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Spoof surface plasmons (SP) are SP-like waves that propagate along metal surfaces with deeply sub-wavelength
corrugations andwhose dispersive properties are determined primarily by the corrugation dimensions. Two parallel
corrugated surfaces separated by a sub-wavelength dielectric gap create a “spoof” analog of the plasmonic
metal–insulator–metal waveguides, dubbed a “spoof-insulator-spoof” (SIS) waveguide. Here we study the optical
forces generated by the propagating “bonding” and “anti-bonding” waveguide modes of the SIS geometry
and the role that surface structuring plays in determining the modal properties. By changing the dimensions of
the grooves, strong attractive and repulsive optical forces between the surfaces can be generated at nearly any
frequency. © 2014 Optical Society of America
OCIS codes: (230.7400) Waveguides, slab; (240.6680) Surface plasmons; (160.3918) Metamaterials.
http://dx.doi.org/10.1364/OL.39.000517

Surface plasmons (SPs) are transverse magnetic (TM)-
polarized waves that result from the coupling between
photons and free electron oscillations in a metal at
its interface with a dielectric and have been extensively
studied over the past decade [1,2]. SPs in metal–insulator–
metal (MIM) waveguides can lead to extreme subwave-
length confinement [3], strong field enhancement [4],
and even negative refraction [5]. Additionally, the field of
active plasmonics has seen significant growth in recent
years as researchers have attempted to integrate plas-
monic elements into micro and nanoelectromechanical
systems (MEMS and NEMS) for applications including
optical circuitry [6], ultrafast optical switching [7], and
optical trapping[8]. However, these studies have been
limited almost entirely to the visible and near-infrared
(IR) frequency ranges where materials like gold, silver,
and transparent conducting oxides have strong plas-
monic resonances [9,10] but are also highly lossy.
Subwavelength corrugations on the surfaces of metals
allow for the extension of these concepts to lower
frequencies where absorption losses in metals can be
much smaller [11–15]. Corrugated surfaces support sur-
face waves known as spoof surface plasmons (SSPs),
whose behavior depends primarily on the geometry of
the corrugations instead of the optical properties
of the metal. The dispersion equation for SSPs on a
corrugated perfect electric conductor (PEC) has been
analytically calculated [12] as
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where k0 � 2π∕λ0, λ0 is the free space wavelength,
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, where kz is the z-component of

the wavevector in the gap and κgz is used to represent
the evanescent quality of the wave, β is the propagation
constant in the x-direction, ϵd is the dielectric function of
the bounding dielectric, set here to 1 to represent air, and
h, d, and a are defined in the Fig. 1(a) inset, with d ≪ λ0.
The solution to Eq. (1) is shown in Fig. 1(a) for h � 2 μm,
d � 0.5 μm, and a∕d � �0.002; 0.2; 0.4; 0.6; 0.98� (solid-
blue to solid-red line). The single SSP dispersion curve

can be understood as the “anticrossing” of a planewave
dispersion curve and the horizontal line corresponding to
a localized λ∕4 cavity resonance of a single groove at the
so-called SSP frequency (wavelength), ωssp;0 � πc∕2h
(λspp;0 � 4h). Thus the SSP can be thought of as a very
weakly bound mode when ω ≪ ωssp;0 and a tightly bound
(localized) mode when ω ≈ ωssp;0 [13,16], with the transi-
tion between these two regimes becoming more gradual
with increasing duty cycle a∕d [Fig. 1(b)].

Two corrugated metal surfaces separated by a dielec-
tric gap create a metamaterial analog to the plasmonic
MIM waveguide, which we refer to as a spoof-
insulator-spoof (SIS) waveguide [Fig. 1(b)] [13,17,18].

