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Many experimental systems consist of large ensembles of uncoupled
or weakly interacting elements operating as a single whole; this
is particularly the case for applications in nano-optics and plasm-
onics, including colloidal solutions, plasmonic or dielectric nano-
particles on a substrate, antenna arrays, and others. In such experi-
ments, measurements of the optical spectra of ensembles will
differ from measurements of the independent elements as a
result of small variations from element to element (also known as
polydispersity) even if these elements are designed to be identical.
In particular, sharp spectral features arising from narrow-band
resonances will tend to appear broader and can even be washed
out completely. Here, we explore this effect of inhomogeneous
broadening as it occurs in colloidal nanopolymers comprising self-
assembled nanorod chains in solution. Using a technique combin-
ing finite-difference time-domain simulations and Monte Carlo
sampling, we predict the inhomogeneously broadened optical
spectra of these colloidal nanopolymers and observe significant
qualitative differences compared with the unbroadened spectra.
The approach combining an electromagnetic simulation technique
with Monte Carlo sampling is widely applicable for quantifying
the effects of inhomogeneous broadening in a variety of physical
systems, including those with many degrees of freedom that are
otherwise computationally intractable.
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In photonics experiments and applications, frequent use is made
of ensembles of individual structures operating as a single

whole; these include, for example, lithographically defined arrays
of metallic nanostructures that form frequency-selective surfaces
(1), metasurfaces (2–4) or sensor arrays (5), colloidal solutions or
suspensions (6, 7), randomly dispersed nanoshells, quantum dots
or nanocrystals on a substrate (8), and many others.
Assuming that the elements in the ensembles are independent

(i.e., they do not experience significant near- or far-field cou-
pling), an assumption that can often be made in sparse, disor-
dered systems, the optical response of these ensembles is simply
the sum of the response of all of their constituents. In the case
that such an ensemble is composed of many identical elements,
its spectral response should be the same as that of each in-
dividual element. In real systems, however, the constituent ele-
ments are never precisely identical: Any fabrication or synthesis
technique including top–down lithography and bottom–up self-
assembly will introduce a distribution of geometrical parameters
(also known as polydispersity) that leads to inhomogeneous
broadening in the spectral features of the total ensemble (e.g.,
refs. 9–16). To avoid inhomogeneous broadening effects in
experiments, complex techniques are sometimes used to measure
the optical response of individual elements (17). Other times inho-
mogeneous broadening can be helpful, for example in situations

where a broadband optical response is desired such as in pho-
tovoltaic applications (18).
Although full-wave electromagnetic simulations are often used

to model and understand optical systems that cannot be de-
scribed analytically (e.g., ref. 19), these methods cannot easily
account for polydispersity that leads to inhomogeneous broad-
ening. This issue is sometimes addressed by artificially increasing
the damping constant of materials (15), but this approach yields
only nonspecific, qualitative information, does not provide a way
to distinguish between the various sources of polydispersity (geo-
metrical or material), and is in general not physical.
In the present work, we demonstrate that a complex poly-

disperse ensemble of noninteracting elements can be fully
modeled using a Monte Carlo approach (20, 21), using finite-
difference time-domain (FDTD) simulations for the interme-
diate steps. Monte Carlo methods combined with electromag-
netic calculations have previously been applied to problems in
electromagnetics such as scattering from random rough surfaces
(21–24) and light transport through tissues (25). Here we predict
the extinction spectra of self-assembled gold nanorod chains
(“nanopolymers”) suspended in a solution. This physical system
has a large number of degrees of freedom (e.g., the lengths and
widths of the individual nanorods comprising the chains, the total
number of rods composing each chain, the gaps between the rods,
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and their orientation, etc.) and is therefore a particularly
challenging model system.

