondence) with which polarization can be mea-
sured using a metasurface polarimeter. In some ways, this is a
more general concern. Despite polarization’s fundamental role
in the description of light, the effort dedicated to polarimetry
pales in comparison to other types of optical metrology, espe-
cially spectroscopy. Fledgling standardization efforts for this
topic pertain to instrument- and application-specific needs,
such as in fiber-optic telecommunications [14], machine vision
[15], and polarized microscopy [16]. Consequently, there are at
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present no universally accepted standards (NIST, industrial, or
otherwise) pertaining to polarimetric accuracy or precision.

Quantitative polarimetry is complicated by the vectorial,
higher-dimensional nature of polarization itself. For the myriad
areas where polarization finds application, in each place, there
are vastly different requirements on polarimetric measurement.
It is challenging to define the performance of a given polarimeter
with any one readily intuited specification that corresponds
to a practically meaningful interpretation. The standards by
which a polarimeter’s performance should be evaluated are then
contingent upon what conclusions are desired from its data.

Across all application domains in which polarimetry is used,
scientific remote sensing applications tend to harbor the most
quantitative and specific requirements and come closest to this
ideal. One area in particular that has influenced the present
work is polarimetric remote sensing of clouds and aerosols. In
atmospheric science, space- and aircraft-based remotely sensed
imagery of small particles is obtained at multiple viewing angles
and wavelengths. These images are used in conjunction with
forward radiative transfer modeling to constrain useful proper-
ties of small particles in the atmosphere such as aerosol optical
depth, refractive index, and type. These and other crucial vari-
ables enter into larger radiative forcing models for the prediction
of global climate change. Polarization can better constrain
these retrievals, and polarimetry is now an established tech-
nique in atmospheric remote sensing with several instruments
launched into orbit since the 1990s [4], such as Polarization
and Directionality of the Earth’s Reflectances (POLDER) (I, II,
and III) [17,18], Hyper-Angular Rainbow Polarimeter (HARP)
CubeSat [19–21], and the upcoming Multi-Angle Imager for
Aerosols (MAIA) [22–24], Multi-viewing, Multi-channel,
Multi-polarisation Imager (3MI) [25], and Spectro-polarimeter
for Planetary Exploration (SPEX) [26,27] missions, alongside
countless airborne instruments—all of them sensing just the
linear part of light’s polarization state. Addressing how exactly
errors in the measured polarization state (both random and sys-
tematic in nature) influence these retrieved parameters and how
much error tolerance is allowed to achieve the data’s end goals
involves performing sensitivity analysis on what is a complex
and highly context-dependent inverse problem. A few works,
however, investigated this explicitly [28,29], leading to an
often-cited figure that the degree of linear polarization (DOLP)
determined by a polarimeter should be accurate to within 0.5%
to serve the needs of multi-angular atmospheric polarimetry.
This figure, while unquestionably an incomplete metric by
itself, has become the de facto standard in this area, as enshrined
in NASA’s Aerosols & Clouds-Convection-Precipitation Study
(A&CCP) and its Science & Applications Traceability Matrix
in response to the most recent Decadal Survey in 2017, which
broadly governs instrument objectives in this area. Alongside
this simply stated metric, the atmospheric polarimetry commu-
nity has settled on an accompanying test experiment, involving
the preparation of partially linearly polarized light with a
tilted glass plate, referenced to a rotating-polarizer polarimeter
[23,27,30]—a semi-standardized protocol used in this work.

In characterizing the full polarization state of light, that is, all
four Stokes components, no similarly clear-cut, widely accepted
metric exists. Light’s full polarization state (including circular

polarization) has seen use in a number of remote sensing applica-
tions, especially in astronomy. For instance, it has been observed
that planetary atmospheres natively exhibit a degree of circular
polarization (DOCP) (due to multiple scattering) at the level
of 10−7 [31]. In the field of solar polarimetry, full Stokes mea-
surements are widely used to study the sun’s magnetic fields [5].
Quantitative, full Stokes error analyses tend to involve rigorous
component-by-component polarimetric calibration in a way
that can be expressed only in full matrix form (see, e.g., [32]).

If metasurfaces are to serve a role in future polarimetric
instruments, then efforts must be undertaken to demonstrate
that a well-calibrated metasurface-based polarimeter can per-
form polarimetry with some baseline of accuracy. Therefore, in
the subsections that follow, we perform a quantitative evaluation
of a metasurface polarimeter with respect to reference measure-
ments. We present two accuracy studies: the first, concerning
linear-only polarimetry, uses the tilted plate test described
above; the second, characterizing the accuracy with which circu-
lar polarization may be determined, makes use of light produced
by a rotating retarder in a method we describe below. Together,
these tests reveal the accuracy with which a metasurface-based
polarimeter can determine light’s polarization state. This work
also illuminates a number of important practical considerations
surrounding polarimetric calibration of metasurface-based
instruments and suitable reference measurements.

We begin in Section 2 by defining some polarization con-
ventions used throughout this work. In Section 3, we describe
the metasurface-based imaging polarimeters under study here,
including certain constraints that govern its design. In Section 4,
we describe three metasurface diffraction grating samples for
operation in three visible wavelength bands that are studied in
this work. In Section 5, we describe two calibration schemes
for metagrating-based cameras for linear-only and full Stokes
determination. In Section 6, we describe two studies by which
the accuracy of our considered metasurface-based imaging
polarimeter can be ascertained (again, both linear-only and full
Stokes). Finally, we conclude in Section 7, and provide extensive
explanations of more detailed aspects of our measurements in
Appendices A–F and Supplement 1.

2. POLARIZATION CONVENTIONS

This section briefly introduces the polarimetric quantities dis-
cussed in this work and establishes notation conventions. This
work follows the notation convention from [33].

Mueller calculus is a method of describing fully polarized,
partially polarized, and depolarized light and associated light–
matter interactions using Mueller matrix and Stokes vectors.
The 4× 4 Mueller matrix M(λ, k̂i , k̂o , η̂) describes the polari-
metric interaction between a subject and the illuminating light
and is dependent on wavelength λ, incident propagation vector
k̂i , outgoing propagation vector k̂o , and surface normal η̂.
Matrix multiplication with a Stokes vector is used to describe a
light–matter interaction in scattering, transmitting, or reflecting
geometries.

The Stokes vector

S=

 S0

S1

S2

S3

=
 Total Intensity

Horizontal Linear−Vertical Linear
45◦ Linear−135◦ Linear

Right Circular− Left Circular

 (1)
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represents the intensity [W/m2] and polarization state of inci-
dent or exitant light. By default, Stokes vectors are column
vectors. The Stokes parameters must always satisfy the equation

S0 ≥

√
S2

1 + S2
1 + S2

3 . The degree of polarization (DOP) of a

Stokes vector,

DOP(S)=

√
S2

1 + S2
1 + S2

3

S0
, (2)

is a measure of how much of the light under observation is polar-
ized. A DOP of one represents fully polarized light, and a DOP
of zero represents fully unpolarized light.

This work uses DOLP

DOLP(S)=

√
S2

1 + S2
2

S0
(3)

and angle of linear polarization (AOLP)

AOLP(S)=
1

2
arctan

(
S2

S1

)
(4)

to evaluate the linear polarimetric accuracy of metagratings.
DOCP

DOCP= S3/S0 (5)

is used as a complementary polarization parameter in conjunc-
tion with DOLP and AOLP to express the full Stokes accuracy.
DOLP, AOLP, and DOCP are another way to cast the S1, S2,
and S3 Stokes parameters into geometrically intuitive scalar
representations.

3. POLARIZATION IMAGING WITH A
METASURFACE GRATING–BASIC TECHNIQUE
AND DEFINITIONS

The metasurface devices considered here comprise arrays of
dielectric pillar-like elements with two axes of mirror symmetry.
Each pillar of the array alone can be understood to act in a
manner akin to a birefringent wave plate [34,35] whose retar-
dance and overall phase shift can be adjusted by modifying its
dimensions and whose fast axis can be adjusted by a rotation of
the element itself. In this way, a metasurface serves as an optical
element enacting a customizable polarization transformation
(encapsulated by a Jones matrix) at each spatial location; by
engineering the local transformation enacted by the metasurface
at each point, the far field of the device may also be imbued
with customized polarization behavior using design methods
described extensively elsewhere [12,36,37].

Specializing to the case of diffraction gratings (that is, optical
elements in which the pillar-like elements are arranged into peri-
odically repeating unit cells), it is possible to concentrate power
into a finite set of diffraction orders while constraining these
diffraction orders to act as analyzers for an arbitrarily selected
set of polarization states. In other words, using design tech-
niques described extensively in prior work [12], it is possible to
design gratings that divide light among a set of diffraction orders
according to its polarization state, as though each of these orders
were a polarizer for a polarization state specified by the designer.

Fig. 1. Polarization imaging through a metasurface polarization
grating: concept. (a) A metasurface grating can be designed with orders
acting as analyzers for a custom-specified set of polarization states [12];
measuring the power of these diffraction orders provides sufficient
information to characterize light’s full polarization state. (b) Pairing
such a grating with imaging optics permits full Stokes polarization
imaging . If the grating is turned 45◦ so that its orders align with the
sensor axes, four images will be formed that when registered and
inverted using a calibration [Eq. (8)] yield the full Stokes vector over a
field of view (FOV). (c) By designing the grating angle θgrating to equal
this desired FOV, overlap of the polarimetric channels on the sensor
can be avoided [13]. (d) Schematic of the example metasurface-based
polarimetric imaging system of this work. A conventional infinite con-
jugate system consisting of a DC-cooled CMOS sensor (Thorlabs part
no. CC505MU) is paired with a C-mount machine vision objective
( f = 16 mm), similar in spirit to [13]. The metasurface is placed at the
front face of the lens assembly atop a circular light-absorbing Acktar
aperture that assures all light in the system passes through the grating.
(e) Photo of the same.

