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Abstract: Nonlinear interactions in many physical sys-
tems lead to symmetry breaking phenomena in which an
initial spatially homogeneous stationary solution becomes
modulated. Modulation instabilities have been widely
studied since the 1960s in different branches of nonlinear
physics. In optics, they may result in the formation of op-
tical solitons, localized structures that maintain their
shape as they propagate, which have been investigated in
systems ranging from optical fibres to passive micro-
resonators. Recently, a generalized version of the Lugiato–
Lefever equation predicted their existence in ring quantum
cascade lasers with an external driving field, a configura-
tion that enables the bistability mechanism at the basis of
the formation of optical solitons. Here, we consider this
driven emitter and extensively study the structures
emerging therein. The most promising regimes for local-
ized structure formation are assessed by means of a linear
stability analysis of the homogeneous stationary solution

(or continuous-wave solution). In particular, we show the
existence of phase solitons – chiral structures excited by
phase jumps in the cavity – and cavity solitons. The latter
can be deterministically excited bymeans of writing pulses
and manipulated by the application of intensity gradients,
making them promising as frequency combs (in the spec-
tral domain) or reconfigurable bit sequences that can
encode information inside the ring cavity.

Keywords: frequency combs; quantum cascade lasers;
solitons.

1 Introduction

Optical frequency combs [1, 2] have revolutionized the field
of optics and optoelectronics, both from the fundamental
and from the application standpoint. The realization,
nearly 13 years ago, of frequency combs in high-Q mono-
lithic microresonators filled with Kerr media [3] raised an
enormous attention because of its potential for miniaturi-
zation and chip-scale photonic integration, and stimulated
a great deal of activities [4–6]. More recently, another
system relevant for photonic integration, namely the
quantum cascade laser (QCL) emerged as a source of fre-
quency combs [7–12]. Close to its lasing threshold, the
dynamics of a QCL is governed by a cubic nonlinearity
similar to the one of Kerr cavities. On the other hand, unlike
Kerr cavities which are passive, in the QCL the medium is
active, i.e. with a population inversion.

Frequency combs in active and passive systems have
been so far studied in distinct frameworks, and only
recently a definite connection emerged [13, 14]. In partic-
ular, in the study by Columbo et al. [14], the treatment of
frequency combs in passive and active systemswas unified
by formulating a generalized version of the Lugiato–Lef-
ever equation (LLE) [15, 16]. For passive systems, this
generalized model reduces to the LLE of Lugiato and Lef-
ever [15], largely used to describe frequency combs in Kerr
ring microresonators [4]. In the active case, under the ap-
proximations of fast material dynamics and near-threshold
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operation, it becomes the complex Ginzburg–Landau
equation (CGLE) derived in the study by Piccardo et al. [13]
for a free-running ring QCL, on the one hand, and the cubic
equation formulated in the study by Lugiato et al. [16] for a
two-level ring laser, on the other.

A relevant point is that while in the passive case fre-
quency combs need an external field providing the
necessary energy intake, in active systems like the QCL
frequency combs are generated in a free-running setup
[7, 9–13]. The generalized LLE also contemplates a novel
configuration, to our knowledge never analysed before, in
which a ring QCL is driven by an external coherent field
(QCL with injected signal). This setup is of special interest
because it introduces two new control parameters, namely
the intensity and the frequency of the injected signal,
which creates conditions favourable for the generation and
control of temporal solitons [17], relevant for new appli-
cations in integrated comb technology such as metrology
and spectroscopy. Indeed a first analysis of this model [14]
demonstrated the emergence of temporal solitons in ring
QCL with injected signal, and the possibility of addressing
them by means of external pulses.

In the present work, we perform a more extensive
analysis, which provides novel insights in the rich
dynamical scenery of the injected ring QCL. The linear
stability analysis of the S-shaped homogeneous stationary
solution (HSS) allows establishing the conditions for the
stability of the lower and upper branch by associating the
bifurcation point of the lower branch with a plane wave
Hopf instability and that of the upper branch with a mod-
ulational instability. We show that when the upper branch
is stable and the lower branch is unstable, the system
supports localized structures characterized by phase jumps
equal to (a multiple of) 2π, named phase solitons (PSs),
whereas in the opposite situation, when the upper branch
is unstable and the lower branch is stable, the localized
structures are bright solitons on a homogeneous back-
ground, similar to those observed in Kerr microresonators
[18]. Focussing on cavity solitons (CSs), we study the basic
properties, fundamental for their exploitation as elements
for optical information encoding. Namely, we show inde-
pendent switch-on of CSs, by means of suitable address
pulses superimposed to the constant driving field. We
determine the optimal amplitude and duration of such
pulses for the creation of a single soliton and the minimum
distance at which pairs of solitons can be created inde-
pendently. The possibility of controlling the solitons by
means of appropriate gradients in the driving field is veri-
fied, thus assessing the CSs as plastic information units
which can be deterministically drifted/relocated across the
cavity field profile.