Fig. 1. (a) Dispersion relation of a single SSP mode, Eq. (1),
for h � 2 μm, d � 0.5 μm, and a∕d � �0.002; 0.2; 0.4; 0.6; 0.98�
(solid-blue to solid-red line), where h, d, and a are defined in
the inset. The black arrow represents increasing a∕d.
(b) Spoof-insulator-spoof (SIS) waveguide geometry consisting
of a corrugated PEC cladding surrounding an air-gap core.
Roman numerals I–VI correspond to the layers of the wave-
guide for dispersion calculations. (c), (d) Bonding (red) and
antibonding (blue) modes in a SIS waveguide for
(c) g � 0.4 μm (d) and g � 4 μm. For comparison, the modes
of an MIM waveguide consisting of artificial Drude metals with
plasma frequency ωp �

���
2

p
ωssp;0 are plotted as faded dashed

lines in (c) and (d). The light line (gray-dotted line) is included
for clarity.
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The dispersion equation for this geometry can be calcu-
lated using the transfer matrix method described in
[12,18], which requires us to calculate the reflectivity
for light that is incident on the top of a five-layer stack
defined by the Roman numerals II–VI in Fig. 1(b), which
in turn requires us to define an effective permeability (ϵs)
and permittivity (μs) of the corrugated layers of thickness
h (layers III, V) which are valid for TM modes. We do this
using two simple heuristic arguments. First, we define
the relative impedance ηr �

������������
μs∕ϵs

p
of the corrugated

layer as the weighted average of the impedance of a
PEC and air, equal to a∕d. Second, we note that the
grooves act as truncated parallel-plate waveguides in
the z-direction, which support a single optical mode that
follows the light line. In other words, light travels through
the layer at c (with ksz � k0), implying that effective re-
fractive index can be written as neff � ���������

ϵsμs
p � 1. From

these two expressions, we can infer that ϵs � d∕a and
μs � a∕d, confirming the result first derived in [12].
Guided modes in the SIS geometry correspond to

points with undefined values for the reflectivity R of
the stack known as removable singularities[18]. By set-
ting the denominator of R equal to zero, the following
expression for the dispersion relation can be derived:
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where g is the gap in the waveguide and the � corre-
sponds to the bonding and antibonding modes, respec-
tively. These modes are plotted in Figs. 1(c) and 1(d)
as the red (bonding) and blue (antibonding) lines for
the values of h and d given earlier and a∕d � 0.5. For
comparison, we also plot the bonding and antibonding
modes of a noncorrugated MIM waveguide (dashed
lines), where we assumed a lossless Drude model for
the metal cladding: ϵDrude � 1 − ω2

p∕ω2, ωp �
���
2

p
ωssp;0.

For small gaps [g � 0.4 μm, Fig. 1(c)], SSPs in the
bonding mode behave like the bonding-mode SPs
in the MIM waveguide geometry, exhibiting strong
dispersion and approaching the asymptote ω → ωssp;0
as β → ∞. Spoof plasmons in the antibonding mode,
however, exhibit dispersive properties distinct from anti-
bonding MIM-waveguide plasmons. As g → 0, the SIS
antibonding mode has nearly flat dispersion, correspond-
ing to nearly zero group velocity, with vg � dω∕dβ → 0�,
whereas the MIM-waveguide antibonding mode has
strong anomalous dispersion (dω∕dβ < 0) for these
gap values. At large gaps [g � 4 μm, Fig. 1(d)], the SIS
waveguide modes and MIM waveguide modes are very
similar, implying that the “plasmon-like” designation is
valid in this limit. As g → ∞ the bonding and antibonding
modes approach degeneracy, where the only difference
between the two modes is the relative phase of the waves
on the two corrugated surfaces. The bonding mode cor-
responds to waves traveling along the two surfaces that
are in-phase with one another, while the antibonding
mode corresponds to waves that are out-of-phase with
one another. We note that Eqs. (1) and (2) are valid only
for SSPs on PECs when β is less than π∕d by approxi-
mately a factor of two, since we can no longer treat
the corrugated layer in the effective medium limit when

the wavelength in the structure approaches the periodic-
ity of the corrugations. Additionally, the preceding
analysis ignored the losses that are present in systems
involving real metals.