Such a grating, with photodiodes centered on these diffraction
orders, could itself serve as the sole optical component in a full
Stokes polarimeter suitable for the characterization of, e.g., a
beam of collimated laser light, the situation depicted in Fig. 1(a).

The polarizer-like behavior of each diffraction order n of the
grating is described by its four-element analyzer vector EDn . EDn

for each order specifies several important quantities, namely, the
(relative) efficiency of the order (given by its first element), the
polarization for which the order analyzes (given by a normalized
vector containing the last three elements of EDn , the “state-of-
polarization,” which describes the polarization ellipse), and the
order’s diattenuation [the extent to which the order extinguishes
light orthogonal to its preferred polarization state, given by
DOP( EDn), cf. Eq. (2)]. Figure 1(a) depicts the four innermost
orders of the grating used as polarization state analyzers in this
work. These orders are indexed by their Cartesian coordinates as
n ∈ {(0,−1), (0, 1), (1, 0), (−1, 0)}. Their analyzer vectors
EDn can be grouped into a 4× 4 matrix given as
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W=
[
ED(0,1), ED(1,0), ED(0,−1), ED(−1,0)

]T
, (6)

which has { EDn} as its columns. W is known as the “polarimetric
measurement matrix,” and in practice, it (along with { EDn}) is
determined experimentally by a calibration procedure. Two
calibration procedures for the present work are developed in
Section 5.

If a collimated beam of light, e.g., from a laser, with a polari-
zation state described by the Stokes vector Sinc is incident on the
metasurface grating, it will evoke an intensity In on each order
n. If these are measured and assembled into a vector EI whose
elements match the ordering of the rows of Eq. (6), we can write

EI =WS (7)

or equivalently,

S=W−1 EI . (8)

If the power directed into each diffraction order is measured
and a calibration has been performed, the metasurface grat-
ing can serve as the sole polarization component necessary to
determine an incident beam’s full Stokes vector.

When paired with imaging optics (i.e., a lens), a metasurface
polarization grating can be used to construct an imaging polar-
imeter [Fig. 1(b)]. If we imagine that light from a faraway object
is incident on the grating from a range of angles, four images
corresponding to the four diffraction orders of interest will be
formed, each analyzed with respect to the order’s characteristic
polarization state. These four images can be registered, and
Eq. (8) can, given a pixel-wise calibration of the matrix W across
the field of view (FOV), be applied to the image at each pixel
yielding S at every point (viewing angle) in the photographic
scene.

Several design considerations govern the pairing of the grat-
ing and imaging optics to measure full Stokes polarization
images, considerations that are described in more detail in [13].
The most salient point here is that for the inversion described by
Eq. (8) to remain valid, the images formed by individual orders
should not be allowed to overlap but should still fully use the
available sensor space by just touching. The former constraint
means that when imaging a naturally illuminated scene in which
light can be incident from any viewing angle, the grating must be
preceded by a field stop that limits incident light to a FOV given
by θFOV. The latter constraint implies that, given a desired FOV,
the grating’s first-order deflection angle θg should be selected
to be equal θFOV. This geometrical constraint is illustrated by
Fig. 1(b).

If the metasurface grating has a period of length D, as a conse-
quence of the Bragg condition, its first-order angle θg is given by

θg = arcsin
λ

D
, (9)

where λ is the wavelength of incident light. In other words, the
choice of a desired FOV and operating wavelength constrains
the grating’s period by Eq. (9).

4. DESCRIPTION OF CAMERA UNDER TEST
AND THREE SAMPLES USED

The demonstration polarization imaging system studied here
[sketched in Fig. 1(d) and pictured in Fig. 1(e)] consists of
a metasurface grating placed against the front lens element
of a compound camera objective focused at infinity. The
objective used here is the same as in [13], a C-mount lens hav-
ing f = 16 mm and an aperture of f /1.6 when wide open
(Edmund Optics, part no. 59-870). As in [13], the FOV over
which polarimetry is conducted is equal to θFOV ∼ 6◦. No
field-limiting aperture is required here since the light source in
the experiments that follow can be made distant enough not to
overfill the desired FOV.

In what follows, we seek to demonstrate robust polarimetric
accuracy across the visible spectrum. However, as constructed
here, 2D imaging polarimetry is possible only with the meta-
surface grating within a single narrow wavelength band at a
time. Otherwise, due to the grating angle’s inherent chromatic
dispersion, spatial and polarimetric information for different
wavelengths would mix together in a way that does not per-
mit their disambiguation. (However, using modified designs,
this constraint can be relaxed and metasurface-based systems
for spectropolarimetry can be imagined; see the supplement
to [13]).

Given the chromatic dependence of Eq. (9), the grating
period must vary if a given grating angle is to be maintained
between different wavelength bands. In this work, then, accu-
racy studies are carried out for different wavelengths by use of
different grating samples, effectively creating a different imaging
polarimeter by exchange of the sample for tests at different
wavelengths. Monochromatic illumination is enforced with
bandpass filters throughout the work described in the following
sections.

Three gratings are designed here for narrow bands cen-
tered on λ= 460 nm (“blue”), 532 nm (“green”), and 670 nm
(“red”). With θFOV ∼ 6◦, the grating period D required in each
case is set by Eq. (9). We have D= Nd , with N the number
of metasurface phase-shifting elements comprising one side
of the grating period and d the inter-element separation, each
chosen to realize the correct D. The samples are designed using
the procedure of [12] and consist of TiO2 structures whose
fabrication has been described thoroughly elsewhere [38]. The
design of each grating’s periodically repeating unit cell—both
as a drawing and as a scanning electron micrograph (SEM)—is
shown in Fig. 2 with a uniform 1µm scale bar.

5. CALIBRATION OF A METAGRATING
POLARIZATION CAMERA

The Stokes states analyzed by each diffraction order must be
experimentally determined before the metagrating camera can
be operated as a linear or full Stokes imaging polarimeter. This
section describes two experimental protocols and setups that
can be used for determining either the linear or full Stokes states
analyzed by a given metagrating camera system, thus calibrating
the camera to measure linear or full Stokes vectors of incident
light over a FOV. Images assessing the quality of both the linear
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Fig. 2. Intended designs (top) and scanning electron micrographs
(SEMs, bottom) of the three metasurface polarization gratings studied
in this work. From left to right, these are intended for operation at
670, 550, and 460 nm, respectively. The grating period D varies to
keep a constant deflection angle for each wavelength. Each scale bar
indicates 1 µm length. In this work, each of these gratings is evaluated
using 670± 5 nm, 532± 1.5 nm, and 460± 5 nm illumination,
respectively.

Fig. 3. Calibration setup for linear-only Stokes polarimetry with a
metasurface-based imaging polarimeter [(a) schematic and (b) in-lab
photograph]. The camera stares through a rotatable linear polarizer
into the entrance port of an integrating sphere fed by a wavelength-
selectable LED. The simplicity of this setup eliminates hard to calibrate
polarization artifacts induced by, e.g., refractive imaging optics. In
experimental practice various strategies such as the placement of irises
are undertaken to control stray light in the final image.

Stokes and full Stokes calibrations used in this work are provided
in Section 3.A and 4.B of Supplement 1, respectively.

A. Linear Stokes Calibration

The linear Stokes vector (that is, the first three Stokes parame-
ters) analyzed by each of the first orders is measured by imaging

Fig. 4. Calibration setup for full Stokes measurements.
[(a) schematic and (b) in-lab photograph]. Light from the integrating
sphere passes through a fixed horizontal polarizer and a rotating,
pre-characterized retarder (roughly 1/3 wave), thus producing known
variable polarization states. As in Fig. 3, several practical steps are taken
to control stray light in the final image from the setup itself, including
the insertion of an aperture.

the exit port of an integrating sphere source through a rotating
linear polarizer LP(θ) from θ = 0 to 360◦ [deg] over 50 steps.
Figure 3 depicts the linear-only calibration setup [schematic
in (a), photo in (b)]. The metagrating’s substrate is mounted
into a lens tube with the grating structure facing toward the
illumination source. Behind the metagrating is a 3 mm diameter
circular aperture used to limit the light that ultimately strikes the
detector to only that sorted by the metagrating. The lens tube is
attached to the aforementioned f = 16 mm camera objective
lens that is set to focus at infinity.

The images obtained in this calibration, as well as in all mea-
surements that follow, are corrected for sensor non-uniformities
(see the flat fielding procedure described in Appendix A). The
polarization analyzing first orders are isolated into X × Y
pixel regions of interest (ROIs) about each order and aligned
within a 1/4 pixel accuracy using numerical cross-correlation
(as implemented with phase_cross_correlation() [39] from
scikit-image version 1.7.1 [40]). Appendix B.3 describes an
alignment procedure that was empirically found to maximize
polarimetric accuracy while minimizing polarization artifacts in
the metagrating camera image. Without sub-pixel registration,
translations of the diffraction orders across the sensor that arise
from rotation of various retarders and polarizer will produce a
blurrier image with polarization artifacts.

At each pixel, the set of irradiance images is fit to

I (θ)= a + b cos(θ)+ c sin(θ)+ d cos(2θ)+ e sin(2θ),
(10)

where I (θ) is the measured intensity, θ is the orientation of the
rotating linear polarizer’s transmission axis, a corresponds to
S0, b and c fit to systematic errors that do not originate from
Malus’s law (e.g., effects such as wedges that repeat only after
a full 360◦), and d and e correspond to S1 and S2 of the Stokes
parameters, respectively [30]. The AOLP [Eq. (4)] and DOLP
[Eq. (3)] image for each diffracted first order’s analyzed state

https://doi.org/10.6084/m9.figshare.21950402
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is calculated from these fit values. These states form the polari-
metric measurement matrix WLin, an N × 3 matrix where each
row corresponds to the Stokes parameters {S0, S1, S2} of the
analyzed state by each nth order. In our system, N = 4 for each
diffracted first order: (0,1); (1,0); (0,−1); and (−1, 0). The
final calibration defines a polarimetric measurement matrix
WLin for each pixel (x , y ) in the larger X × Y ROI. In this
work, the ROI is defined over a 400× 400 pixel image. The
reported accuracy values in Section 6.B are calculated from a
smaller circular sub-region within this 400× 400 ROI, which
is illuminated by the integrating sphere source. Polarimetric
accuracy is assessed here using normalized metrics such as the
DOLP and AOLP; thus, this work first handles intensity values
as reported by the camera sensor using “camera units” expressed
as 16-bit integers. Accuracy comparisons are drawn from DOLP
and AOLP values calculated from normalized, unitless relative
intensity images. The particular sensor used in this work outputs
images to a 12-bit precision.