2 The model

Apossible realization of the system analysed in this work is
schematically shown in Figure 1: we consider a ring QCL in
a ridge-waveguide geometry, similar to the one used in the
study by Piccardo et al. [13], but coupled to a straight
waveguide by which a coherent field can be injected into
the ring with round-trip cavity length L.

We showed in the Supplementarymaterial of the study
by Columbo et al. [14] that a driven QCL can be suitably
described by the generalized LLE

τp
∂E
∂t

� EI − (1 + iθ0)E + (1 − iΔ)(μ − |E|2)E
+ (dR + idI) ∂

2E
∂z2

 ,
(1)

where t is the time variable and z the longitudinal coordi-
nate along the ring cavity in a reference frame moving at
the phase velocity c̃ � c/nh, nh being the refractive index of
the host material. E and EI are the envelopes of the intra-
cavity electric field and of the external field injected into
the cavity, respectively, normalized as in the study by
Columbo et al. [14]. When referred to a QCL close to its
lasing threshold, the parameters appearing in the equation
are as follows:
– τp is the damping time of the cavity field (typical values

are some tens of ps);
– µ is the pump parameter, such that the laser threshold

is at μ = μthr = 1;
– Δ=α+β,whereα is the so-called linewidth enhancement

factor (LEF) [19] and β is the Kerr nonlinear coefficient of
the host medium, which in a QCL is normally small;

– θ0 = (ωc − ω0)τp − μβ, is a detuning parameter, where
ωc is the cavity frequency closest to the reference

Figure 1: Schematic of a ring quantum cascade laser (QCL) under
electrical bias with an injected optical signal. The ring cavity has a
length L and the intracavity field is E. The external field EI is injected
into the QCL from a straight waveguide.
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frequency ω0 of the injected field. The term μβ arises
from the specific form chosen for the generalized LLE
in [14], but it does not contribute to the equation
because it cancels out with another identical term;

– dR � (c̃τd)2/(1 + α2) represents a diffusion term, where
τd is the dipole dephasing time.

���
dR

√
has the dimension

of a length, and defines the spatial length scale. By
using typical values for a QCL [13] (τd = 60 fs, nh = 3.3,
α ≃ 1.9 ), we get

���
dR

√
≃ 2.5 μm.

– dI = dR(α + ζ) represents a second order dispersion
term, where ζ � −(1 + α2)c̃τpk″/(2τ2d), and k″ is the
group velocity dispersion (GVD) coefficient of the
host medium. Notice that ζ > 0 in the case of anom-
alous dispersion. Assuming τp = 50 ps and k″ � −300
fs2mm−1 [14] we have ζ ≃ 0.9. Notice however that the
GVD can be engineered to take much smaller values,
such that ζ ≃ 0.

We note that in the study by Columbo et al. [14], the third
termat the r.h.s. of the equationwaswritten as μ(1− iΔ)(1− |
E|2)E rather than (1 − iΔ)(μ − |E|2)E, but the two forms are
equivalent in the limit of a laser very close to threshold

where μ ≈ 1 and |E|2 ≪ 1 is on the same order as |μ−1|.
Next, we introduce a small (but not necessarily infin-

itesimal) parameter r = μ− μthrmeasuring the distance from
the laser threshold. To have finite quantities appearing in
the equation, and to minimize the number of parameters,
we introduce the following scaling:

τ� t|r|/τp, η� z
�����
|r|/dR

√
 , F �E/ ��|r|√

, FI �EI/|r|3/2, (2)

Eq. (1) then takes the form of a forced complex Ginzburg–
Landau equation [20]

∂F(τ,η)
∂τ

� FI +γ(1− iθ)F −(1− iΔ)|F|2F +(1+ iG)∂
2F

∂η2
, (3)

where

γ� r/|r|, θ�[(ωc−ω0)τp+α]/r+α, G�dI/dR�α+ζ . (4)

In this work, we shall focus on the above threshold case,
and fix γ = 1.

An important point to remark is that, because FI and F
need to be on the same order of magnitude, a consequence
of the scaling (2) is that EI is smaller than E by a factor
|r|≪ 1; this implies that the system can be operatedwith an
injected field of small intensity, which is particularly
convenient when the laser cavity is ring-shaped. A second
remark concerns the relevant temporal and spatial scales
of variation of the intracavity field. These are established

by τp/|r| (time) and
�����
dR/|r|

√
(longitudinal coordinate) and

depend on the distance from threshold, getting larger and

larger as threshold is approached, as typical of phase
transitions.

Besides the ring geometry considered here, a connec-
tion between QCLs and the LLE was also established
recently in the case of Fabry–Perot devices [21].

