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Nonlinear optical interactions of laser modes in quantum cascade lasers
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We overview the results of recent experimental and theoretical studies of nonlinear dynamics of mid-infrared
quantum cascade lasers (QCLs) associated with nonlinear interactions of laser modes. Particular attention is paid
to phase-sensitive nonlinear mode mixing which turns out to be quite prominent in QCLs of different kinds and
which gives rise to frequency and phase locking of laser modes. Nonlinear phase coupling of laser modes in QCLs
leads to a variety of ultrafast and coherent phenomena: synchronization of transverse modes, beam steering,
the RNGH multimode instability, and generation of mode-locked ultrashort pulses.
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1. Introduction

Quantum cascade lasers (QCLs) have made extremely
rapid progress and have reached a remarkably high level
of maturity over the last decade. Mid-infrared QCLs
were demonstrated to operate in the continuous wave
regime at or above room temperature with multiwatt
power output and increasingly high wall-plug efficiency
[1-4]. Terahertz QCLs are operating at increasingly
longer wavelengths reaching hundreds of micrometers
[5,6]. As the devices become more mature, the time is
getting ripe for in-depth studies of the nonlinear
dynamics of laser modes in QCLs and its potential
applications for multimode operation, nonlinear fre-
quency mixing, frequency and phase coupling of laser
modes, mode locking, pulsed operation, and frequency
combs. The purpose of this paper is to review recent
progress in this area and outline major challenges and
prospects for future development.

Nonlinear dynamics of laser modes in QCLs has
several peculiar features. Coupling of mid/far-infrared
radiation with the active region in QCLs is
extremely strong due to a large matrix element of the
optical transitions between electron states in coupled
quantum wells. This strong coupling, in combination
with high intracavity laser intensity reaching several
MW cm™2, enhances a variety of nonlinear optical
effects.

One universal nonlinearity inherently present in all
kinds of lasers is the nonlinear saturation of the gain
transition by laser modes which have inhomogeneous
intensity distribution over the spectrum and over the
spatial volume of the cavity. The inhomogeneous

saturation leads to spectral and spatial hole burning,
which, in turn, gives rise to multimode operation and
nonlinear coupling between laser modes. This non-
linear coupling is phase sensitive and under certain
conditions may lead to frequency and phase locking of
laser modes. The latter process usually requires that
some laser parameters, such as gain or losses, are
periodically modulated, either externally or through
the presence of some other nonlinear element in the
cavity. It was recently shown [7-9] that phase locking
of lateral modes in QCLs can be achieved spontane-
ously, due to the saturation nonlinearity of the gain
transition alone. This effect turns out to be surprisingly
robust; in many cases it leads to complete synchroni-
zation of lateral laser modes over a broad range of
injection currents. The synchronization manifests itself
as merging of combs of longitudinal modes into a singe
equidistant comb and is accompanied by strong beam
steering effects. This remarkable stability of the trans-
verse mode locking is the consequence of another
peculiar feature of QCLs: ultrafast gain recovery time
of the order of 1 ps [10]. This timescale is much shorter
than the cavity roundtrip time and the photon lifetime,
which makes the QCL a class A laser [11], the only
solid-state laser in this class. Ultrafast gain recovery
time leads to overdamped relaxation oscillations,
which stabilizes phase locking, as compared to class
B lasers where phase locking of transverse modes is
more difficult to achieve because of prominent relax-
ation oscillation resonance [12]. We overview recent
results on the transverse mode locking in QCLs in
Section 2.
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Section 3 reviews recent work on the phase locking
of longitudinal modes and generation of ultrashort
pulses. The same mechanism which facilitates phase
coupling of transverse modes, namely ultrafast gain
relaxation, presents a fundamental obstacle for single-
pulse operation in the mode-locked regime. Fast gain
recovery damps any perturbation of light intensity in
the cavity and prevents the formation of a stable pulse.
In the modal language, the modes may be phase-
locked, but they are locked to ‘wrong’ phases corre-
sponding to a quasi-continuous wave output.
Although in recent work [13] active mode locking by
gain modulation in a short section of a QCL cavity has
been demonstrated near laser threshold, passive mode
locking remains an elusive goal. Still there is hope to
achieve passive mode locking in the fully coherent
regime when the timescale of Rabi oscillations of the
population inversion and laser intensity becomes
shorter than the dephasing time of the optical polar-
ization; see [14-16]. Another possible avenue is to
design lasers operating at the forbidden intersubband
transition (e.g. diagonal in space) with very long
relaxation time such as the device employed in [13].

2. Nonlinear coupling of transverse modes in QCLs

Recent studies [7-9] have shown that broad waveguide
area QCLs capable of supporting several lateral modes
often exhibit coherent effects in their modal dynamics,
once a certain level of injection current has been
reached. The intermodal coherence results from phase
sensitive coupling of transverse modes through the
inherent nonlinearity of gain saturation in the cavity.
This can be observed as modal interference, which has
as a consequence beam steering and asymmetry of the
near field. The changes in the beam pattern occur and
disappear suddenly, with a slight change of the
injection current. These sudden changes in the beam
shape are accompanied by changes in the laser spec-
trum. If the losses of the different transverse modes are
similar, it is possible to achieve self-synchronisation of
all the active modes in the cavity, with a constant phase
relation between them.