B. Full Stokes Calibration

In comparison to the above linear-only calibration, a full Stokes
calibration (Fig. 4) is a two-step process that requires the addi-
tion of a rotation-stage-mounted retarder (i.e., wave plate).
A retardance magnitude between 127◦ and 132◦ is suggested
for any retarder component that may analyze or generate
polarization states in a full Stokes or Mueller rotating retarder
polarimeter. The lower bound magnitude of 127◦ corresponds
to an optimized condition number for a rotating retarder
Mueller polarimeter’s polarimetric measurement matrix [41].
The upper bound magnitude of 132◦ for a retarder—when
paired with a linear polarizer—can be rotated to generate a state
that can trace a path that coincides with the points of a normal
tetrahedron inscribed in the Poincaré sphere [42]. This work
uses an approximately λ/3 magnitude retarder (close to these
mathematical optima) paired with a linear polarizer to perform
the full Stokes calibration and reference measurement steps
of accuracy evaluation. Our procedure outlined here could
also be performed using a λ/4 retarder if a retarder within the
aforementioned range is not available.

1. RetarderCalibration

Our full Stokes calibration starts with measuring the exact
retardance magnitude δ of a rotating calibration retarder with
Mueller matrix LR(δ, θ) so that it can be subsequently used to
calibrate the metasurface-based polarimeter. This is performed
by fitting retardance magnitude δ, retarder fast axis orientation
offset θLR, and linear polarizer transmission axis orientation
offset θLP over a series of L = 100 irradiance measurements,
described by

I (r , θl)= LP(r θl + θLP)(0,:)LR(δ, θl + θLR)LP(0◦)

× (I0, 0, 0, 0)T . (11)

The retarder is placed between a fixed linear polarizer LP(0◦)
and a rotating linear polarizer LP(θ). The fixed linear polarizer
determines the horizontal θ = 0◦◦ orientation of the system.
The fast axis offset θLR and transmission axis offset θLP values are

determined with respect to the first linear polarizer’s coordinate
system. Incident light (I0, 0, 0, 0)T is treated as unpolarized
when exiting an integrating sphere source. In this work, the
retarder is driven to L = 100 positions in 1θ = 3.63◦ steps.
The linear polarizer is spun in tandem with the retarder at a ratio
of r = 2.5, an optimized value that is sensitive to π

4 ≤ δ ≤
π
2

retardance magnitudes without being sensitive to θLP and θLR

offset angles. Appendix C explains how this ratio was chosen.
Equation (11) can be simplified to

I (r , θl)= EALP(r θl + θLP) · EG(θl + θLR, δ), (12)

where EALP is the 1× 4 polarization state analyzer vector

EALP(θ)= [LP(θ)](0,:) =
1

2
(1, cos(2θ),− sin(2θ), 0), (13)

equivalent to the Stokes vector described by the top row of the
Mueller matrix of an arbitrarily rotated linear polarizer, and EG is
the polarization state generator vector

EG(θ, δ)= LR(δ, θ)LP(0)(I0, 0, 0, 0)T . (14)

2. InstrumentCalibration

The second step in this full Stokes calibration procedure
measures the full Stokes polarization state analyzed by each
diffracted order. The rotating linear polarizer is removed from
the previous characterization setup, and the metagrating is
inserted before the camera objective as shown in Fig. 3. A series
of L irradiance measurements is captured using the newly
characterized retarder

In,l (θl , δ)= EDn · EG(θl + θLP, δ), (15)

where n indicates the order that this irradiance measurement
belongs to, and l corresponds to the position in the sequence of
L irradiance measurements: EI. We then rotate the retarder over
L = 50 positions from θl=0 = 0 to θl=50 = 360◦ in uniform
steps of1θl = 7.34◦]. Equation (15) replaces the rotating linear
polarizer in Eq. (10) with the unknown analyzed Stokes state
corresponding to the nth diffraction order in the metagrating
camera, EDn . Equation (15) replaces the unknown incident
Stokes vector S with G, a matrix of generated states that can be
calculated using Eq. (14). In other words, the calibrated retarder
is rotated to produce a number of polarization states that can be
calculated and taken as known (these form the columns of G),
which can then be used to calibrate the metasurface polarimeter.

Each diffracted order’s EDn is determined using

EDn = EInG−1, (16)

where EIn is a series of irradiance measurements by the nth order
formed as an L-element list. The full Stokes calibration for a
metagrating camera is the N × 4 polarimetric measurement
matrix WFS, where each column is an analyzer vector EDn .

Here we treat the retarder LR as a pure retarder that is uniform
across its entire aperture. Retarders often vary in magnitude over
their clear aperture. Accounting for these variations would
require a pixelwise measurement of retardance magnitudes.
Applying this map over a series of rotating retarder positions



1710 Vol. 62, No. 7 / 1March 2023 / Applied Optics Research Article

requires the map to be either digitally rotated or empirically
measured at each rotation position—an effort that we do not
attempt in this work.

The full Stokes calibration produced at the end of this pro-
cedure is defined as an X × Y pixel ROI where each pixel is
defined by an polarimetric measurement matrix, WFS. This WFS

is applied to X × Y quadrant images EIn pulled from the same
pixels the polarimetric measurement matrix is calculated from
and treated with the same sub-pixel alignment that was used.
The reported accuracy values in Section 6.C are calculated from
a smaller circular sub-region within this 400× 400 ROI, which
is illuminated by the integrating sphere source.

6. ACCURACY STUDY

A. General Problem

Once calibrated, individual quadrant images acquired by the
metagrating camera can be registered and consolidated into
a pixelwise measurement of the Stokes vector by Eq. (8). In
this section, we assess the accuracy of this aggregate measure-
ment process (the acquired calibration and associated image
registration/reduction) through comparison to reference
measurements.

The reference measurements used here are acquired by two
division-of-time polarimeters (the first linear-only, and the
second full Stokes) constructed from traditional polarization
optics. Highly accurate division-of-time polarimetry relies on
the assumption that the observed subject is motionless over
the measurement time window. The division-of-time method
is therefore unsuited to problems where a subject is in motion
relative to the camera’s position. However, division-of-time
measurements are suitable for a laboratory setting as a ground
truth reference measurement that may be compared to results
from a metagrating polarimeter under study. This section uses
division-of-time methods implemented across 50 (for linear-
only) or 16 (for full Stokes) frames as reference measurements.
In the linear case, the reference measurement uses the assump-
tion that a linear polarizer is a pure polarizer at its foundation;
in the full Stokes case, this assumption is augmented with the
assumption of perfect knowledge of a retarder whose parameters
have been characterized as described in Section 5.B.

These references are compared to the metagrating’s division-
of-amplitude method, in which one FOV is split into four ROIs.
All images are captured using frame averaging to reduce random
noise effects from the sensor, effectively producing a study that
probes at the ability to calibrate and retrieve accurate results
from a metasurface-based polarimeter.

B. Linear Stokes Accuracy

Linear Stokes accuracy is evaluated here through comparing
each polarimeter’s ability to measure the DOLP and AOLP
of a measurement subject. We make use of the tilted glass
plate method described in [23,30], which enables simulta-
neous assessment of DOLP and AOLP accuracy by utilizing
simple Fresnel transmission and reflection as a glass plate
is progressively tilted after a monochromatic illumination
source to experience normal to oblique incident illumina-
tion. Figures 5(a)–5(d) depict the mounting apparatus that

varies DOLP by tilting the plane-parallel plate to plate angle
θp and varies AOLP by rotating the cradle in which the plate is
mounted to cradle angle θc . The linear Stokes state generated by
the tilted plate can be estimated using

ESLin(θp, θc)=
1

2

 Ts + Tp

(Ts − Tp) cos(2θc)

−(Ts − Tp) sin(2θc)

 , (17)

where Ts = |ts (θp)|
2 and Tp = |tp(θp)|

2 are the intensities of
transmitted s -polarized and p-polarized light calculated using
Fresnel transmission through a plane-parallel plate of index
nplate in air. Equation (17) is an intuitive, overly simplified
expression of the Fresnel transmission taking place by treating
the real-world experiment instead as a single transmission event.
The linear polarization accuracy experiment does not require
a ESLin calculated from nplate. Instead, this linear polarization
accuracy experiment compares the reference linear Stokes image
as measured by a rotating linear polarizer to the validation linear
Stokes image as measured by the metagrating polarimeter.

In this work, the glass plate is tilted from θp =−60 to
60◦ in 1θp = 15◦ steps to vary DOLP. The cradle mount
is rotated from θc = 0 to 180◦ in 1θc = 45◦ steps to vary
AOLP. Linear stokes accuracy is evaluated over a total of 45
plate orientations and by assessing the average and stand-
ard deviation of 1DOLP=DOLPRef −DOLPVal and
1AOLP= AOLPRef − AOLPVal.

For the validation measurement, the metagrating camera is
operated as a division-of-amplitude polarimeter. A validation
measurement is described by the four-element list of irradiances

EILin Val(θp, θc)=WLin ESLin(θp, θc), (18)

where each element of the vector corresponds to one diffraction
order. WLin is the polarimetric measurement matrix of the meta-
grating determined through linear Stokes calibration described
in Section 5.A. Linear Stokes images are calculated from these
validation images by applying

ESLin Val(θc , θp)=WLinEILin Val(θc , θp) (19)

in a pixelwise manner. Figures 5(e) and 5(f ) depict the validation
measurement setup.