3 Homogeneous stationary
solution and its stability

As typical of forced cubic equations, the HSS of Eq. (3) may
show a bistable behaviour. This in turn creates conditions
favourable to the emergence of localized structures, as e.g.
a modulation instability appearing in the upper branch in
the presence of a stable lower branch [22]. The choice of
parameters for the simulations presented in Section 4 will
thus be guided by the results of the stability analysis pre-
sented in this section.

By introducing the quantities Y � F2
I and X = |F|2,

proportional to the input and output intensity, respec-
tively, the homogeneous and stationary solution of Eq. (3)
has the form

Y � X[(1 − X)2 + (θ − ΔX)2]. (5)

When plotting X versus Y, the curve is S-shaped provided
that

1 + Δθ >
�
3

√ |Δ − θ|. (6)

An example of such stationary curve is shown in Figure 2
(see also Figure 5). The blue symbols in this figure are

Figure 2: Stationary homogeneous solution of Eq. (3), where the
solid and dashed blue lines denote stable and unstable
configurations. The blue symbols correspond to a phase soliton
branch from numerical simulations of Eq. (3) with ηmax = 200 (the
symbols indicate the maximum andminimum intensity). Δ = G = 1.1,
θ = 1 (point a of Figure 3).
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related to the PSs that will be discussed in the following
Section 4. SN1 and SN2 denote the lower and upper turning
points of the S-shaped curve (the origin of the naming is
that in the single-mode limit these points are related to a
saddle-node bifurcation). The grey portion of the curve
between the points, having a negative slope, is not acces-
sible. If θ = Δ the upper turning point SN2 touches the X axis
at X = 1.

3.1 Hopf instability

In Figure 2, IL denotes the so-called injection locking
point, below which a Hopf instability takes place. Irre-
spective of the other parameters, the solution (5) is
temporally unstable for X < XIL = 0.5. The presence of such
an injection locking point is characteristic of a laser above
threshold when a slightly detuned external field is injec-
ted. Then, only for a sufficiently high injection amplitude
the laser locks to the external field [23]. In class A lasers,
as the QCL, the injection locking occurs at an output

intensity |E|2 � ���μthr
√ ( ��μ√ − ���μthr

√ ) [see Eq. (25.3) of [24]].

For our scaled quantities μthr = 1, μ = 1 + r, and X = |E|2/r
(see Eq. (2)), so that XIL � ( ����

1 + r
√ − 1)/r → 0.5 in the limit

r ≪ 1.
In the bistable case, it is important to determine the

position of the injection point with respect to the turning
points, in order to assess the existence of a stable portion of
the lower branch of the stationary curve. To this end, there

exist two critical values of the parameter θ, that we denote
by θIL1(Δ) and θIL2(Δ), given by Eq. (S6) and Eq. (S7) of the
Supplementary material, respectively, and plotted by the
blue curves in Figure 3, such that:
– For θ < θIL1(Δ) the injection locking point is always

above the lower turning point SN1. In this case, the
whole lower branch of the S-shaped stationary curve is
unstable, as in the example of Figure 2.

– For θIL1(Δ) < θ < θIL2(Δ), the injection locking point is
below SN1, but still in the bistable part of the curve, so
that the lower branch of the curve has an unstable and
a stable portion between the two turning points, as in
Figure S2.

– For θ > θIL2(Δ), the injection point is at the left of the
upper turning point SN2, and the Hopf instability does
not affect the bistability region. In this case, the whole
lower branch between the turning points is stable.

In the example of Figure 5, the lower branch of the curve is
almost entirely stable, because θ is very close to θIL2.

3.2 Modulational instability

The upper branch of the stationary curve is affected by a
modulational instability from the left turning point SN2 up
to the bifurcation point MI. Again, it is important to
determine the position of the MI point with respect to the
turning points.

The position of the MI point on the stationary curve
now depends on the whole triplet of parameters Δ, G and θ.
As for the Hopf instability, we can introduce two critical
values of θ, that we denote by θMI1(Δ, G) and θMI2(Δ, G).
Their explicit expressions are given by Eq. (S10) and Eq.
(S8), respectively, whereas examples are provided by the
red curves in Figure 3.
– For θ < θMI1(Δ, G), the whole upper branch between the

two turning points is modulationally unstable.
– For θMI1(Δ, G) < θ < θMI2(Δ, G), the MI point is in the

upper branch of the curve between the turning points,
so that only a portion of the upper branch is modula-
tionally unstable.

– For θ = θMI2(Δ, G), the modulational instability disap-
pears, while it appears again at higher values of θ.