Model System: Gold Nanopolymers in Solution
Recent experiments have demonstrated that gold nanorods end
tethered with polystyrene ligands can undergo self-assembly in
solution and form linear (or bent) chains, in a process analogous
to step-growth polymerization (26–28). In this process, individual
nanorods with an end tether on each end behave as monomers
(Fig. 1A). In a colloidal polymer (a nanopolymer), the nanorods
are the repeat units and the tethers between the nanorod ends
act as bonds.
At a particular stage of self-assembly, the concentration of

unreacted functional groups [M] is twice as large as the con-
centration of nanorod chains in the system (including individual
unreacted nanorods), because each chain has two ends. The
average degree of polymerization Xn is defined as

Xn ¼ total  number  of  NRs
total  number  of   chains

¼ ½NR�0
1
2
½M�

; [1]

where [NR]0 is the initial concentration of nanorods in the solu-
tion. For the self-assembly time t = 0, Xn ¼ 1, and the initial
concentration of functional groups is [M]0 = 2[NR]0.
The self-assembly occurs as follows: The first step is the re-

action between two individual nanorods to form a dimer; the
dimer can then react with a monomer to form a trimer or with
another dimer to form a tetramer, and so forth (28). This process
yields a mixture of chains comprising various numbers of nano-
rods x. The degree of polymerization of the entire mix of
nanorods and nanorod chains at a particular moment in time can
be quantified by the “conversion” parameter p, defined as the
fraction of end tethers that have reacted, such that

½M� ¼ ½M�0 − ½M�0 p ¼ ½M�0ð1− pÞ: [2]

The conversion p is then related to Xn by

Xn ¼ ½NR�0
1
2
½M�

¼ ½M�0
½M� ¼ 1

1− p
: [3]

For this type of step-growth polymerization, the concentration of
chains containing x nanorods, cx, p, can be predicted by the Flory
(or “most probable”) distribution given a particular conversion
p as (28, 29)

cx; p ¼ ½NR�0ð1− pÞ2pðx−1Þ: [4]

A solution of gold nanorods and nanorod chains (x-mers) can be
viewed as a “metamaterial fluid” or “metafluid” and will have
different optical properties from that of the solvent alone as
a result of the resonant scattering contribution of the x-mers.
In the language of metafluids, the x-mers can be viewed as “ar-
tificial plasmonic molecules” (7) suspended in a liquid, and one
can envision a characterization experiment in which the extinc-
tion spectrum of the fluid is measured using a broadband optical
source and a spectrometer (Fig. 1B). If the solution is dilute and
there is little agglomeration of x-mers, the extinction spectrum of
the solution can be calculated as the sum of the extinction spec-
tra of all of the individual x-mers, which can be predicted by
a variety of full-wave electromagnetic simulation techniques
(30). Because the solution is dilute, any multiple scattering
effects can be neglected, and the spectra can be summed inco-
herently (i.e., neglecting phases) because the positions and ori-
entations the individual nanorod chains are random and constantly
changing throughout the solution via thermal motion. Nonethe-
less, the problem remains very challenging because of the large
number of degrees of freedom: A solution can contain chains of
nanorods of nearly any length, and every nanorod can differ in
its geometrical parameters.

Modeling Nanorod Chains Comprising Identical
(Monodisperse) Nanorods
The extinction spectrum of a particular nanorod chain is de-
termined by the length (L) and diameter (d) of the individual
nanorods composing the chain, the inter-nanorod distance (l),
and the number x of nanorods in the chain (see, e.g., ref. 31). For
simplicity, we assumed that the chains remain linear (no bend-
ing). To model the spectrum of an individual nanorod chain, we
first assumed that the values of L, d, and l are constant for all
nanorods composing the chain and then examined the relation-
ship between x and the normalized extinction spectrum «x(λ) of
an individual chain with a particular, well-defined aggregation
number x, as x increased from 1 to 10. «x(λ) is determined as
«x(λ) = σx(λ)/x, where σx(λ) is the extinction cross section of the
chain, and represents the extinction spectrum of a single chain
normalized to its length.
We performed full-wave 3D FDTD simulations, using the

total-field scattered-field (TFSF) formulation (32), implemented
in a commercial software package (Lumerical). In the simu-
lations, we set L = 52 nm, d = 13 nm, and l = 6.7 nm, the values
corresponding to those in self-assembly experiments. The
mesh size of the simulations was 0.5 nm such that all features
were well resolved. We used a background index of refraction
of 1.42, corresponding to typical solvents used in nanorod self-
assembly [N,N-dimethylformamide (DMF)—water mixture with
a water content of 15 wt% (33)], and an index of refraction of
1.57 for the polystyrene ligands (34). The incident light was set to
be polarized with the electric field along the long axis of the
chain as that is the orientation of the dominant dipole moment
of the chains (further discussion in SI Text).
The simulated normalized extinction spectra «x(λ) of these

