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ABSTRACT

This paper reports on the magneto-optical properties of an electron beam evaporated EuS thin-film characterized at room temperature. The
refractive index of EuS was measured using ellipsometry in the visible part of the spectrum. The dispersion curve of the Verdet constant was
measured in the wavelength range between 600 and 800 nm. We fitted an analytical expression for the dispersion curve in the range of
663-785nm. In addition, we find that the Verdet constant of thin-film EuS is one order of magnitude higher than the commonly used ter-

bium gallium garnet crystal.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090533

An interaction of light with matter subjected to a magnetic field
leads to important physical effects, including the Faraday,' Kerr,
Voig‘[,2 and Hanle® effects. Often, these effects influence the polariza-
tion of the interacting light, i.e., the Faraday effect rotates light polari-
zation upon its propagation through a material in the direction of the
applied magnetic field. Many devices have been realized using these
effects, including magneto-optical (MO) modulators,” circulators,’
and isolators.” Also, this effect has been used in sensing7 and laser
technologies.”

It is important to note that the MO effect differs from asymmet-
ric power transmission associated with chiral media.”'’ The orienta-
tion of the magnetic field determines the direction of polarization
rotation and breaks time-reversal symmetry. Devices based on this
effect are passive, unlike approaches that rely on nonlinear effects or
time modulation,'' and are irreplaceable in certain devices.

One of the underlying reasons for polarization rotation in MO
materials is the Zeeman splitting,” occurring when otherwise degener-
ated energy levels in a material are split by an applied magnetic field.
While propagating in a MO material, incident light experiences a
different refractive index for right circularly polarized (RCP) and left
circularly polarized (LCP) light. For linearly polarized incident light,

this manifests as a rotation of the light’s polarization by an angle A0,
determined by the material’s Verdet constant V, the propagation
length L, and the magnetic field strength B,

AO = VBL. (1)

A challenge for current MO-based devices is that the Verdet con-
stant of most naturally occurring materials is minuscule, requiring
long propagation lengths, e.g, for achieving optical isolators.
Therefore, the lateral dimension of commercially available isolators is
on the order of centimeters, prohibiting their use in on-chip devices or
compact optical systems. Materials with high Verdet constants will,
thus, decrease the dimensions of future MO devices.

Another critical consideration for MO-based devices is absorp-
tion. Most devices operate in transmission and, thus, require low to
no material absorption. This, e.g., limits the usability of metals that
exhibit high Verdet constants and high absorption coefficients.
Eu-chalcogenides possess remarkably high Verdet constants at visible
and infrared wavelengths at low temperatures.'” While the measure-
ments of Eu-chalcogenides Verdet constant at room temperature have
been conducted;"” however, EuS has been overlooked. In this study,
we measured the dispersion of the Verdet constant of e-beam
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evaporated EuS thin films in the visible wavelength range at room
temperature. In addition, we measured the real and imaginary parts of
the refractive index of EuS using ellipsometry to evaluate its absorption
at room temperature.

The experimental setup used for the Verdet constant measure-
ments is shown in Fig. 1. A set of laser diodes with a central wave-
length of 600 to 800nm was used to illuminate the sample. The
emission spectra of the individual diodes are shown in the supplemen-
tary material (S1). The laser diodes were mounted in a temperature-
controlled diode mount (Thorlabs, LDM56), and emitted light was
collimated by a lens (Thorlabs, LA1074-A-ML). A noise eater
(Thorlabs, NEL02) was used to stabilize the power of the laser diodes.
A neutral density filter (NDF) (Thorlabs, NE15A) after the noise eater
was used to reduce the intensity of the incident light to avoid the satu-
ration of the balanced photodetector used for signal acquisition.
Before the MO material sample, the light’s polarization was rotated to
45° with respect to a polarizing beam splitter (PBS) (Thorlabs, CCM1-
PBS251) mounted after the sample. The MO material was placed in a
magnetic field oscillating at 1 Hz with up to 0.5T magnitude at the
magnetic field probe position. A small fan was used to cool the sample
and the magnet. A polarizing beam splitter (Thorlabs, CCM1-PBS251)
was used to split the signal into the two ports of the balanced photode-
tector (Thorlabs, PDB210A). Each port was supplemented with NDF
(Thorlabs, NE10A) that protected the photodiodes from power satura-
tion and suppressed background noise. A continuously variable NDF
(Thorlabs, NDC-50C-2M) in one of the arms was used to precisely
balance the light intensity in both detector diodes.