Figure 3 shows the critical values of θ as functions of Δ both
for the Hopf instability (blue lines) and for the MI (red
lines). In the figure are also shown the points which will be
numerically studied in the rest of the article. Point a pro-
vides the ideal conditions for the emergence of the PSs that
will be discussed in Section 4.1; point b has instead the
proper conditions for the emergence of the CSs with stable

Figure 3: Critical values of the parameter θ as functions of Δ for the
Hopf instability (blue) and for the modulational instability (red), for
G = Δ (solid red lines) and G = Δ + 1 (dashed red lines). The points
marked as a, b, and c correspond to the parameters used in the
numerical simulations, with G = Δ for a and b, and G = Δ + 1 for c. In
the region below the blue curves (point a), the lower branch is
unstable because it is below the injection lockingpoint. In the region
between them (points b and c), the lower branch of theShas a stable
portion. In the region between the red curves, the bifurcation point
MI of the modulational instability is placed in the upper branch
between the two turning points.
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background that will be analysed in Section 4.2, whereas
for the parameters of point c, the background of the CSs can
be stable or unstable depending on the amplitude of the
driving field. That case has been already presented in the
study by Columbo et al. [14]; here, we provide further de-
tails and results in Section 5 and in the Supplementary
material.

4 Optical solitons

In this section, we present results of numerical simulations
of Eq. (3). The scaled cavity coordinate runs from 0 to

ηmax � L
�����|r|/dR

√
, where L is the real cavity length. In the

figures, the cavity coordinate is shown as η/ηmax = z/L. The
temporal coordinate is shown as the scaled time τ = tr/τp
(Eq. (2)). The connection with physical quantities, as the
cavity roundtrip time, then depends on the distance from
threshold. By assuming, e.g. a loss coefficient of the cavity
≃0.7 (including both the external coupling and distributed
losses) [14], the photon lifetime is τp ≃ L/(0.7c̃), so that one
scaled time unit corresponds to ∼1.43/r roundtrips, that is
14.3 roundtrips for e.g. a laser 10% above threshold.

4.1 Phase solitons

In the first simulation, we consider point a of Figure 3, by
setting Δ = G = 1.1, a value which is realistic for a QCL
(LEF = 1.1 and negligible GVD), and θ = 1. This value of θ is
smaller thanθIL1, so that the lowerbranch is entirelyunstable,
whereas it is close toθMI2, and thepointMI is very close toSN2,
so that the upper branch is almost entirely stable. For input
intensities close enough to SN2, these conditions are favour-
able for observing excitable pulses in the single mode limit,
and localized structures associated with a phase kink in the
multimode regime [25, 26]. The latter can be excited taking as
initial condition the stable state of the upper branch towhich
aphase kink is superimposed, i.e. a phase profile along zwith
a sharp jumpequal to 2lπ,where l is an integernumber. In this
way, the boundary condition on the phase imposed by the
injected field is still obeyed but, as light propagates along the
cavity, the phasor associated with the complex electric field
rotates l times around the origin. Because the dynamics of the
phase is coupled to that of the amplitude, the length of this
phasor varies accordingly, letting the field intensity profile to
exhibit a local modulation in correspondence with the phase
jump. This kind of structure is called phase soliton (PS)
because its dynamics is dominated by the phase, and it is
chiral in nature, having positive or negative chiral charge

depending on the sign of the integer l. Here we consider only
the PS with chiral charge equal to 1.

With the parameters of Figure 2, PSs are stable in the
interval 0.0043 ≤ Y ≤ 0.0058. Figure 4(a,b) illustrates the PS
withY =0.005. The upper plot in panel (a) shows the space-
time evolution of the emitted intensity. Note that the PS
trace is slanted to the left, which means that the PS travels
along the cavity at a speed slightly smaller than c̃. The PS
accumulates a delay of one roundtrip time τr in about 600
time units. Assuming as aforementioned that 1 unit in τ
corresponds to 1.43/r roundtrip times, the speed of the PS is

VPS � c̃/[1 + r/(1.43 × 600)] ≃ c̃ (1 − 1.17 × 10−4) for a laser
10% above threshold. The bottom plot shows the field
optical spectrum at the end of simulation, which for a PS is
an asymmetric frequency comb. The first two plots from the
top in panel b show the intensity and phase profiles along
the cavity at the last round trip. The phase displays a
negative jump of 2π in correspondence with the PS. A
modulation of the intensity, consisting in a maximum fol-
lowed by a minimum, is associated with the phase jump.
The bottom graph in panel b shows the trajectory described
by the tip of the electric field phasor in the complex plane.
The trajectory is close to a circle, drawn in green in the
bottompanel of Figure 4(b), indicating that the dynamics is
an almost pure phase dynamics, but nevertheless the
length of the phasor is not constant and this causes the
modulation of the intensity.

In this figure, we show the PS with positive chiral
charge. The PS with negative chiral charge is also stable.
For that PS, the trace in the space-time plot is slanted to the
right (the PS travels faster than c̃), in the intensity profile
the minimum precedes the maximum, the phase jump is
positive, the spectrum is identical to the previous one but
with n → −n, and the electric field vector rotates in the
complex plane in the opposite direction.