The reference linear Stokes vector is measured by rotating
a linear polarizer through a series of L = 50 transmission axis
positions spanning from θl = 0 to 360◦ in 1θl = 3.63◦ steps.
An irradiance measurement,

EILin Ref(θp, θc, θl )= LP(θl )ESLin(θp, θc), (20)

is collected for each combination of plate and cradle position.
The reference Stokes parameters, ESLin Ref(θp, θc), are then cal-
culated by curve fitting Eq. (10) to the list of L = 50 irradiance
measurements EILin Ref(θp, θc, {θl }). The reference measure-
ments repeat the same procedure used to establish a linear Stokes
calibration on the metagrating. Figures 5(e) and 5(g) depict
the reference measurement setup. The validation and reference
camera setups are nearly identical with the exception of the
removal of the metagrating and insertion of a rotating linear
polarizer. An important point here is that the aperture used
as a backing for the metasurface grating during the validation
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Fig. 5. Linear polarization accuracy study with a metasurface-based
imaging polarimeter. The basis of the accuracy study is a tilting glass
plate that, due to Fresnel interaction, can render initially unpolarized
light (e.g., from an integrating sphere) controllably partially polarized.
(a) At normal incidence, the light remains unpolarized and (b) becomes
preferentially s polarized at an angle. We refer to this as the plate angle
θp . (c) The plate can also be rotated about its axis on a cradle, changing
the axis of linear polarization; we refer to this as cradle angle θc . Both θp

and θc can be controlled independently with an appropriate mount as
in (d). (e) The tilting plate is illuminated by light from an integrating
sphere and imaged by the camera, (i) first in a validation measurement
through the metasurface grating and (ii) in a reference measurement
through the same camera, instead through a rotating polarizer with the
metasurface grating removed. The validation measurement set up is
shown in (f ) and the reference in (g).

measurement is left in place during the reference measurement;
this way, the camera’s entrance pupil (EP) size and location are
left constant, so that the reference and validation cameras are
actually observing under identical conditions and can be com-
pared. Great care is taken not to move the camera during this
exchange between validation and reference to assure the same;
we find that the sub-percent accuracy in DOLP sought here can
easily be disturbed by slight differences in observing conditions
between reference and validation.

Each reference and validation measurement averages 100
frames to minimize the effects of random readout noise in the
sensor. The appropriate flat field profile corresponding to the

wavelength and exposure time of the validation measurement
is applied to the data to account for structured noise effects
described in Appendix A. EILin Val(θp, θc) and EILin Ref(θp, θc) are
flat field corrected irradiances.

The resulting DOLP and AOLP values are compared to a
reference measurement set at the same plate positions. These
reference values are captured by replacing the metagrating
with a rotating linear polarizer. The 50 reference images taken
over linear polarizer orientations from 0◦ to 360◦ are fit using
Eq. (10) to retrieve the linear Stokes parameters. Figure 5 depicts
these validation and reference measurement setups for this linear
Stokes accuracy test.

The positions at θp > 0◦ and θc = 0◦ are mirrored to the
θp < 0◦ positions at θc = 360◦. Variations across θp = 0◦ can be
partly attributed to low DOLP scattering from planar surfaces in
the surrounding real-world laboratory environment. Collecting
seemingly redundant data at θc = 180◦ serves to disambiguate
systematic effects in the metagrating camera from effects in the
real-world laboratory.

DOLP and AOLP are calculated from the reference and
validation linear Stokes images using Eqs. (3) and (4). The
residual values 1DOLP=DOLPRef −DOLPVal and
1AOLP= AOLPRef − AOLPVal assess the metagrating’s
linear Stokes accuracy.

Figure 6 depicts both reference and validation DOLP and
AOLP for a glass plate oriented at θp =−60 and θc = 0◦ under
532 nm illumination. A gradient of±0.006 DOLP spans across
a ±1.56◦ FOV in a pattern consistent with illumination of a
tilted plane by a slightly diverging illumination source. This
narrow FOV limitation is due to the diameter of the outport of

Fig. 6. Degree of linear polarization (DOLP) and angle of linear
polarization (AOLP) are compared for cradle position θc = 0◦ and
plate position θp =−60◦ linear Stokes accuracy measurement at
670 nm. The reference data are taken by imaging through 50 different
linear polarizer positions. The validation data are taken by imaging
through a polarization metagrating and using only four analyzing
diffraction orders. The region of interest (ROI) depicted above spans a
±1.56◦ field of view in a 240× 240 pixel image. The numbers below
each image indicate the mean and first standard deviation of values
within the FOV. The gradient of values across the images is consistent
with a diverging light source striking a tilted glass plate.
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Fig. 7. Residual errors for (a) degree of linear polarization
(1DOLP) and (b) angle of linear polarization (1AOLP) between
the reference and validation data. The handedness and magnitude of
the 1DOLP is dependent on the cradle angle θc of the tilted plate.
Signal to noise ratio for AOLP decreases as the DOLP decreases,
leading to an increase in the difference between the validation and
reference AOLP images. For metagrating polarimeter measurements
of near 0◦ incident illumination, the AOLP accuracy offset becomes
more pronounced. These features are consistent with an increase in
uncertainty, as fewer sampling points are used during calculation. See
Supplement 1 for the same figure at 460 and 532 nm.

the integrating sphere and the polarizing optics readily available
to a benchtop system. An augmented tilted plate experiment
with additional opto-mechanics and more reflection artifact
management would be required to assess a larger range of angles.
In this work, we are limited to DOLP≤ 0.220 due to the size
and refractive index of the single glass plate used during DOLP
accuracy evaluation, a range that could similarly be extended
with use of more and higher index glass plates.

Figure 7 presents 1DOLP for the 670 nm linear Stokes
dataset. 1DOLP< 0 at the θc = 0◦ plate positions, which
indicates that the metagrating measures a higher DOLP in
comparison to the reference rotating linear polarizer’s measure-
ments. Near θc = 90◦, the metagrating measures a lower DOLP
in comparison to the reference linear polarizer’s measurements.
At the more acute plate angles θp =±15◦, 1DOLP increases
due to the numerical offset in the metagrating camera system
dominating the signal in the validation data.

Figure 7 depicts the 1AOLP for the same 670 nm linear
Stokes dataset presented in Fig. 7. The plate angles at θc = 0 and
θc = 180◦ are mirrored from one another about θp = 0◦. Across
all θp = 0◦ positions,1AOLP has a consistent non-zero pattern
across the FOV. Low amounts of partially linearly polarized
light—originating from first surface scatter from the Spectralon
inside the integrating sphere [43]—are measurable by the
rotating polarizer reference procedure, but are not detected by

the metagrating. A DOLP offset in the metagrating result is
larger than the weak linear polarization signal present at near to
normal incidence of θp = 0.

Figure 8 is provided as an overlook of the1DOLP perform-
ance that is formatted in the same tradition as [23,30]. The
results from each wavelength are plotted as pointclouds in col-
ors corresponding to each grating’s designed wavelength (red
for 670 nm, green for 532 nm, and blue for 460 nm). Linear
polarization accuracy metrics of these same measurements
are summarized in Table 1. The linear Stokes precision is cal-
culated as the standard deviation of the residual between the
reference and validation DOLPs. Over all three assessed wave-
length designs, the precision of1DOLP is within±0.5%. The
standard deviation of 1DOLP is represented by errorbars in
Fig. 8; the spans of these errorbars lie within the±0.5% DOLP,
denoted by the gray region in each plot.

C. Full Stokes Accuracy

This subsection describes the implementation of the circular
polarization accuracy experiment designed to complement the
tilted plate linear Stokes accuracy test described in Section 6.B.
Only the 532 nm metagrating is analyzed in this section. This
complementary experiment uses a rotating retarder and fixed
linear polarizer as paired test elements instead of a tilted glass
plate. This pair is used to create a full Stokes generator described
by Eq. (14) that is similar to the generator used for the full
Stokes calibration in Section 5.B. However, an off-the-shelf λ/4
retarder at 532 nm is used to generate the target states during
the accuracy test (i.e., δg = λ/4). The linear polarizer used to
generate EG [Eq. (14)] is identical to the one used in the full
Stokes calibration of the metagrating camera. A series of G = 50
positions from θg = 0 to 360◦ in 1θ = 3.63◦ steps are used to
assess circular polarization accuracy. This is the same full Stokes
state generating method as described in Section 5.B.

Figure 9 shows results from the full Stokes calibration of
the 532 nm (green) metagrating, comparing the ellipses of
the polarization states analyzed by each grating order to those
derived from a full-wave simulation of the design. Deviation
between the major axes of the measured and simulated polari-
zation ellipses is partly attributable to rotational ambiguity
between the metagrating’s orientation as-mounted and the hori-
zontal transmission axis LP(0◦) of the generator. The remaining
variation between the measured and simulated states are attrib-
utable to the deviation of the final fabricated design from the
simulated design. Section 4.A in Supplement 1 presents a few
approaches for assessing the quality and accuracy of the mea-
sured polarimeter’s versus the simulated grating’s performance.

Figure 10 depicts the validation and reference measurement
setups. Reference measurements are taken using a rotating
linear polarizer and a rotating retarder using the test sequence
described by

IFS Ref(θg , θa )= EA(θa ) · EG(θg ), (21)

where the analyzer vector is

EA(θa )= (LP(r θa + θLP)LR(δa , θa + θLR))[0,:], (22)

and the generator vector EG(θg ) is the same as Eq. (14).

https://doi.org/10.6084/m9.figshare.21950402
https://doi.org/10.6084/m9.figshare.21950402
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Fig. 8. Difference (1DOLP) between the reference DOLP and validation DOLP is plotted versus the reference DOLP for each pixel in the tested
region of interest. The lower x -axis labels indicate the reference DOLP value. The upper x -axis labels indicate the tilted plate angle that corresponds
to the cluster of plotted pixel values in each plot. The red, green, and blue scattered points correspond to the 670, 532, and 460 nm metagrating sam-
ples, respectively. The gray stripe within each plot indicates±0.5% DOLP error, which is often quoted as the minimum accuracy required to perform
aerosol polarimetry.