We used a lock-in scheme to measure the Faraday rotation where
the magnetic field was modulated by the local oscillator of a Zurich
Instruments MFLI lock-in amplifier. We used a fourth order low pass
filter with 0.8 s time constant to demodulate. A probe (Lakeshore,
model 425 Gaussmeter) installed near the sample measured the mag-
netic field amplitude. To measure the magnetic field at the sample
position, we used a terbium gallium garnet (TGG) crystal (MTI,
TGGc10108S2) as a reference sample. Details of these calibration mea-
surements can be found in supplementary material S2.

D condensor |:|45deg polarizer

%mirror

[ Hwe

[] sample
N pBs
Inoise eater [} variable NDF

U NDF p photodiode

scitation.org/journal/apl

The intensities on the balanced detector photodiodes after
Faraday rotation by an angle A0 can be written as

Li(t) = al'cos(0 + AO(1))?, )
L(t) = Br'sin(0 + A0(1))*, 3)

where I} and I are the light intensities detected on the left and right pho-
todiodes, 0 is the angle between the incident light polarization and the
PBS, which was set to 45°, I’ is the total light intensity transmitted
through the sample, and o and /3 are constants determined by the imper-
fect light intensity splitting between the two arms of the balanced photo-
detector. The constants o and f account for mirror losses, setup
alignment, and photodiode balancing. The signal measured by the lock-
in amplifier is the difference between the left and right photodiode signals

L(t) - L(t) = %I/(a —p- %I/(a +B)sin2A0(8)  (4)

and can be split into its alternating current (AC) and direct current
(DC) components

Ipc = %I’(oc = B)s (5)
Lic(t) = — %I’(a + B)sin 2A0(1). ©)

The Faraday rotation can be obtained from the ratio of the AC and
DC components

sin 2] A0()| = Y2Hcl) @)
L+5L

where /2 arises from the root mean square (RMS) value of the AC
signal, and I; and I, are measured without an applied magnetic field

(see supplementary material S3 for more details).
The sample was prepared by depositing a 1 ym thick EuS film on
a 0.5 mm thick silica substrate held at room temperature using electron
beam evaporation. The base vacuum of the electron beam evaporator

B-field probe

Lock-in amplifier

FIG. 1. Experimental setup for the Verdet constant measurements. The illumination source consists of a laser diode, noise eater, and polarizer. Input light intensity is controlled
by adjusting a half-wave plate (HWP) and neutral density filter (NDF). An oscillating magnetic field (f= 1 Hz) periodically rotates the incident light's polarization. To measure
the amplitude of these oscillations, we split light polarization into s- and p-components using a polarizing beam splitter (PBS). Then, a balanced photodetector measures the
signal. The measured intensity difference is proportional to the Faraday rotation of the polarization axis, which is used to extract the Verdet constant.
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FIG. 2. Dispersion curve of the Verdet constant for the silica substrate. Verdet con-
stants measured by other authors'®® are consistent with our measurements.

was ~6 x 10 Torr. A schematic of the sample is shown in the inset of
Fig. 3(a). This sample was used to measure the Verdet constant of EuS.
Although the Verdet constant of silica is small, the EuS film is three
orders of magnitude thinner than the silica substrate. Therefore, we sep-
arately measured the Verdet constant of an identical silica substrate
without the EuS film to account for the substrate contribution to the
Faraday rotation. The results of the silica substrate measurements are
shown in Fig. 2. The solid black line represents a fit of equation'*
E

Vv Py (8)
to the measured data. E is a proportionality constant that depends on
the concentration of the magnetic ions per volume, transition

scitation.org/journal/apl

probability, and the Lande splitting factor, and /4, is a resonant transi-
tion wavelength for the paramagnetic ions. We extract the parameters
E=658um®*T 'm™' and Jy =0.269 um. We compared our
results to the data obtained by other authors'>'® (see Fig. 2). All data-
sets are in good agreement.