PSs in a forcedCGLE,whose existence ismade possible
by the presence of an unstable focus close to the origin of
the complex plane, were predicted in the study by Chaté,
Pikovsky and Rudzick [25] and observed in the study by
Gustave et al. [26] in a driven semiconductor laser. In the
study by Gustave et al. [26], however, the active medium
was an interband semiconductor with a slow recovery time
of gain (∼1 ns) and just one sign of the chirality [27, 28] was
observed because of the inertia of themedium. This feature
cannot be captured by the forced CGLE alone, which in fact
was coupled with a dynamical equation for the gain in
previous studies [26–28]. In the aforementioned simula-
tions, PSs are found stable with both signs of the chirality
in a driven QCL, based on our model where, although, the
adiabatic elimination of all material variables is a
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background assumption. To substantiate a prediction for
stable solitons of either charge in such a device, a more
complete analysis based on a full set of effective semi-
conductor Maxwell–Bloch equations [14] with the appro-
priate medium temporal timescales will be needed.

4.2 Cavity solitons

In the second simulation, we consider point b of Figure 3,
by setting Δ = G = 2.5 and θ = 12. Such a value of Δ (and
hence of the LEF) is probably a bit higher than the typical
one for a QCL [13], but it allows obtaining in the system
stable stationary temporal solitons, also called cavity sol-
itons (CSs), for a large interval of the input intensity. For
these values of the parameters, θ is close to both θIL2 and
θMI1, which means that in the region between the two
turning points, the lower branch is almost entirely stable
and the upper branch is almost entirely unstable. These are
the best conditions to find stable stationary CSs [24, 29].

Figure 5 indeed shows branches of Turing rolls and CSs
as defined in the study by Columbo et al. [14] emerging in
the upper branch of the stationary homogeneous solution.

If we move on the upper branch from the right to the left
crossing the bifurcation point MI, we observe the onset of
Turing rolls, whose maximum and minimum intensity are
shown by the red symbols in Figure 5. At Y = 82, the Turing
pattern becomes unstable and one or more CSs emerge
from it. The blue symbols indicate the maximum intensity
of the CSs along their branch. Figure 4(c) shows a CS at
steady state for Y = 100.

In Figure 3, the curves θIL1 and θMI1 forG = Δ (solid line)
intersect at a point whose abscissa can be calculated
analytically and it is Δ � (4 + �

7
√ )/3 ≃ 2.125. For smaller Δ,

if YMI coincides or is close to YSN1 in such a way that the
upper branch is modulationally unstable between the two
turning points, the lower branch is entirely unstable andno
stable stationary CSs exist. The picture changes if we allow
G to be different from, and in particular larger than, Δ, i.e. if
G = Δ + ζwith ζ > 0, whichmeans that GVD is not negligible
and dispersion is anomalous. In Figure 3, the two dashed
red curves have been obtained setting G = Δ + 1. They are
displaced to the left with respect to the solid curves ob-
tainedwithG=Δ andnow the curve θIL1 intersects the curve
θMI1 at Δ ≃ 1.843. This means that if we set for instance Δ = 2
and θ=4.7 (point c of Figure 3),we haveYMI≃YSN1 and yet a
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Figure 4: (a) Phase soliton for the same
parameters of Figure 2 and Y = 0.005. The
upper plot is the space-time evolution of the
intensity, whereas the bottom plot is the
optical spectrum at the last roundtrip, n
being the index of the empty cavity mode of
complex amplitude fn. (b) From top to bot-
tom: field intensity along the cavity at the
end of simulation; corresponding phase
profile; trajectory described by the tip of the
electric field phasor in the complex plane,
where the red symbols are the three sta-
tionary states corresponding to Y = 0.005,
whereas the blue one shows the origin. (c)
Cavity soliton for the same parameters of
Figure 5 and Y = 100. The upper and bottom
panels show the space-time evolution and
the optical spectrum at the last roundtrip,
respectively.
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part of the lower branch from MI to SN1 is stable so that
stable stationary CSs may exist. For what concerns Turing
patterns and CSs this set of parameters was extensively
studied by Columbo et al. [14] and the main results are
recalled in the Supplementary material (Figure S2). Here
instead, in Section 5, we focus on the process of writing the
CSs, their interaction and on how they can be manipulated
by means of spatial modulations in the external field or in
the bias current.

5 Cavity soliton encoding and
interaction

CSs exhibit a remarkable potential for application in two
ways. In the temporal domain, we can regard them as self-
confined intensity pulses which, as shown by Columbo
et al. [14], can not only be driven by an external
continuous-wave field but also excited in arbitrary posi-
tions inside the laser cavity by the injection of optical
pulses. A collection of independent CSs can thus be enco-
ded in the cavity and associated with a bit sequence; as the
CSs collection impinges on the output mirror each round-
trip, a bit train is emitted through the output facet. The ring
thus acts as a buffer, which can be swiftly reset and
rewritten and wherein the solitons can also undergo
manipulation bymeans of external field tailoring, as it will
be treated in the following.