In order to account for all geometric and material
effects, we use numerical techniques. We simulate a sin-
gle unit cell of an SIS waveguide comprised of gold and
air using the finite element method as implemented in
COMSOL multiphysics, enforcing Floquet periodicity at
the unit cell boundaries, which fixes the wavevector β
in each individual simulation. To account for material
dispersion, we employ an iterative method to accurately
determine the eigenfrequencies of the geometry. We start
by solving Eq. (2) at a fixed β to obtain ωb

0 and ωa
0 ,

the initial guesses for the resonant frequencies of the
bonding and antibonding modes, respectively and use
these values to obtain ϵAu�ωb

0� and ϵAu�ωa
0� from the

Drude model for gold [ϵAu�ω� � 1 − ω2
p∕�ω2 � iγω� with

ωp∕2π � 2.18e15 Hz, γ∕2π � 4.34e12 Hz [19]]. We then
solve in COMSOL for the bonding and antibonding modes
separately, obtaining new eigenfrequency guesses, ωb

1
and ωa

1 . We then repeat this process until the values
of the eigenfrequencies converge [i.e., �ωb;a

n − ωb;a
n−1�∕

ωb;a
n < 0.01], for values of β from 0.05π∕d to 0.55π∕d.

The resulting dispersion relations are plotted in Fig. 2(a)
for g � 0.4 μm (circles) and g � 4 μm (squares).

Comparing Fig. 2(a) to Figs. 1(c) and 1(d), we find that
the real-metal dispersion relations are qualitatively sim-
ilar to the dispersion relations of SSPs on PECs, though
the differences are noteworthy. First, light inside the
grooves does not propagate at c (i.e., ksz ≠ k0, as we
assumed earlier). Instead, the grooves act as short
MIM waveguides of gap a and have a corresponding
effective mode index, neff > 1 [20,21], which changes
the cavity resonance condition. Second, the periodicity
of the structure introduces a band edge at βedge � π∕d
causing the effective material assumption to break down
[12] and resulting in ωssp�βedge� < ωssp;0. We note that our
calculations also show a negligible dependence on the
lateral offset dx between the corrugations on the two sur-
faces, confirming that the structures are in the effective
medium limit.

Fig. 2. (a) Dispersion curves for the bonding (red lines) and
antibonding (blue lines) modes of the SIS geometry simulated
with corrugated gold surfaces corresponding to the geometry
in Fig 1(a). Modes were solved at g � 0.4 μm (circles) and
g � 4 μm (squares), corresponding to the parameters in
Figs. 1(c) and 1(d). (b) Electric field profiles of a unit cell of
the structure for the bonding and antibonding modes at
g � 0.4 μm and β � 1 μm−1.
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Simulations of the field profiles [Fig. 2(b)] at g �
0.4 μm and β � 1μm−1 illustrate the differences between
the two modes. The bonding mode is well confined
within the small gap between the two corrugated surfa-
ces and is dominated by the z-component of the electric
field, similar to a parallel plate capacitor or the TEM
mode of a parallel-plate waveguide. As in a capacitor,
the surface charge distribution (and E∥ � Ex) with re-
spect to the center of the gap is antisymmetric while
E⊥ � Ez is symmetric and corresponds to an attractive
force between the surfaces. Light in the antibonding
mode, on the other hand, has antisymmetric E⊥ and a
symmetric charge distribution with respect to the gap,
resulting in a repulsive force.
We can calculate the force between the two surfaces