nanorod chains with x from 1 to 10 are plotted in Fig. 2A. As x
increased, the localized surface plasmon resonance (LSPR) peak

x

Gold NRs

Nanorod

Polymerization

Nanorod chain / nanopolymer
x-2

(       )

source spectrometer

width d [
polysterene length L

inter-nanorod spacing l

Au
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B

C

Fig. 1. Self-assembled nanorod (NR) chains. (A) Self-assembly of gold
nanorods end tethered with polystyrene functional groups to form nanorod
chains. (B) Hypothetical experimental setup: broadband light source incident
on a nanorod solution, and a spectrometer records light that is not absorbed
or scattered by the solution (unity minus extinction). (C) Nanorod chain
model with constant geometrical parameters L, d, and l. The background
and polymer refractive indexes are nbackground = 1.42 and ndielectric = 1.57,
respectively.
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experienced a gradual red shift from ∼890 nm to ∼1,020 nm. This
type of red shift has been predicted and observed in plasmonic
dimers, trimers, and longer chains and is generally attributed to
a combination of capacitive near-field coupling between the
neighboring nanorods and retardation effects that set in when the
size of the chain becomes nonnegligible compared with the wave-
length (31, 35–38). The effect was particularly strong as x in-
creased from 1 to 4, as the majority of nanorods forming the
chain acquired new nearest neighbors, but then quickly saturated
for longer chains.
Next, we modeled the extinction spectra of a population of

monodisperse nanorod chains at various conversions p. For di-
lute colloidal solutions, the total extinction, Exttot,p, is the sum of
extinctions of the individual chains. Thus, for noninteracting,
monodisperse nanorod chains

Exttot; pðλÞ ¼ b
X

x¼1

σxðλÞcx; p; [5]

where b is the interaction path length, σx(λ) is the extinction cross
section of an individual nanorod chain; cx,p is the concentration
of the nanorod chains with a particular x at conversion p; and the
subscripts 1, 2, . . . , x refer to the number of nanorods in the chain.
By inserting into Eq. 5 the extinction cross sections obtained

from the FDTD simulations and cx,p obtained from Eq. 4, we
calculated the extinction spectra of the entire population of
nanorod chains at various values of p (corresponding to partic-
ular self-assembly times t). Extinction spectra for p of 0.3, 0.5,
0.7, and 0.9 are shown in Fig. 2 B–E, respectively. The colored
lines show the contribution to the overall extinction spectrum by
the nanorod chains with a particular x, that is, bσx(λ)cx, p, and the
black lines show the total extinction of all of the chains (Exttot,p(λ)).

Monte Carlo Modeling of Polydisperse Nanorod Chains
In an experimental setting, synthesized gold nanorods always
exhibit polydispersity. In the present work, we assume that the
nanorods have lengths and diameters with distributions of L =
52 ± 6.1 nm and d = 13 ± 1.6 nm, respectively, and the distance
between the ends of nanorods in the self-assembled chains is l =
6.7 ± 1.4 nm [see SI Text for transmission electron microscopy
(TEM) images from which these values are inferred]. Empirically

(and as a consequence of the central limit theorem), these dis-
tributions are approximately Gaussian.
To model the extinction spectrum of a collection of nanorod

chains with geometrical variations, one could in principle per-
form an exhaustive set of FDTD simulations, sweeping over all
possible nanorod lengths and diameters, as well as over all of the
possible gap lengths between adjacent nanorods in the chains,
and weigh the resulting spectra appropriately to predict the
expected LSPR spectrum of the ensemble (in SI Text, we show
this type of calculation for nanorods with just two polydisperse
parameters using a semianalytical approach). However, even for
a modest number of nanorod constituents of each chain, this
parameter space explodes, making this computational problem
intractable. To overcome this, we used a strategy that combines
the Monte Carlo method with FDTD simulations, which is
graphically described in Fig. 3. For a chain comprising x nano-
rods, we assumed that the geometrical parameters L, d, and l for
each nanorod and gap are independent and identically Gaussian
distributed throughout the chain. Accordingly, we selected the
geometrical parameters for each nanorod and each gap sto-
chastically from the appropriate empirical Gaussian distribution
(Fig. 3A) and then used FDTD simulations to calculate the
normalized LSPR spectrum for the nanorod chain (Fig. 3B). We
iterate this process until a relatively smooth, invariant distribu-
tion emerges from the average of the simulated spectra and then
fit this average spectrum to a Gaussian distribution to obtain an
estimate of the average extinction spectrum σx′(λ) (Fig. 3C). For
this work, we performed 250 simulations for the monomers, 150
simulations for the dimers, 90 simulations for the 3-mers, and 60
simulations each for chains comprising 4–10 nanorods. This
number of simulations was enough to demonstrate the effects of
inhomogeneous broadening and was a compromise between
accuracy and total computation time. The resulting Gaussian fits
to the normalized extinction spectra are shown in Fig. 4A.
Note that we expect this spectrum of an ensemble of poly-