In the spectral domain, CSs are associated with the onset
of an optical frequency comb (see Figure 2(g) in the study by
Columbo et al. [14]) so that the possibility to turnmultiple CSs
on and to control their relative distance provides a unique
way to modify in real time the spectrum shape and the fre-
quency sets appearing in the emitted spectrum.

5.1 Switching

An especially interesting feature for any multistable,
localized structure such as the CS is the possibility to be
deterministically excited at any location of the extended
systembymeans of some external control parameter. In the
case of an active optical system (a laser or an amplifier),
most often this “encoding channel” is a coherent external
field or an incoherent pump (a bias current, in the specific
case of a semiconductor laser). In our injected laser layout,
we add to the homogeneous component EI in Eq. (3) suit-
ably tailored pulses, by intensity, duration, and delay (in
case multiple CSs switching is required).

The first issue addressed here is thus the relation be-
tween the pulse magnitude and the duration of the injec-
tion to observe the formation of a stable CS. To this
purpose, we modified the input field term in numerically
solving Eq. (3); we adopted the form

FI(τ, η) � FI + ϵ sech [(η − η0)w/L]8 ∏ (τ/T). (7)

where∏(x) is the rectangular function, equal to 1 for 0 < x < 1,
and to 0 elsewhere, T is the pulse duration, η0 is the
position of the pulse inside the cavity, w/L is its width
scaled to the cavity length and ϵ is the magnitude of the
pulse. The sech(x)8 choice ensures a steep raise/drop of
the pulse. In our simulations, the pulse width was taken
equal to the CS full width half maximum and its location
at η0 /ηmax = 0.5 was never changed.

We considered two representative cases correspond-
ing to the parametric regime of Figure S2 in the Supple-
mentary material: the first at Y = 7 where the CS sits on a
stable homogeneous background and the second at Y = 6.6
where the background is irregular but the CS is still stable
although subjected to jitters (see also [14]). In the first case,
when the pulse is too weak or the injection time too short,
an intensity peak locally appears at the injection location
but it dies rapidly away as the system returns to the HSS,
emitting what could conceivably be dispersive waves [30]
that ring off on a long timescale, compared with the frus-
trated CS decay rate (see bottom plot of Figure 6(a)). When
the requiredmagnitude and duration aremet, a CS appears
and rapidly becomes the stationary structure already
studied by Columbo et al. [14] (Figure 6(b)). The peak in-
tensity evolution vs. time shown in the bottom plot of
Figure 6(b) evidences a latency aroundX= 1.5 as if realizing
a metastable structure of intermediate intensity before
reaching the CS intensity at X = 3.7. We remark that this is
consistent with the studies performed on transverse 2D CSs
[31] and pointed to the existence of an unstable CS branch
bifurcating subcritically from the MI threshold which acts

Figure 5: Stationary homogeneous solution (solid and dashed
lines), cavity soliton branch (blue symbols), and Turing pattern
branch (red symbols) for Eq. (3). Δ = 2.5, G = 2.5, θ = 12 (point b of
Figure 3), and ηmax = 100.
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as a separatrix between the HSS branch and the stable CS
branch coexisting with it. In this viewframe, a localized
pulse causes the local field to grow from the HSS value; if
the injection is large enough and it lasts long enough to
draw the local field beyond the separatrix, the system
locally reaches the CS branch and the structure is formed at
regime.While a proper proof that this scenery occurs in our
injected laser would require analyses of the stable and
unstable parts of the CS branch, and of the CS eigenspec-
trum, we can suggest that the latency on the intermediate
state, may flag the persistence of the system state around
the attraction basin of the unstable CS before being finally
attracted by the absolute stable solution. Note that in
Figure 6(b), the plateau reached by the frustrated CS lies
below X = 1.5 which seems to separate simulations of
frustrated switch-on from successful ones. As the pulse
duration grows larger than the critical value reported

previously (T = 0.89), the CS transient, i.e. the CS switch-up
time, becomes shorter and settles at about 3. For a resonator
with τp on the order of some tens of ps and 10% above
threshold, it means that the switching time is on the order
of some ns.

Systematic simulations in both study cases Y = 7 and
Y = 6.6 for various pulse amplitude ϵ and duration T allow
estimating the critical values for the pair and plot the
relative curve. In agreement with Brambilla, Lugiato and
Stefani [32], the product ϵT is approximately constant, as
comparedwith e.g. the quantity ϵ2T, proportional to energy
as Figure 7 shows for both cases inspected, revealing small
differences between the two, meaning that the switch-on
process is not strongly influenced by the background
behaviour. The major departures from constant ϵT occur
for small injection values, when longer and longer injec-
tion times are required. In fact, for ϵ < 0.25 no CS could be
switched on, regardless the injection time. This suggests
that the CS switch-on is a coherent phenomenon, similar to
the onset of the self-induced-transparency solitons of the
Sine–Gordon equation [24]. Finally, we observed thatwhen
the pulse intensity increases well beyond the critical value,
the switch-on time decreases and tends to settle to about
one roundtrip time.