by integrating the Maxwell stress tensor across a plane
separating the two surfaces [22]. We plot the magnitude
of the force jFzj as a function of g in Fig. 3(a) for the
bonding (red lines) and antibonding modes (blue lines)
at ω∕2π � 30 THz (λ � 10 μm, solid lines), 27 THz
(11 μm, dashed lines), and 25 THz (12 μm, dashed–dotted
lines), normalizing the force per unit area to the power
flowing through the waveguide. At large gaps (g > λ∕4),
the bonding and anti-bonding forces have approximately
the same magnitude but opposite sign, corresponding to
gaps where the dispersion curves approach degeneracy
[Fig. 3(b)]. As the gap decreases, the splitting between
the modes increases and the bonding and antibonding
force magnitudes diverge. The repulsive force generated
by the antibonding mode grows asymptotically as the
separation approaches the value corresponding to cutoff
for the mode gc ≡ g�β � 0�. gc corresponds to the lowest
order mode of a vertical cavity defined by the region
between the bottom of a groove on the bottom surface
and the top of a groove on the top surface. For small
gaps, the cutoff wavelength is approximately given by
λ∕2 ≈ 2h� g. The force generated by the bonding mode
increases exponentially as the gap width decreases, cor-
responding to an increase in field intensity in the gap, and
the build-up of surface charge, mimicking the properties
of the MIM waveguide bonding mode [19]. These forces
are slightly larger than those reported in an earlier work
on MIM and IMIMI modes[19], and on par with what has

been theoretically reported in parallel dielectric wave-
guides[23] at visible and near-IR frequencies.

Applications of these structures, like conventional SP
waveguides, will ultimately be limited by absorption.
MIM waveguides that achieve subwavelength confine-
ment have propagation lengths on the order of only
one free-space wavelength at visible and near-IR frequen-
cies, introducing significant heating and limiting the pos-
sibilities for optical interconnects or active-plasmonic
devices at these frequencies [3]. Other options for
mid-IR surface waveguiding, such as surface phonon
polaritons, suffer from significant absorption due to their
proximity to a material resonance [24]. Efficient tera-
hertz waveguiding can be achieved with heavily doped
semiconductors [25]; these structures obtain slightly
better propagation lengths than spoof structures but
do not support antibonding modes at small gaps.

Given a lossy system, both the frequency and the wave-
vector can be complex. It is typical to assume that one of
these is well-defined experimentally and therefore purely
real. In these calculations we assume a well-defined
wavevector β (corresponding to excitation by a grating
etched into one side of the waveguide, for example),
and calculate the corresponding complex frequency
~ω � ω0 � iω00, which gives us both the real dispersion
relation and the waveguide losses [26]. We quantify
the absorption in our modes by calculating the propaga-
tion length L � −2vg∕ω00 and plotting it in Fig. 3(c) for the
modes in Fig. 3(b). As expected, the propagation lengths
of modes approach degeneracy at large gaps and are
longer for wavelengths that are farther from the SSP res-
onance. However, simulations reveal that the bonding
mode experiences a peak in its propagation length at
an intermediate gap width that approximately corre-
sponds to gc of the antibonding mode [see Fig. 3(b)]. This
result is counterintuitive, as one would expect that a
more confined mode would propagate slower and expe-
rience more loss due to field overlap with the metal
surfaces. The increase in L is the consequence of an
increase in vg, which also occurs in SIS waveguides
formed with PECs and standard MIM waveguides,
according to our analytical calculations, though to our
knowledge is thus far unreported. For λ0 < 11 μm, propa-
gation lengths of longer than 10λ0 are achievable with
g ≪ λ0, making this a viable geometry for waveguiding
applications.

Experimental realization of these structures will be
necessary to demonstrate a new array of optomechanical
devices at mid-IR and terahertz frequencies. While single
SSP waveguides have been demonstrated [14,16,17],
none have truly been in the metamaterial limit
(d < λ∕10), as the aspect ratio of the grooves required
to reach this limit is difficult to achieve experimentally.
However, structures equivalent to spoof surfaces have
been demonstrated by placing a periodic array of metal-
lic elements, such as patch antennas [27], split-ring res-
onators [28], or potentially V [29], Y [30], or H-shaped [31]
antennas separated from a metallic backplane by a thin
dielectric layer. Instead of controlling the depth of the
grooves to determine the SSP resonance, the shape of
the metallic elements changes the phase response
of the surface, and thus also controls the resonance
condition.