Table 1. Residual Degree of Linear Polarization
(1DOLP) in [%] and Residual Angle of Linear
Polarization (1AOLP) in [◦] as Measured by the Tilted
Plate Test in Section 6.B

a

λ [nm] 670± 5 532± 1.5 460± 5

1DOLP 0.225± 0.149 0.519± 0.306 0.331± 0.261
1AOLP* 3.095± 6.561 6.352± 15.498 6.627± 19.582
1AOLP** 1.031± 1.043 2.002± 1.960 1.350± 1.485

aMean and standard deviations over ±1.56◦ field of view are given for each
accuracy metric. Measured AOLP accuracy values at the θp = 0◦ tilted plate
angle are omitted from the 1AOLP* calculation. 1AOLP** values omit the
θp = 0◦,±15◦ tilted plate measurements from the calculation. This effectively
limits the 1AOLP** measurements to include only DOLPref > 0.02 data.
This diminished precision and accuracy with lower DOLP is not unique to the
metagrating polarimeter; it is a consequence of low signal to noise ratio.

The same r = 2.5 rotation ratio used during full Stokes cali-
bration is used here. The λ/3 analyzer retarder can be the same
component used in full Stokes calibration of the metagrating. In
this work, a series of A= 16 analyzer angles from θa − 0 to 360◦

in 1θa = 22.5◦ steps is used in each reference measurement.
The full Stokes state measured by the reference measurement is
recovered using

EGFS Ref = A−1EIFS Ref(θg , Eθa ), (23)

Fig. 9. (a) The polarization ellipses compare the simulated (dashed)
Stokes state versus the average measured (solid) Stokes state over the
region of interest displayed in Fig. 11. Right circular polarization hand-
edness is indicated by red, while left circular polarization handedness is
indicated by blue. An overall rotation in the metagrating’s placement
is observable in comparing the major axes of the simulated versus
measured ellipses; this rotation indicates that the horizontal axis of the
metagrating is misaligned to the transmission axis of the first linear
polarizer. This rotation affects only the orientation of the measured
polarization state, which can be corrected in post-processing. (b) The
simulated full Stokes analyzer states are plotted here as opaque circles,
while the measured full Stokes analyzer states are plotted as transparent
circles. In addition to major axis orientation offset between the ellipses
of the analyzed states, the full Stokes calibration states also vary in
ellipticity and degree of polarization. The tetrahedron inscribed by
the calibration states is both smaller than and deformed in angle for a
regular tetrahedron within a unit sphere.
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Fig. 10. Full Stokes accuracy study. (a) Light illuminates a rotat-
ing retarder through a fixed linear polarizer producing unknown
polarization states over the camera FOV. These are imaged first in a
validation measurement (i) through the metasurface camera and (ii)
repeated through a reference camera that is the same as the validation
camera with the metasurface removed and replaced with a polarization
analyzer consisting of a characterized rotating retarder and fixed linear
polarizer. The full Stokes validation measurement is depicted in (b) and
the reference measurement in (c).

where EI(θg , Eθa ) is a 16× 1 vector of irradiances corresponding
to the g th test state. The polarimetric measurement matrix for
this reference sequence is A, a 16× 4 matrix where each row is a
full Stokes analyzer vector EA(θa ).

The validation measurement test sequence is described by

EIFS Val(θg )=WFS EG(θg ), (24)

which is a recasting of the calibration measurement equation
[Eq. (21)]. This 4× 1 vector of irradiances is measured by a
full Stokes calibration WFS, the metagrating’s polarimetric
measurement matrix [Eq. (6)]. Each generated state measured
by the metagrating is determined using

EGFS Val =W−1
FS
EIFS Val(θg ), (25)

a recasting of Eq. (8).
The DOCP of the full Stokes state is calculated using Eq. (5).

Figure 11 displays seven out of 50 of the full Stokes states mea-
sured by both the metagrating camera validation measurement
and the rotating linear polarizer and retarder reference measure-
ments. The polarization ellipse measured by the validation setup
is plotted with a solid line while the reference ellipses is plotted

Fig. 11. Top row displays the polarization state measured over the
average ROI by the reference (dashed) and validation (solid) mea-
surements for the 532 nm full Stokes test. Right circular polarization
handedness is indicated by red, while left circular polarization hand-
edness is indicated by blue. The second row shows the DOCP over the
FOV as measured by the rotating reference linear polarizer and analyzer
λ/3 retarder pair. The third row is the DOCP for the same states as
measured by the metagrating camera. The last row is the signed differ-
ence between reference and validation. Below each FOV are the mean
DOCP values± the standard deviation of DOCPs inside the FOV. See
Supplement 1 for further measurements. Only the 532 nm grating was
assessed for full Stokes accuracy. The ROI displayed above spans a±2◦

FOV in a 290× 290 pixel image. A preferential handedness toward
1DOCP≤ 0 is demonstrated in both the last row of this figure and in
Table 2.

Table 2. DOCP Accuracy (1DOCP) Determined by
Operating the Metagrating Camera as a Full Stokes
Polarimeter

a

Parameter |1DOCP| 1DOCP

DOCP≤−0.2 0.0148± 0.0114 −0.0079± 0.0169
0.2≥DOCP>−0.2 0.0229± 0.0145 −0.0138± 0.0233
0.5≥DOCP> 0.2 0.0221± 0.0148 −0.0135± 0.0221
DOCP > 0.5 0.0150± 0.0098 −0.0145± 0.0105
All DOCPs 0.0162± 0.0120 −0.0113± 0.0167

aDOCP accuracy values are binned by the reference DOCP measurement
taken by a δ = 0.336λ retarder under 532± 1.5 nm illumination. The values
calculated here span a ±2.00◦] field of view. At lower DOCP magnitudes,
1DOCP increases. A preferential handedness toward DOCP< 0, or left
circularly polarized light, is observed across the entire set.

with a dashed line. Circular polarization accuracy metrics of
these same measurements are summarized in Table 2. Circular
polarization accuracy tends to become less accurate as the state
under analysis becomes more circular. This is due to the specific
selection of analyzer states, which favor right-hand elliptical
basis states to form WFS. The analyzed states are spaced as a
regular tetrahedron during the design process with a specific
choice made during this proof of concept to place one of the
vertices at a pole of the Poincaré sphere, as seen in Fig. 9. As a
result, the linear states are more accurately measured by the final
fabricated metagrating. Any error or noise in the state probing
the pole would have an out-sized effect on the accuracy of S3.
This preferential handedness offset is observable in Fig. 11.
Using the same process [12], a future grating could be designed
to implement a different variant of the tetrahedron states in
which all four are elliptical in a way that is balanced between the
equator and the poles of the Poincaré sphere.

https://doi.org/10.6084/m9.figshare.21950402


Research Article Vol. 62, No. 7 / 1March 2023 / Applied Optics 1715

7. CONCLUSION

Polarization-sensitive metasurfaces, which can combine the
function of many freespace polarization elements into a single
optic, have attracted interest as future components in division-
of-amplitude polarimetric imaging systems. In this work, we
have explicitly considered the precision and accuracy with
which this polarimetry can be performed. We performed two
studies: the first study assesses the metasurface polarimeter’s
ability to measure linear polarization, and the second study
probes the metasurface polarimeter’s ability to measure cir-
cular polarization. In both cases, measurements taken by the
metasurface-based device were compared to measurements
taken with division-of-time benchtop references using tra-
ditional polarization optics (i.e., polarizers and retarders) as
described throughout the sections above.

The three polarization metagratings tested in this work were
designed to operate at 670, 532, and 460 nm. The precision of
1DOLP is within ±0.3% across the three wavebands tested,
and the precision of1DOCP is within±2.4% for the 532 nm
grating. In requiring a uniform and polarization-aberration-free
ROI, the FOV over which accuracy is reported is limited from
±3 to ±1.56◦ for linear Stokes analysis and ±2.00◦ for full
Stokes analysis. See Tables 1 and 2 for further accuracy metrics
for linear Stokes and full Stokes parameters, respectively.

There are a number of ways in which this work could be
improved. In terms of the camera characterization, linear polari-
zation accuracy was studied only for light with DOLP≤ 0.2 due
to the particular index and shape of the glass plate used in the
tilted plate test. This range could be extended with an improved
setup employing a cascade of multiple plates, each ideally hav-
ing a high refractive index. Moreover, the full Stokes accuracy
study presented could be extended with the inclusion of a tilted
plate with the retarder to prepare well-characterized elliptically
partially polarized light; this would represent the most general
accuracy study.

Further improvements to this work are related to the meta-
surface imaging polarimeter itself. Ideally, the metasurface
polarization grating would be placed in a system’s aperture
stop or a pupil plane [13]. This is not the case here because the
stop location is inaccessible in our camera objective. Further
improvement in terms of imaging quality and polarimetric
accuracy would be expected if the metasurface could be placed
at the stop. The placement of the grating in front of the camera
may be an asset in some applications, but applications with
more specific quantitative requirements (e.g., scientific remote
sensing) would ideally use an imaging system designed around
the metasurface possessing other desirable qualities such as
image-space telecentricity.

Other improvements would center on the gratings. The
polarization states analyzed by the grating occupy the ver-
tices of a tetrahedron inscribed in the Poincaré sphere, but the
choice of the states that form that tetrahedron is not unique.
The metagratings in this work analyze a tetrahedron where
one of the analyzed states is purposefully set to a fully circular
state (see Fig. 9 and [44], the first work to suggest using this
configuration). This results in a situation where linear states of
polarization are uniformly sampled, but three of four analyzed
states share one handedness (S3 < 0) so the opposite handedness

(S3 > 0) is sampled only once. A future design [12] of four
analysis states that more equally samples the S3 component
could be modeled after the set of four Stokes states defined
in [42].