5.2 Interaction

To determine the bit density which a cavity can sustain by
allocating a certain number of CSs, it is necessary to esti-
mate their interaction distance, defined here as the mini-
mumdistance two CSs can be excited at and reach a regime
where no CS merging, or other forms of permanent pattern
deformation, can be observed. We remark that, together
with the CS transient time and the reset time required to
start CS encoding anew, this figure contributes to the
determination of the bit flux sustained by the device.
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rippling waves. (b) CS switch-on. Here the pulse width and duration
are ϵ = 0.5 and T = 0.89 where T is just above the critical switch-on
value. Space-time diagrams (upper panels) and output intensity vs
time (bottom panels) are reported in both cases.
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Figure 7: The critical values of a few indicators which correspond to
successful cavity soliton (CS) switch-on for (a) Y = 7; (b) Y = 6.6.
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We first considered the case Y = 7 where the HSS is
stable and the system is close to the lower turning point.
The initial state is precisely theHSS, then three short pulses
of amplitude ϵ = 0.3 are added to Y in sequence after τ = 50,
100 and 150 at cavity locations η0/ηmax = 0.5, 0.5 + D
and 0.5 –D, respectively. As it turns out, the system is quite
sensitive to the perturbation of an existing CS, caused by
the turn-on process of another one, so that when CSs are
excited too closely, they interact attractively and the
merger causes the emission profile to switch to the rolls
(Figure 8(a)). For D ≥ 0.17 instead the CSs are correctly
written and reach a regime (Figure 8(b)).

We point out that the CS in presence of a stable ho-
mogeneous background does not exhibit oscillating tails,
see Figure 2c in the study by Columbo et al. [14]. This ex-
cludes the possibility that bounded states can be formed
among CS in this instance due to tail interaction [33, 34].
Although long-range CS interaction was predicted in CS
without tails [35, 36] or much beyond the tail ringing range
[37], a thorough analysis of CS interaction mechanisms
exceeds the scopes of the present work and will be studied
in the future.

Reducing Y brings the system farther from the turning
point and makes it less sensitive to CS interactions. Wemay
interpret in this sense the evidence that, when CSs are
excited below the critical distance, they merge but no rolls
switching occurs (Figure 9(a)). Also accordingly, we found
that for Y = 6.8, 6.7, 6.6 interaction, distances to obtain
independent CSs are D = 0.16, 0.14, 0.13, respectively. We
could observe that for Y < 6.8, the background fluctuations

grow more and more relevant and they seem to ‘convey’
perturbations across CS locations. This means that CSs do
not merge at reported minimum distances, but they push/
pull each other modifying their separation as in Figure 9(b),
andmoremarkedly as Y decreases. No such pushing occurs
for e.g. Y = 7.

It is interesting that in this regime, where the CS
background is unstable, the profile of the CS tails cannot be
estimated altogether because it is drowned in the back-
ground fluctuations. Thus, again, interactions cannot be
interpreted in terms of tail interaction. Similar CS behav-
iour (attraction/repulsion) in planar devices with irregular
background emission was reported by Rahmani Anbardan
et al. [38].

We remark that, in agreement with what was deter-
mined for transverse 2D CSs [32], the critical distances are
on the order of the spatial modulation of the Turing rolls
emerging from the MI which was estimated at λroll = 0.117
[14].

5.3 CS manipulation

It is well known that dissipative structures are sensitive to
gradients appearing in control parameters, which set them
in motion allowing the information they carry to be trans-
ported and redistributed (see the review [39] and references
quoted therein). Indeed, other mechanisms can set CS in
motion, such as thermal effects [40], higher-order disper-
sion and inhomogeneities [41, 42], coherent optical
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feedback [43] or delayed response [44], but we will focus
here on the basic external control paths that a driven laser
provides, namely, we apply gradients in the input field and
in the pump current. Experiments with 2D, transverse CSs
measured soliton drift speeds at 470 m/s in broad-area
vertical cavity surface emitting lasers [45] when a field
gradient was provided. This property is confirmed in the
case of our devices, where we could observe CS drift
longitudinally inside the cavity, under the influence of
input field gradients. To this purpose, the input profile the
external field FI was modified as follows:

FI(τ, η) � FI[1 + ϵM(η − ηs)], (8)

where ϵ measures the field modulation strength, M is a
suitable function of the cavity coordinate η and ηs is a
possible spatial shift, to displace the field profile with
respect to the cavity centre. Note that the value of ϵmust be
small enough to ensure that, throughout the whole cavity,
the field never exceeds the ranges where the CS is stable.

We initially aimed to confirm that CS follow positive
gradients and are trapped in the maxima of the input field
profile, to this purpose we chose ϵ = 0.05, M �
sin 4πη/( ηmax) so to have two maxima inside the cavity,
andwe selected Y = 6which corresponds to a regimewhere
the lower branch is unstable and CS are spontaneously
created due to the spatio-temporal fluctuations of the
background. As expected, all CS are attracted towards the
maxima, as shown in Figure 10(a).