disperse nanorod chains to resemble a Gaussian more than
a Lorentzian distribution (as would be expected for a single,
isolated resonance) as a consequence of a general correlation
between resonance peak wavelengths and the overall lengths of
their corresponding nanorod chains (39). Because the nanorod
chain lengths are Gaussian distributed, the resonance peak

800 1000 1200
0

0.005

0.01

0.015

0.02

Wavelength (nm)

E
xt

.(
a.

u
.)

800 1000 1200
0

0.005

0.01

0.015

0.02

Wavelength (nm)

E
xt

.(
a.

u
.)

800 1000 1200
0

0.005

0.01

0.015

0.02

Wavelength (nm)

E
xt

.(
a.

u
.)

800 1000 1200
0

0.005

0.01

0.015

0.02

Wavelength (nm)

E
xt

.(
a.

u
.)

700 800 900 1000 1100 1200 1300
0

0.005

0.01

0.015

0.02

0.025

0.03

Wavelength (nm)

N
o

rm
al

iz
ed

 e
xt

in
ct

io
n

 (
a.

u
.)

2
3
4
5
6
7
8
9
10

A B C

D E

1
x

Fig. 2. Simulated extinction spectra of chains comprising nanorods of constant size. (A) Normalized extinction spectrum «x(λ) = σx(λ)/x of individual chains
comprising x nanorods, each with L = 52 nm, d = 13 nm, and l = 6.7 nm. (B–E) Simulated extinction spectra of Flory-distributed ensembles of monodisperse
nanorod chains with conversions p of 0.3, 0.5, 0.7, and 0.9, respectively. The colored lines show the contribution to the overall extinction spectrum from the
chains with a particular x, and the black lines show the total extinction spectrum of the entire population of chains (Exttot,p(λ)).
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wavelengths tend to be Gaussian distributed as well. Because the
widths of these Gaussian distributions of resonance peaks tend
to be greater than the widths of the individual resonances, we
expect that the ensemble spectrums will have more Gaussian
than Lorentzian character. This is verified for the special case of
unreacted polydisperse nanorods in SI Text.
As x increased from 1 to 10 we again see a red shift of the LSPR

peak from ∼850 nm to ∼1,050 nm (Fig. 4A). The normalized
extinction spectra of individual chains comprising polydisperse

nanorods are substantially broader than their monodisperse coun-
terparts. This broadening is not a result of increased absorption
or scattering losses that would also lead to a broader peak in
extinction due to decreased quality factors, but is instead a result
of inhomogeneous broadening. Although it is evident from Fig.
4A that the normalized LSPR peak heights and locations have
not fully stabilized (more simulations would be necessary for the
results to fully converge), we can still clearly see the trends in
normalized LSPR extinction spectra as x increases. For example,
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Fig. 3. Schematic describing the Monte Carlo technique for calculating the extinction spectrum of a collection of trimer (x = 3) chains comprising polydisperse
nanorods. (A) First, a number of chains are stochastically generated, with each nanorod length (L), width (d), and gap length (l) selected from an empirically
determined Gaussian distribution. (B) FDTD simulations are used to determine the extinction spectra of each chain generated in A. (C) The simulated spectra
from B are averaged and fitted to a Gaussian to obtain a predicted spectrum of a collection of polydisperse trimers.
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Fig. 4. Simulated extinction spectra of chains comprising polydisperse nanorods. (A) Gaussian fits to the normalized extinction spectra of chains for x from
1 to 10 as calculated by our FDTD-based Monte Carlo method. The lengths and widths of each nanorod, and the gap lengths between them, were sto-
chastically selected from Gaussian distributions where L = 52 ± 6.1 nm, d = 13 ± 1.6 nm, and l = 6.7 ± 1.4 nm. (B–E) Simulated extinction spectra of ensembles
of polydisperse nanorod chains with conversions p of 0.3, 0.5, 0.7, and 0.9, respectively. The colored lines show the contribution to the overall extinction
spectrum from the chains with a particular x, and the black lines show the total extinction spectrum of the entire population of chains (Exttot,p).
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whereas in monodisperse chains the normalized LSPR peak
heights tend to decrease slightly as x increases (Fig. 2A), the op-
posite is true for polydisperse chains. This is because the poly-
dispersity has a stronger effect on the chains comprising fewer
nanorods than on the longer chains: In the longer chains the small
variations in the individual rods tend to cancel out; this means that
the normalized spectra of the ensemble of shorter polydisperse
chains tend to be broader and correspondingly smaller in ampli-
tude compared with ensembles of longer chains. In this way, the
Monte Carlo approach yields a qualitatively different prediction
from that obtained from a monodisperse approximation.
By inserting the averaged and fitted values of «x(λ)′ (obtained