Finally, the FOV over which polarimetric accuracy was stud-
ied by this work was relatively small with a±1.56◦ FOV in the
linear Stokes test and a±2.00◦ FOV in the full Stokes test. This
is in part due to the inherent challenge of designing a high FOV
polarimetric imaging system based on a metasurface in this
way—the grating’s deflection angle must scale with the desired
FOV [13]. However, characterizing a large FOV metagrating-
based camera to the level of accuracy described in this work
would pose a measurement challenge as well. Expanding the
limit of the analyzed FOV would require either larger clear aper-
tures along the optical path or an approach that stitches together
multiple measurements over a full FOV.

Metasurfaces may hold promise for the miniaturization of
optical systems containing polarization optics [11] resulting in
new imaging polarimeter architectures for remote sensing and
other applications. However, this is contingent on the success
with which metasurface-based instrumentation can be cali-
brated and produce quantitatively accurate polarization data.
This work highlights the practical considerations involved in
doing so.

APPENDIX A: FLAT FIELDING THE SENSOR

CMOS sensors experience temperature-dependent fixed pat-
tern noise in the form of dark signal non-uniformity and pixel
response non-uniformity. Once a cooled CMOS sensor reaches
thermal equilibrium, its non-uniform effects can be character-
ized by measuring each pixel’s responsivity R and dark image
I dark. This work uses a procedure that is a modified version of the
variable continuous illumination flat fielding method with con-
stant exposure time described in Fig. 4(a) of EMVA Standard
1288 [15]. Instead of calibrating to an absolute radiant exposure
per pixel, the calibration of pixel responsivity is referenced to
a relative overall power as detected by a calibrated photodi-
ode placed at a port in the integrating sphere. This method
of relative power measurement is acceptable for polarimetric
accuracy studies that assess the normalized Stokes parameters.
Radiometric accuracy inclusive studies would require tracking
absolute power.

Fluctuations in the LED illumination source output are
tracked using this calibrated reference photodetector. The
illumination across the entire sensor is assumed to be uniform,
which follows from assuming the integrating sphere is ideal, and
is represented by the power output by the LED source, p . This
power is varied from zero to the highest level of output power
before sensor saturation. In this work, the illumination power is
varied from 5% to 95% of the saturation power in 5% steps to
characterize the variation in pixel responsivity, Rm,n .

The relationship between power measured p , the pixelwise
responsivity map R , and the input image I over an ROI on the
sensor is

p = R I (A1)
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for each (m, n) pixel on an M × N pixel sensor. Equation (A1)
represents a pixelwise multiplication. The image I is an aver-
age image over L = 200 individual frames and is formed by
subtracting the dark image I dark from the raw image I raw and
scaling by the source power’s fluctuation, pRef, as measured by
the photodiode at the integrating sphere:

I =
1

L

L∑
l=0

pRef
0

pRef
l

(I raw
l − I dark). (A2)

The raw image is the average image over 100 frames as captured
by the sensor without any corrections applied. The dark image
is the average sensor response over 100 frames measured at a
particular exposure when no light is incident. The full field is
assumed to be uniformly illuminated by the integrating sphere,
so pRef are applied as a uniform scale factor across the entire
sensor to correct for fluctuations in the illumination source so
they are not conflated with polarization effects. In this work,
pRef

l is read from a list of power readings [µW] as detected by
the external photodetector mounted at one of the integrating
sphere’s ports. The illumination source is driven at a nominally
stable 100% output power. However, real-world fluctuations in
illumination source stability are measurable, so pRef

l = pl/p0 is
used to track these fluctuations over L measurements to avoid
conflating them with polarimetric effects.

The responsivity profile R for a given wavelength at a given
exposure time is fit to Eq. (A1) as a simple line where the slope
is proportional to responsivity. Sensor responsivity is calculated
for each measurement waveband using 18 different illumination
levels filling between 5% and 95% of the dynamic range of the
sensor. Responsivity profiles are calculated for 460, 532, and
670 nm illumination for the exact exposure times used during
the calibration, validation, and reference steps. These exposure
times range from 6 to 800 ms. The effect of implementing
this modified flat fielding procedure improved the validation
versus reference DOLP agreement by up to 1%. The standard
deviation of pixel values across a uniformly illuminated detector
drops from approximately ±0.4% to approximately ±0.06%
when the flat fielding procedure described above is applied.

APPENDIX B: PRACTICAL ALIGNMENT AND
PROCESSING PROCEDURES

1. Avoiding Fringes in the Tilted Plate Test

The original tilted plate test procedure in [30] includes a col-
limation lens between incident illumination and the tilting
glass plate. When used in conjunction with an imaging system
and a quasi-monochromatic extended illumination source, a
collimation lens produces fringes that obfuscate the low DOLP
residuals assessed by this method. To prevent this issue, the
plane-parallel plate target is directly illuminated by light from an
LED that has passed through a 101.6 mm integrating sphere, in
the same manner described in [23]. By directly imaging the inte-
grating sphere, the number of components that could induce
complex polarization artifacts is minimized.

To limit backreflection artifacts, adjustable irises were placed
in the optical path, and all in-line rotating retarders and linear
polarizers were selectively tilted between 1◦ and 3◦.

2. Sub-Pixel Registration of Diffracted Orders

The final calibration technique in this work registers each
diffraction order to a 1/4 pixel alignment accuracy using the
one-time alignment method. A sub-pixel image registration
was attempted in gradually finer resolution using phase_cross_
correlation() [39] (from scikit-image version 1.7.1 [40]). The
ideal sub-pixel accuracy alignment is 1/20 pixel [45], but no
alignment accuracy finer than 1/4 pixel could be achieved. This
alignment limit likely arises from the four diffracted orders, each
striking a different quadrant of the imaging optics. Each order
experiences slightly different lens aberrations that change the
shape of the orders from a circle to a subtle oval.

The output of the registration gives the center in the image
of each order in fractional pixels. The full detector image is
shifted by a non-integer number of pixels using spline interpo-
lation as implemented by SciPy’s ndimage.shift(). Subsequently,
each order in the shifted image is cropped to size, enabling the
calculation of a Stokes image.

3. Auto-Correlation to Correct Beam Wander

Wedge in any rotating components will cause the beam to
wander over the FOV of a sensor. Auto-correlation-based align-
ment can address this problem, but only when applied in a
way that does not create artifacts. The 50 image linear Stokes
metagrating calibration, 50 image linear Stokes reference, 50
image full Stokes metagrating calibration, and 16 image full
Stokes reference measurement sets all contain rotating elements
with a large enough wedge to induce beam wander. It is then
tempting to perform image registration frame by frame to
correct for this undesired effect. This section briefly discusses
the differences in applying a frame-by-frame versus one-time
alignment procedure.

The first step of both alignment methods co-registers the
diffracted first orders onto one another using auto-correlation
(as described in the previous section). In “one-time alignment,”
a calibration matrix W is calculated for each pixel in the resulting
Stokes image using the same set of four pixels from the detector
in all calibration frames. “Frame-by-frame alignment” adds an
extra step that treats the zeroth image of the measurement set
as the positional reference image. Each subsequent frame in
the measurement set is aligned to this reference image. Then,
the pixel located in the same relative position on the zeroth
frame is extracted in all subsequent frames to calculate W. This
results in measurements from different neighboring pixels on
the detector being used as the continuous output of one pixel
during calibration. Figure 12 illustrates these two methods of
alignment.

At first glance, frame-by-frame alignment may appear as
the superior method for addressing beam wander. However,
the final operation of a metagrating camera is a snapshot
procedure. Any beam wander in one diffracted order is also
observed in the other diffracted orders, so the relative clarity
of the images is preserved as long as the combined metagrat-
ing and pixel responsivity of each point on the detector is well
calibrated. This means that each individual pixel in each order
should be treated independently of its neighbors in all down-
stream analyses. Attempting to correct beam wander using
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Fig. 12. Line through each measurement set indicates how a series
of L images is compiled for one particular pixel. Frame-by-frame
alignment treats the θ0 frame as the reference image. Each subsequent
l th frame is aligned to the reference using phase cross correlation. This
approach produces a clearer calibration matrix image, but at the cost of
generating the polarization artifacts that appear as a wrinkle pattern in
Fig. 13. The resulting calibrated instrument matrix W does not match
the snapshot operation of our division-of-amplitude metagrating
camera concept. One-time alignment produces a W, which stops
alignment after the shared first step of determining the center of each
order and referencing them to one another. Systems without beam
wander on the detector do not face this alignment problem.

Fig. 13. |1DOLP| = |Val. DOLP− Ref. DOLP| images and
corresponding histograms of errors are given for two cases: (left) when
sub-pixel registration is applied on a frame-by-frame basis across all 50
calibration images in a sequence and (right) when sub-pixel registration
is applied only to register the positions of the diffraction orders relative
to one another. Proper application of a one-time alignment procedure
during calibration improves the standard deviation of |1DOLP|.
When a frame-by-frame alignment is applied, the resulting 1DOLP
image also exaggerates the size of small artifacts in the field of view
under observation.

frame-by-frame alignment produces polarization artifacts by
treating the response of multiple neighboring pixels as sharing
the responsivity of one pixel, which is ultimately problematic.
Over L measurements, this appears as a fixed pattern noise
polarization artifact. Figure 13 is an example of these artifacts as
seen in1DOLP and1DOP images when observing an osten-
sibly uniform target (integrating sphere output port through
a tilted glass plate). These artifacts arise from the remaining

subtle pattern even after the flat fielding procedure described in
Appendix A is applied. Flat fielding ideally corrects the subtle
variation between pixels, but the real-world result is imperfect
and only reduces the magnitude of these variations rather than
eradicating them. The frame-by-frame method exacerbates the
remaining noise into a wrinkle pattern that becomes a dominant
feature as both a visible texture and an artificial numerical error
in the1DOLP images.