Phase coupling of transverse laser modes has been
extensively studied before, with the most recent surge
of interest on this topic stimulated by applications in
communications and optical information processing
(chaos synchronization, control of pattern formation,
spatial and polarization entanglement), see e.g. [17-20].
In all cases the synchronization was achieved by
modulation of laser parameters, external optical feed-
back, or by coupling many lasers into laser
arrays. QCLs seem to be unique, at least among

solid-state lasers, in being able to maintain stable phase
locking of transverse modes without any stabilizing
elements, likely due to the combination of ultra-strong
nonlinearity associated with intersubband laser transi-
tion and overdamped relaxation oscillations. When
compared with other semiconductor lasers, their
salient features and in particular the mechanisms of
phase locking are quite different from the relevant
properties of QCLs. In diode lasers, the locking is
primarily due to density modulation of free carriers,
which is proportional to the linewidth enhancement
factor «. In QCLs the total electron density is not
affected by the laser field and the « factor is much
smaller. In this case the mode coupling is due to gain
saturation across an intersubband atomic-like laser
transition and the concomitant strong spatial hole
burning, which favors multimode operation. Thus,
studies of modal phase coherence in QCLs add a new
dimension to this actively developing field and open up
new potential applications in the mid-infrared and
terahertz range, such as beam control and combining,
electrical or optical switching/modulation, and free
space communications; see e.g. [21-25].

The dynamics of the transverse modes can be
described by a simple model that still captures the
effect of phase-sensitive modal interactions.

First, we assume that the transverse and longitudi-
nal dependence of the electromagnetic fields of the
modes can be separated and the transverse dependence
is further decomposed into the quasi-orthogonal
waveguide modes of the ‘cold’ cavity:

E= Z ei(t,2)Ef(ry), (1)

where r, is the position vector in the cross-section of
the waveguide and z is the coordinate along the cavity.
The transverse distribution of the waveguide modes is
calculated using COMSOL software for real device
geometries used in experiments.

We introduce slowly varying complex amplitudes
of the electric field:

[a; exp(—iwot +1Biz) + c.c.], ()

N —

e =

where o is the laser transition frequency and g; is the
propagation constant of the ith mode. When needed,
the plane wave dependence of the longitudinal modes
can be replaced by a more realistic structure, counter-
propagating modes are added, etc.

Next, we model the active region. Although the
band structure of the laser involves multiple energy
subbands and complex electronic transport (see for
example [26,27]), for our purposes of studying the
nonlinear dynamics of coupled modes the material gain
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Figure 1. (a) Active region of one of the lasers used in mode locking studies reported in Section 3. The active region design
follows the one described in [28]. (b) Its approximation by a four-level active laser medium. Bold arrows indicate electron
transport due to LO phonon scattering and tunneling; wiggly arrow shows laser transition between states marked 3 and 2. (The
color version of this figure is included in the online version of the journal.)

can be reduced to a two level medium, i.e. the standard
Maxwell-Bloch equations.

Indeed, the electron flow through the typical active
region of a QCL shown in Figure 1(a) can be roughly
approximated by a four-level laser scheme as in
Figure 1(b). The four-level scheme can be further
reduced to the effective two-level scheme [11] if we take
into account that the scattering time from lower laser
state 2 to state 1 is very short (~0.2 ps) due to resonant
LO-phonon emission. Therefore, state 2 stays almost
empty and we can neglect its population. Then one can
write the equation for the population inversion
D = N3 — N, between laser states 3 and 2 as shown
in the second equation in Equations (4), where
Ty =y I'is the effective relaxation time for population
inversion which can be expressed through the pumping
rate R and scattering rates r3; and r3, from state 3 to
states 2 and 1 as y; = R+ r3; +r3. The population
inversion D, supported by pumping in the absence of
laser generation is given by D, >~ RN/(R + r31 +r32),
where N is the total electron density in the active
region. Note that in this approximation the population
inversion D, is always positive, even for an arbitrary
small injection rate, and the value of Dy, is proportional
to the pumping rate R for small R.

The optical polarization is expressed through a
slowly varying amplitude o of the off-diagonal element
of the density matrix as

P = Nd[o exp(—iwyt) + c.c.]. 3)

By integrating Maxwell’s equations over the
cross-section A7 of the waveguide, making use of
the quasi-orthogonality of the modes, and eliminating

the fast oscillating terms (rotating wave approxima-
tion), we obtain

do id
- =—-5-D ) Ea,
TR LD

oD id
ST VID = Dy) === (@0 —ao”), (4)

ot
oa; * da; . 4riwgNd
ﬁ_i_iﬂ—l_(lci—"_lACi)ai:%J ok;dA,
ot i oz widr )4

where d is the dipole moment of the laser transition,
Aci = we; — wy 1s the detuning of the ith mode from the
central frequency wy, u; is the modal refractive index,
and T, = y7! is the relaxation time for the optical
polarization.