Fig. 3. (a) Attractive (red lines) and repulsive (blue lines)
forces generated by the bonding and antibonding modes,
respectively, at three wavelengths: ω∕2π � 30 THz (solid lines),
27 THz (dashed lines), and 25 THz (dashed–dotted lines), as a
function of gap width. (b) Wavevectors of these modes showing
degeneracy at large gaps and splitting at small gaps. The anti-
bonding mode has a clear cutoff gap. (c) Propagation length
of the bonding (red) and antibonding (blue) modes plotted
in (a).
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In conclusion, we have described the dispersion of
SSP modes in SIS waveguides, demonstrating that MIM
waveguiding concepts can be extended into the mid-IR
and terahertz frequency ranges where losses are compa-
ratively smaller. We investigated the optical forces
generated by SSPs and showed that forces greater than
radiation pressure are attainable for highly confined
mid-IR optical fields. The attractive and repulsive forces
generated within SIS waveguides have a wide range of
potential applications, as they extend optomechanical
functionality to any frequency range while maintaining
tight confinement of the optical field.

We thank N. Yu, S. Byrnes, and R. Blanchard for their
helpful discussions. We acknowledge support from
AFOSR under contract no. FA9550-09-1-0505. M. A. Kats
is supported by the NSF Graduate Research Fellowship.

References

1. S. Lal, S. Link, and N. J. Halas, Nat. Photonics 1, 641 (2007).
2. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101

(2005).
3. H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401

(2006).
4. H. T. Miyazaki and Y. Kurokawa, Appl. Phys. Lett. 89,

211126 (2006).
5. H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316,

430 (2007).
6. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, Adv. Mater.

22, 5120 (2010).
7. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I.

Zheludev, Nat. Photonics 3, 55 (2008)
8. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A.

Zhang, Nano Lett. 11, 321 (2011).
9. W. A. Murray and W. L. Barnes, Adv. Mater. 19, 3771 (2007).
10. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N.

Leonard, B. Laughlin, G. Duscher, and S. Weibel, J. Appl.
Phys. 100, 054905 (2006).

11. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal,
Science 305, 847 (2004).

12. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry,
J. Opt. A 7, S97 (2005).

13. B. W. Wang, Y. Jin, and S. L. He, Appl. Opt. 47, 3694
(2008).

14. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H.
Li, A. G. Davies, E. H. Linfield, and F. Capasso, Nat. Mater.
9, 730 (2010).

15. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J.
Garcia-Vidal, Phys. Rev. Lett. 108, 223905 (2012).

16. J. Zhang, L. K. Cai, W. L. Bai, Y. Xu, and G. F. Song, J. Appl.
Phys. 106, 103715 (2009).

17. K. Song and P. Mazumder, IEEE T. Electron. Dev. 56, 2792
(2009).

18. M. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, Opt.
Express 19, 14860 (2011).

19. D. Woolf, M. Loncar, and F. Capasso, Opt. Express 17,
19996 (2009).

20. A. Rusina, M. Durach, and M. I. Stockman, Appl. Phys. A
100, 375 (2010).

21. X.-R. Huang, R.-W. Peng, and R.-H. Fan, Phys. Rev. Lett.
105, 243901 (2010).

22. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
23. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G.

Johnson, F. Capasso, and J. D. Joannopoulos, Opt. Lett. 30,
3042 (2005).

24. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, Appl.
Phys. Lett. 87, 081103 (2005).

25. A. Degiron and D. R. Smith, Opt. Express 14, 1611 (2006).
26. V. M. Agranovich, Surface Polaritons (Elsevier, 1982).
27. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, Phys. Rev.

Lett. 102, 073901 (2009).
28. M. Navarro-Ca, M. Beruete, S. Agrafiotis, F. Falcone, M.

Sorolla, and S. A. Maier, Opt. Express 17, 18184
(2009).

29. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F.
Capasso, and Z. Gaburro, Science 334, 333 (2011).

30. M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F.
Aieta, G. Gaburro, and F. Capasso, Proc. Natl. Acad. Sci.
USA 109, 12364 (2012).

31. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater.
11, 426 (2012).

520 OPTICS LETTERS / Vol. 39, No. 3 / February 1, 2014