To estimate the drift speed of the CS a more regular
field modulation was chosen by taking M � η − ηs. The
simulations reported in Figure 10(b) show that the CS fol-
lows the gradient and stops in the proximity of the cavity
edge, where the input field abruptly changes by ϵ when η
changes from 0 to 1 (which are equivalent points in a ring
cavity due to the boundary conditions). The output field
shows a negative hump on the left side of the cavity whose
negative gradient, felt by the CS across the ring boundary,
may balance the positive input field gradient, as shown in
Figure 11. Surprisingly, the soliton does not move at con-
stant speed as opposed to what was found for 2D CSs in
semiconductor devices, where their velocity was shown
proportional to the neutral mode corresponding to trans-
lation symmetries, which in turn is associated to the field
gradient [31]. The reason for this discrepancy will be the
object of future investigations.

While a precise evaluation of the CS speed is beyond
the scopes of this work, by varying the parameter ϵ and
shifting the gradient by adopting different values of ηs we
could estimate the average CS speed VCS � Δη

Δτ on the order
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of 0.5 × 10−3 ϵ. Considering a 3-mm cavity and the unit of

time τ equal to 0.5 ns, this translates to VCS ≈ 3 × 103  ϵm/s.
While coupling a modulated input field into the ring

cavity might pose technical problems, assuming a modu-
lated pump profile is less challenging, given recent RF
techniques capable of modulating a microresonator at the
beatnote frequency [46]. We wished to assess the behav-
iour of a CS when a weak modulation of the pump
appearing in Eq. (1) is modelled by assuming μ = μ0 + μ1(η).
By following the scaling leading to Eq. (3), one finds the
form

∂F(τ,η)
∂τ

� FI +γ[1+ ξ(η)− iθ− iΔξ(η)]F −(1− iΔ)|F|2F
+(1+ iG)∂

2F
∂η2

, (9)

with ξ(η) � μ1(η)/(μ0 − 1).We simulated such a spatial depe-
ndent term in ourmodel selecting ξ η( )� ξ 0sin 2πη/( ηmax −π)

andwe could verify that the CS shifts at constant speed and is
not pinned in modulation extrema as Figure 12 shows.
In addition, reversing the sign of the modulated pump
component changes the sign of the CS velocity leaving its
speedunchanged.Althoughspeedevaluation is left for future
work, we checked that speed may be varied with the
modulation amplitude ξ0 and possibly by choosing different
modulation shapes.

We remark that, in accordance with our preliminary
evidence, a pump modulation will cause the CS to change
its position inside the cavity, i.e. to change its propagation
speed, and thuswill influence the roundtrip time, although
this change is quite modest. A regular change of the
modulation, e.g. an AC modulation of the pump, may
instead continuously change the lag between successive
passages of the CS at the exit mirror, inducing a bit FM and
possibly changing the associated comb composition.

6 Conclusion and perspectives

In this work, we presented the study of the HSS (or
continuous wave) instabilities and the localized pattern
dynamics occurring in a unidirectional ring QCL, driven by
an external field. By exploiting a previously assessed
model based on a generalized LLE, we could identify the
character of the HSS emission curve as well as the oscil-
latory and modulational instabilities which affect it and
determine the dynamical scenery the system will exhibit.

Our analysis allows considering the influence of all the
main features affecting the semiconductor laser dynamics,
such as the LEF, the forcing amplitude and detuning, the
bias and, possibly, the GVD. The analyses allowed us to
establish credible and promising candidates for the obser-
vation of localized structures of different classes, which
exhibit remarkable interest for applications, relative to both
optical comb formation and ultrashort pulse generation.

Extended simulation streams allowed characterizing
different emission regimes, such as Turing rolls, but most
importantly, evidencing the formation of two distinct
classes of optical solitons. The first one, the PS, is associ-
ated to a chiral charge and connects the QCL to other
classes of previously studied semiconductor lasers. The
second, the cavity soliton, is a well-known pivotal element
in optical comb formation (e.g. in Kerrmicroresonator) and
information encoding, which we can now confirm in this
new class of forefront, chip-scale and ultrafast lasers.

We confirm CS viability for applications, by showing
independent addressing as well as all their salient features
such as pair interaction and controlled drift. Further
research will certainly lead us to address the possibility to
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Figure 12: A cavity soliton (CS) drifts continuously along the cavity in
presence of pump modulation, plotted in the lower panel. Here
Y = 6.7 and ξ0 = 0.05.
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exploit suitably assembled collections of solitary structures
to tailor the shape of the associated spectral comb. We will
also investigate in this respect the effects of shaping and
modulating in time the external field and the bias current.

Finally the outcomes of this work will be a valuable
guideline to assess operating regimes and layout configu-
rations for ongoing experimental activities.
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