APPENDIX C: FULL STOKES REFERENCE
MEASUREMENT OPTIMIZATION

In this work, a custom λ/3 retarder for 532 nm is chosen to
probe the analyzed full Stokes state of each diffraction order. A
retardance magnitude between 127◦ and 132◦ is ideal for a sam-
pling over the Poincaré sphere in a rotating retarder framework
[41,42].

This work uses a δ = λ/3 retarder under 532 nm illumination
that is rotated in tandem with a linear polarizer with a relative
rotation ratio r . We seek to optimize r so that the pair of retarder
and polarizer can be used as a full Stokes, division-of-time
reference polarimeter. To optimize r , we assess the condition
number of the division-of-time combination for rotation ratios
from zero to four, obtained using Eq. (C1). Angle θoffset is the
relative offset between the linear polarizer’s transmission axis
and the retarder’s fast axis when both rotation motors are in the
home position. This relative offset angle has a large influence
on the condition number of the resulting 4× N polarimetric
measurement matrix, W(r , δ, θoffset), which is defined by

EWn(r , δ, θoffset)= (LP(r θn + θoffset)LR(δ, θn))[0,:], (C1)

where EWn , the nth row of the polarimetric measurement matrix,
is defined as the first row (analyzer vector) of the Mueller matrix
formed by a linear retarder LR followed by a linear polarizer LP.
The Mueller rotation matrix

R(θ)=

 1 0 0 0
0 cos(2θ) − sin(2θ) 0
0 sin(2θ) cos(2θ) 0
0 0 0 1

 (C2)

is used to rotate any optical component about the z axis by θ . A
linear retarder is

LR(δ, θ)=R(θ)

 1 0 0 0
0 1 0 0
0 0 cos(δ) sin(δ)
0 0 − sin(δ) cos(δ)

R(−θ), (C3)

where θ is the orientation of the fast axis, and δ is the retardance
magnitude. A linear polarizer is

LP(θ)=R(θ)
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

R(−θ), (C4)

where θ is the orientation of the transmission axis.
A well-chosen rotation ratio r will produce a W with a low

condition number, which corresponds to lower SNR. Figure 14
plots the squared condition number cond2(W(r , δ, θoffset))
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Fig. 14. Ideal rotation ratio r for a low SNR rotating retarder full
Stokes analyzer should be unaffected by the θoffset angle between the
linear polarizer’s transmission axis and the retarder’s fast axis orien-
tations when both rotation motors are in the home position. The
polarimetric measurement matrix for a rotating retarder full Stokes
analyzer is described by W(r , δ, θoffset) [Eq. (C1)]. The condition
numbers squared of two instrument matrices are plotted above for a
δ = λ/3 retarder (left) and a δ = λ/4 retarder (right). Condition num-
bers were calculated over rotation ratios between r = 0.00 and 4.00 as
1r = 0.05 and θoffset = 0 to 360◦. Across both plots, the rotation ratio
of r = 2.5 produced the minimum condition number over all θoffset

values.

over a series of rotation ratios for δ = λ/3 and δ = λ/4. The
rotation ratio of r = 2.5 produced the smallest and most stable
condition number over all θoffset values for both δ = λ/3 and
δ = λ/4 retarders.

APPENDIX D: ARTIFACTS, EDGE EFFECTS, AND
ROI SELECTION

The limitation in the ROI used from the full FOV of the camera
is due to edge effect artifacts that originate from the mechanical
components required to construct the tilted glass plate experi-
ment. Figure 15 depicts the artifacts that limited the accuracy
test implementations. The images both span a 400× 400 pixel
ROI with the region within the image plotted in color indicating
the 1′′ outport of the integrating sphere. The outport spans
a 400 pixel width in the 460 nm DOLP image, but this same
outport spans a diameter equivalent to 440 pixels in the 532 nm
DOP image.

In the linear Stokes calibration, a crosshatched pattern resem-
bling fringes is present across all orders in all wavelengths. The
crosshatch features correspond to a defocused image of the
250× 250 nm write fields of the metagrating as written by
the electron beam lithography tool. This pattern would not be
present in the final image if the metagrating was placed exactly in
the stop of the camera objective—a position not accessible in the
off-the-shelf objective used in this work. This subtle fringe-like
pattern is also visible near the top of the full Stokes calibration
DOP image.

At the edges of the color image are concentric rings that limit
the FOV of the image. These are the threads of the lens tube and
the rotation motor that appear as a defocused image just beyond

Fig. 15. Detailed examples of artifacts visible in just one diffraction
order in (a) linear Stokes and (b) full Stokes calibrations of 460 and
532 nm metagratings, respectively. The white circles within each image
indicate the ROIs that the linear and full Stokes calibration accuracies
are calculated over. The 460 DOLP image contains a cross-hatching
artifact that corresponds to a defocused image of the metagrating’s
stitching pattern, which is a byproduct of subtle miscalibration of the
electron beam lithography tool used to fabricate these metagratings.
Outside the area denoted by the white circle are the illuminated and
defocused threaded rings of the rotation motors that the polarization
optics are mounted in. The 532 DOP image contains all previously
mentioned defocused artifacts in addition to a dark spot and circular
artifact within the white circle, which corresponds to backreflections
between the traditional polarization optics that comprise the full
Stokes test setup.

the edge of the rotation motor’s clear aperture. The effect of
light scattering from these defocused threads is unavoidable due
to the stage’s position in the setup.

The spots in the 532 nm calibration’s DOP correspond
to dust and defects that cannot be removed from the lin-
ear polarizers used in this work without damaging their
performance.

APPENDIX E: ABSOLUTE EFFICIENCY DATA

In the calibration study that occupies the bulk of this work,
the grating’s absolute efficiency is not explicitly considered;
whatever the efficiency is, as long as it is constant, its effect
can be accounted for (in camera units) during the calibration
process. However, as a polarimetric technology, the efficiency
of the grating is of interest for two reasons: first, as described in
Appendix F, more photons will increase the shot-noise-limited
fidelity of a measurement with a fixed integration time; second,
a higher efficiency reduces stray light in the system, since light
not directed into the inner four orders is directed into the trans-
mitted and reflected zero diffraction orders, higher diffraction
orders in the transmitted and reflected halfspaces, and reflected
orders guided in the glass substrate.

Figure 16(b) shows simulated and measured efficiency data
for the three gratings considered in this work (introduced in
Fig. 2). Here, “efficiency” is taken to be the fraction of incident
power directed to a given diffraction order when incoming
light is unpolarized (i.e., the first element of the order’s EDn).
The simulations and measurements shown in Fig. 16 pertain
to collimated, normally incident light. This work studied the
metagrating as a component in an imaging application, so the
light interfacing with the metasurface is not always normally
incident. For the full FOV of ±3◦, the efficiency of the meta-
grating drops by only up to 0.9% for 460 nm, 7.3% for 532 nm,
and 1.1% for 670 nm. A more detailed diagram of this efficiency
figure is available in Section A of Supplement 1.

https://doi.org/10.6084/m9.figshare.21950402
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Fig. 16. Metasurface grating efficiency measurement. (a) Light
of variable wavelength from a fiber-coupled supercontinuum laser
source is collimated and illuminates the metasurface grating through a
rotatable linear polarizer. The fraction of incident light directed to the
inner four orders is measured for a set of orthogonal linear polarization
states and averaged to yield an efficiency (giving the fraction of light
directed to an order for unpolarized light incidence). (b) For each of the
three samples (blue, green, and red), the efficiency of each of the four
orders is shown for the design as simulated using finite-difference time
domain simulation (FDTD, left) and as-measured (right). A table gives
the sum efficiency for all four orders for both cases. The simulation
only reports efficiencies from the glass–air interface the metasurface
lies upon; thus, an additional 4% loss from the first air–glass interface
into the substrate should be subtracted from the simulated result when
comparing it to the real life measurement.

The left barchart depicts the efficiency of each of the inner
four orders from finite-difference time domain (FDTD) simu-
lation of the ideal design. Two successive FDTD simulations are
performed with x and y linearly polarized plane wave illumina-
tion; the efficiencies shown in Fig. 16(b) represent the average of
the two, mimicking unpolarized light illumination.

The right barchart depicts the same measured experimen-
tally on the fabricated gratings. This is carried out using the
setup depicted in Fig. 16(a). Mirror-collimated light from a
wavelength-tunable supercontinuum laser illuminates the grat-
ing (while being careful to underfill the grating aperture), and
the fraction of incident light directed to each of the four orders is
measured with a power meter. This is done for two orthogonal
orientations of the linear polarizer, and the results shown in
Fig. 16(b) represent the average of the two configurations, again
mimicking unpolarized illumination.

A table at the bottom of Fig. 16(b) shows the sum efficiency
of the four orders in simulation and measurement, representing
the fraction of incident power actually used in the accuracy
studies above. The deviation of these between simulation and

measurement stems from the discrepancy between the designed
and fabricated structures in Fig. 2; the simulated efficiencies,
moreover, do not represent those maximally achievable if
improved design strategies were to be employed.

APPENDIX F: SHOT NOISE AND ERROR
BUDGETING

All of the studies reported in this work have been conducted
in laboratory conditions with significant averaging of all data
collected. Therefore, the accuracy results presented here pri-
marily reflect the success with which a metasurface-based
instrument can be calibrated, and the errors that remain are thus
primarily systematic in nature. However, in any application,
certain random errors will exist as well, chief among these being
shot noise. Shot noise—a consequence of the discrete nature
of light—will manifest as an uncertainty in any intensity mea-
surement σI =

√
N, with N the number of collected photons,

itself dictated by integration time and the photon flux hitting
a detector. Shot noise governs the achievable accuracy of any
polarimeter under a given measurement condition, even given
perfect calibration.