Using the measurement protocol described in supplementary
material §3, we measured the dispersion of the Verdet constant of the
EusS layer at room temperature. The results are plotted in Fig. 3(a). We
fitted the measured data points using Eq. (8) and extracted E =
—10872 deg um* T~ m™" and /o = 0.5944 um. We omitted the data
point at 4 = 640 nm for the fit due to its proximity to a material reso-
nance."” For comparison, in Fig. 3(b), the Verdet constant dispersion
curve of EuS measured at 6 K is plotted.'” We observe similar qualita-
tive behavior for both curves in Figs. 3(a) and 3(b). Both curves have a
minimum between 650 and 700 nm. Figure 3(c) compares the mea-
sured EuS Verdet constant to the Verdet constant of TGG, which is
commonly used in commercial isolators at visible wavelengths. EuS
has an order of magnitude higher Verdet constant than TGG. Figure
S4 compares the Faraday rotation and Faraday rotation normalized to
attenuation of EuS with other common MO materials.

To measure the absorption of the EuS film, we performed spectro-
scopic ellipsometry (J. A. Woollam, -VASE32) measurements in the visi-
ble spectral range. The measurements were performed on a 100 nm thick
film of EuS deposited on a half-inch square silicon wafer. The thickness
of the EuS film was chosen to prevent Fabry-Pérot resonances in the
measurement’s spectral range. Si was selected as the sample substrate
because the manufacturer of the spectroscopic ellipsometer recommends
it for reliable data fitting. Raw ellipsometric data and tabulated refractive
index values can be found in the supplementary material. The extracted
refractive index and extinction coefficient are plotted in Fig. 4(a). The
extinction coefficient of EuS does not exceed 0.15 in the wavelength
range from 600 to 1000 nm but is higher than of TGG. However, it is
much lower than that of metals. In comparison, the extinction coefficient
of nickel™” is above 3 in the discussed wavelength range.

The wavelength range of the Verdet constant studied in this
work was chosen based on our absorption spectrum measurement of

4 7
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0 2 - ' 10°
(@ 7| t Data (b) — 07 (c) S -
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FIG. 3. Dispersion of the Verdet constant for EuS and its comparison to the TGG Verdet constant dispersion. (a) Measured Verdet constant dispersion of EuS at room temper-
ature and a fit to the data. (b) Verdet constant of EuS at a temperature of 6K."” The dashed line indicates zero. The room temperature dispersion of the Verdet constant of
EuS has the same qualitative features as the Verdet constant measured at 6 K in the wavelength range between 600 and 800 nm. (c) The absolute value of the Verdet con-

stants of the EuS film compared with TGG'® at room temperature.
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FIG. 4. Characterization of EuS. (a) The real and imaginary part of the refractive index of EuS extracted from ellipsometry measurements. (b) X-ray diffraction (XRD) measure-
ment of EuS powder. Peaks show excellent agreement with the crystallographic database and confirm the purity of the used material.

EuS. Whereas the spectral maximum of the Verdet constant coincides
with maximal absorption, low transmission prevents using the MO
material close to this wavelength. Therefore, we concentrate on the tail
of the absorption spectrum, where the Verdet constant is still very
high, and absorption has already decayed.

To verify the purity of our EuS, we performed x-ray diffraction
(XRD) analysis of the powder used for the fabrication of our sample
[see Fig. 4(b)]. We found that the measured spectrum is in excellent
agreement with the EuS XRD pattern available in the crystallographic
database.”’

This work presents measurements of the Verdet constant, refrac-
tive index, and extinction coefficient for a thin EuS film in the visible
spectrum at room temperature. We found that the EuS film has an
order of magnitude higher Verdet constant than the TGG crystal,
which is commonly used in industry. In recent years, multiple ultra-
thin nanophotonic devices have been proposed to enhance the
magneto-optical response per unit length.”* *° These devices often rely
on patterning magneto-optical materials or incorporating them into
already patterned structures. Considering these devices, the fabrication
simplicity of the MO material becomes an important parameter.
Commonly used MO materials, such as TGG or yttrium gallium gar-
net (YIG), are tough to shape or deposit on top of certain substrates.
Moreover, YIG loses part of its MO response when it is not crystalline.
EuS can easily be evaporated on top of patterned structures without
losing its MO properties, making it an exciting material despite its
moderate absorption values. Nickel deposited on top of silicon Mie
resonators greatly enhances their MO response with a slight transmis-
sion loss.” Introducing Eu$ in such a system is expected to decrease
the intensity loss even further.

See the supplementary material for additional data and analysis.
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