from the Monte Carlo simulations) and cx,p (obtained from Eq. 4
according to the Flory distribution) into Eq. 5, we calculated the
extinction spectra of the entire population of polydisperse nano-
rod chains at various values of conversion p. Extinction spectra
for p values of 0.3, 0.5, 0.7, and 0.9 are shown in Fig. 4 B–E,
respectively, along with the contributions of individual popula-
tions of nanorod chains of various x. The total extinction spec-
trum of all chains for p ranging from 0 to 0.9 is shown in Fig. 5B,
compared with the same calculation using monodisperse chains
shown in Fig. 5A. In the monodisperse case, the total extinction
spectra of intermediate p values are distinctly bimodal due to the
relatively narrow LSPR peak widths associated with individual
nanorod chains and the relatively large LSPR peak red shifts
associated with increasing x. In the polydisperse case, the rela-
tively broad LSPR peak widths that result from inhomogeneous
broadening wash out much of this bimodal spectral feature. In-
stead, the polydisperse spectra each feature a single broad peak
that slowly red shifts with increasing self-assembly time (and hence
conversion p).
In this paper we intentionally make no comparison with ex-

perimental optical data. Although our simulation method ef-
fectively accounts for many key physical effects contributing to
the optical response of self-assembled nanopolymer solutions
including the polydispersity of nanorod widths and lengths and
gaps between nanorods, it does not account for chain bending or
retardation effects for chains that are not oriented perpendicular
to the incident light. Our model system of self-assembled
nanopolymers in solution is a particularly challenging system
to simulate due to the overall number of degrees of freedom and
the computational resources required for every full-wave 3D
simulation of large nanorod chains with small features (such

as gap sizes) that must be well resolved. Despite this, we believe
that the Monte Carlo approach combined with electromagnetic
simulations (or analytical calculations) that we demonstrate here
may be the most efficient method that provides meaningful
information about inhomogeneous broadening in optical sys-
tems, especially when applied to slightly simpler systems such
as lithographically defined or self-assembled nanostructures on
a substrate.

Conclusion
In conclusion, we used FDTD simulations combined with a
Monte Carlo approach to study the effects of inhomogeneous
broadening on the extinction spectra of populations of gold
nanorods formed in solution. We found that inhomogeneous
broadening due to dispersion in the geometrical parameters of
the nanorods (lengths and widths) and the gaps between neigh-
boring rods significantly affected the shape and bandwidth of the
resonance spectra of solutions of nanorod chains. More gener-
ally, we conclude that in systems involving large collections of
independent resonant elements, inhomogeneous broadening in-
troduces significant differences between the resonant responses
of individual elements and the ensemble. To account for such
differences, it is possible to run separate calculations or simu-
lations for every possible set of geometrical parameters and then
perform a weighted average; however, as in the present demon-
stration, this is often an intractable problem, especially for struc-
tures with many degrees of freedom and resource-expensive
numerical techniques such as FDTD. This, however, can be over-
come by using a Monte Carlo approach consisting of iterated
stochastic sampling from the entire parameter space combined
with numerical simulations. In the present demonstration, 3D
full-wave FDTD simulations are used, but in principle any ana-
lytical, semianalytical, or fully numerical method can be applied.
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