Here, we show how the effect of shot noise can be predicted
and budgeted in the design of a metasurface-based imag-
ing polarimeter (though the analysis here is not specific to
metasurface-based polarimeters per se). This is highly contex-
tual, since the details of a given use case dictate the strength
of illuminating light and what constitutes an acceptably long
integration time. As an example here, we consider a metasurface-
based polarimeter looking downwards at a sunlit cloud scene, an
important practical application of polarimeters generally and a
good example of how such an analysis can be undertaken for a
specific situation.

The analysis proceeds in two discrete parts. First, the parame-
ters of the problem are used to determine the number of photons
illuminating a single pixel of the reconstructed polarization
image in a back-of-the-envelope radiometric analysis. This
alone dictates the random fluctuations in measured intensity
due to shot noise. Second, these variations can be propagated
through the polarimetric retrieval process and downstream to
any derived polarimetric quantities.

1. Flux through Camera Entrance Pupil

The situation analyzed here is sketched in Fig. 17(a). The solar
radiance [W/(m2

· sr)] in the bandwidth measured by the cam-
era is given by Planck’s law as

L sun =

(
2hc 2

λ5(e
hc

λkB Tsun − 1)

)
1λ, (F1)

where h is the Planck constant, c is the speed of light, kB is the
Boltzmann constant, and Tsun is the blackbody temperature
of the Sun. The expression in parentheses gives the radiance
per unit wavelength at center wavelength λ, which must be
multiplied by the camera’s spectral bandpass1λ.

The solar irradiance [W/m2] (again, in this spectral band-
pass) experienced at the “top of the atmosphere” (TOA) is
given by
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Fig. 17. Radiometric case study for cloud polarimetry and DOLP
accuracy. (a) Defining the geometry of the problem. Sunlight illumi-
nates a cloud scene at a zenith angle of φS viewed by a camera with a
zenith angle of φC . (b) Expected DOLP uncertainty σDOLP for varying
system entrance pupil diameters labeling each curve (in this case the
size of the fabricated metasurface grating) for the parameters given in
Table 3. (c) σDOLP for varying exposure times and object reflectances
for a system with entrance pupil diameter DEP = 3 mm. A red line
denotes the limit of σDOLP = 0.5%. (d) Same with DEP = 20mm.

ETOA = L sun�SE cos φS , (F2)

where�SE is the solid angle subtended by the Sun viewed from
the Earth, and φS is the solar zenith angle. Incident sunlight is
assumed to interact with a layer of clouds, which in this simple
analysis is taken to be Lambertian with a reflectanceρ. By defini-
tion, then, the radiance of the cloud layer [W/(m2

· sr)] is then
given by [46]

L cloud =
ρETOA

π
. (F3)

The metasurface polarimeter will image the cloud scene over
some full FOV θFOV. Incoming light from this FOV will distrib-
ute over several sub-images. However, the relevant FOV for this
analysis is actually the FOV imaged by a single pixel of the out-
put image. Here, we will compute the number of photons arriv-
ing from the region imaged by one pixel of the output polariza-
tion image, or equivalently, the number of photons incident on
the four pixels whose measurements contribute to a single pixel
of the reconstructed image.

Assuming the camera is focused at∞, we can write (for a pixel
at the center of the FOV) that

θpixel = 2 arctan
p

2 f
, (F4)

where p is the side dimension of a single pixel, and f is the cam-
era lens’ focal length. Then, the solid angle subtended by θFOV,
i.e., the solid angle of a cloud scene collected by a single pixel, is
given by

�cloud,pixel = 4π sin2 θpixel

4
. (F5)

The irradiance [W/m2] experienced at the camera’s EP for
light collected by this single pixel is then given by

E camera = L cloud�cloud,pixel cos φC , (F6)

whereφC is the viewing zenith angle of the camera.
Finally, the number of photons contributing to a single pixel

of the output image is given by

P = ηE cameraπ

(
DEP

2

)2

1t
λ

hc
. (F7)

Equation (F7) represents a product of the irradiance E camera,
an efficiency factor η representing the product of all transmis-
sion efficiencies in the system (the metasurface’s ηM , that of the
imaging optics ηO , and also the sensor’s quantum efficiency ηS ),
the area of the EP with diameter DEP, integration (exposure)
time1t , and a photon energy conversion factor.

Suppose light illuminating that pixel is assumed to have a
Stokes vector S (whose first element S0 would be the above
photon number P ); the photons directed to each of the four
sub-pixels in the four imaging quadrants is given by

EI = AS, (F8)

with A the polarimetric measurement matrix and EI a vector of
photon fluxes at each of the four pixels corresponding to a single
“pixel” of the final, reduced Stokes image.

2. Error Propagation

The uncertainty of each intensity measurement in EI is given by
the square root of its value in accordance with Poisson statistics.
We can then write the covariance matrix of the measured inten-
sity as

cov( EI )= diag
(√
EI
)

. (F9)

The 4× 4 covariance matrix of EI is a diagonal matrix with the
square roots of EI ’s entries on the diagonal.

Given that S= A−1 EI , if there is no calibration error (i.e., the
elements of A have no uncertainty) then the uncertainty
propagates through the linear system as

cov(S)= A−1cov( EI )(A−1)T , (F10)

where cov(S) is the 4× 4 covariance matrix of the deter-
mined Stokes vector at a pixel of the scene and is a generalized
error metric of the determined polarization state, containing
uncertainties of each component and their covariances.

If some scalar quantity f (S) is then derived from S, the vari-
ance of the quantity f due to random variations in S can be writ-
ten as

σ f =

√
Ej f cov(S) Ej T

f , (F11)

where Ej f (S) is the Jacobian vector for the quantity f (S), with

Ej f (S)= E∇S f =
(
∂ f
∂S0
,
∂ f
∂S1
,
∂ f
∂S2
,
∂ f
∂S3

)
. (F12)

For example, for the case of DOLP(S)=
√

S2
1 + S2

2/S0,
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Table 3. Parameters Used for Shot-Noise-Limited
DOLP Accuracy Case Study Discussed in Appendix F
and Fig. 17

Parameter Description Value

ρ Cloud scene reflectance 0.1
λ Center imaging wavelength 550 nm
1λ Bandpass of imaging bandwidth 5 nm
φS Solar zenith angle 0◦

φC Camera zenith angle 0◦

f Lens focal length 16 mm
ηM Metasurface efficiency factor 0.4
ηO Optics efficiency factor 0.8
ηS Sensor quantum efficiency 0.72
p Pixel side length 3.45µm

EjDOLP(S)=
(
−

√
S2

1+S2
2

S2
0

, S1

S0
√

S2
1+S2

2

, S2

S0
√

S2
1+S2

2

, 0

)
.

(F13)

3. Numerical Example

Here, we apply the analysis above to the metasurface polarimeter
of this work, as though it were being used as a downward-
looking cloud polarimeter. For each of the parameters defined
above, we use the values given in Table 3. We take a moderate
effective reflectance of ρ = 10%, and borrow the lens focal
length, pixel side length, sensor quantum efficiency, and meta-
surface efficiency (the best case) from the camera studied in this
work.

In Fig. 17(b), σDOLP is plotted as a function of exposure time
1t for the cloud scene withρ = 10%. The red region of the plot
denotes σDOLP ≥ 0.5%, while the gray region corresponds to
σDOLP < 0.5%. Several curves correspond to varying instru-
ment EP diameters; in the camera of this work, this diameter
is simply the size of the metasurface grating (which is the EP),
though depending on optics that may precede the metasurfaces
in other implementations, this would not necessarily remain
the case [13]. As expected, the larger the light-collecting EP,
the more robust to random errors in measured DOLP the
instrument will be at all exposure times. For this ρ, a∼cm scale
metasurface grating would have sufficient light collection to
suppress random DOLP to the degree desired for atmospheric
science applications over the entire range of exposure times
considered; the 3 mm grating used in this work, on the other
hand, is “safe” only above 20 ms.

In Figs. 17(c) and 17(d), σDOLP is computed now as a func-
tion not only of exposure time 1t , but also of the scene’s
reflectance ρ. In Fig. 17(c), DEP = 3 mm, while in (d),
DEP = 20 mm. In both, a red contour line denotes where
σDOLP = 0.5%; to the right and above this line (i.e., at longer
exposure times and for brighter objects), σDOLP < 0.5%. For
a 3 mm metasurface grating, only somewhat bright objects
(ρ ≥ 1%) can be imaged unless long exposures (longer than
hundreds of ms) are employed. A 2 cm collection aperture, on
the other hand, presents the ability to obtain the DOLP at the
desired accuracy for even dim objects (ρ ∼ 0.1%) in under
100 ms.

What constitutes an acceptable integration time is also
context dependent, depending on the dynamics of a given appli-
cation. For atmospheric polarimetry, where ideally km-scale
resolution is desired from low Earth orbit (LEO), an exposure
time should be low enough that motion artifacts from the orbit
during1t do not constitute more than a few individual pixels of
spatial resolution. Since in LEO groundspeed is approximately
8 km/s, exposures would ideally be 125 ms or less.

We have performed the photon-counting analysis here at
the single photon level. However, adjacent pixels can be spa-
tially binned to decrease random errors due to shot noise (at
the expense of spatial resolution). This is the approach taken
in some atmospheric polarimeters (e.g., the upcoming MAIA
instrument [23]) to meet the target accuracy ofσDOLP ≤ 0.5%.

In conclusion, random noise can enter into the polarimetric
measurement process, adding errors to the measured polari-
zation state above and beyond those from miscalibration.
Any attempt to account for this is application specific, since
these depend on illumination level and the details of the light-
collecting ability of a given instrument. We have shown here
how random errors can be budgeted for in a specific application,
namely, atmospheric polarimetry. This type of analysis reveals
the combination of design parameters necessary to reduce
random errors to a sufficient degree that they become insig-
nificant relative to errors due to miscalibration/data reduction,
which themselves can be characterized experimentally using the
methods of this work.
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