We can simplify the equations further, by recog-
nizing the extremely fast relaxation times of the
polarization and population variables, which are
enslaved by the field variables and can be eliminated
adiabatically: do/df =0 and population dD/dt =0
(class-A laser) [11]. We expand the polarization term in
power series with respect to the field amplitudes and
retain only the two lowest order terms (the x¥
approximation). The resulting equations of motion
form a system of coupled nonlinear differential equa-
tions for the time dependent complex amplitudes of the
modes. If necessary, the amplitude and phase fluctu-
ations can be added phenomenologically.

The longitudinal structure corresponding to each of
the transverse modes is conformed by a large number
of longitudinal modes which can be averaged under a
mean-field approximation. This is done by averaging
the last equation over the z coordinate. All the losses,
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including mirror and waveguide losses, are incorpo-
rated into the total modal losses «;. In this approxi-
mation the final form of the equation of motion for the
ith mode becomes:

da; . g N
d_tl + (ki +ide)a; = glia; — Is ; ajaraiGijt,  (5)

where the material gain and saturation intensity are
defined by

_ 21’[0)() Ndsz

_ nyyy. ©)
vl

k] S dz .

Here the overlap integrals are defined as

IARSEIZ dA4 1 J 5
! J‘ATEEIZ dA4 ! AT ARS ! ( )
1

G[/‘k/ = J 8E,~E/~EkE1 d4, (8)
AR

41(0,0,0,0)"?
where AR is the cross-sectional area of the active
region. The factors Gy, are symmetric with respect to
any permutation of the sub-indices, which is clear from
the definition, Equation (8). The symmetry simplifies
the numerical calculations. The values of the factors
Gr depend on the device geometry and they can be of
either sign.

The second term on the right-hand side of Equation
(5) describes the phase-sensitive nonlinear coupling
between different modes which can lead to their
frequency and phase locking. This process competes
with the effect of waveguide dispersion and losses
described by the complex detunings (the second term
on the left-hand side of Equation (5)).

As the final step we add phenomenologically a
noise term to the equations. The class-A dynamics of
QCLs modifies the noise analysis in this kind of laser
from that of standard semiconductor lasers. The
analysis can be further complicated by the correlation
of photons through the reuse of electrons while they
travel inside the cavity. The specifics of noise correla-
tion effects are discussed in the literature [29,30].

In our analysis we concentrate on the simplified,
phenomenological model of amplitude fluctuations,
since it is this kind of noise that has the strongest effect
on the modal stability [9]. The origin of these fluctu-
ations is the stochastic nature of spontaneous emission.
The effect on the modal dynamics of this noise is more
important during the field build-up inside the cavity,
during which the coherent amplitude and the noise are
of the same order. Its importance decreases once the
field amplitudes approach steady state. The impor-
tance of the fluctuations is more pronounced in

bistable lasers, since the final state strongly depends
on the initial conditions.

The noise enters our analysis as an extra equation,
with a stochastic source term added to the complex
field amplitude,

ai(t) — ai?t) + agi(1). )

The noise term has the following characteristics:

(&) =0,
[(Ei(0)&; (1)) = 8;8(t — 1').

Here a is the noise amplitude and &(¢) is a stochastic
process, with a complex uniform distribution function
and 0 < |&()| < 1.

Experiments with buried heterostructure QCLs
show coherent interaction of the transverse modes. In
our studies the observed near and far field patterns
were fitted to three cavity modes. The relative inten-
sities and phases of the modes change depending on the
injection current, but a fixed set of transverse modes
was used to explain the transverse behavior for any
injection current.

Measurements of the near and far fields of a mid-
infrared laser operating at a wavelength A= 7.0 um are
presented in Figure 2, the width of the active region is
12.35 um and is shown on Figure 2(a). The experiments
were realized at room temperature in a pulsed mode
operation with a repetition rate of 80 kHz. Far field
and near field measurements were performed for a
range of injection currents, with a fixed pulse duration
of 125ns. The same measurements were taken for
different pulse durations, while maintaining a constant
injection current of 1 A. Details of the setup and the
NSOM apparatus used for the near field measurements
can be found in [31].

The beam measurements from Figure 2(c), com-
plemented by spectral measurements, show that the
laser operates in three transverse modes. The modes
TMgyy, TM(; and TMg, were used to fit the near and
far fields shown. The asymmetry of the laser profile
can only be explained by the interference between
modes. The coherent interaction of the modes persists
over a wide range of injection currents. In wider active
regions the phenomena was still observed, and the
number of modes remained equal to three, but higher
order modes were present [7].

Thermal effects can modify the refractive index and
lead to distortion of the transverse field in QCLs [32].
In this case the asymmetry can be explained as a
interference of two lowest order transverse modes [21].
In our experiments thermal effects can be observed for
longer current pulse durations, which change the
transverse beam shape, as is presented on Figure 2(c).

(10)
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Figure 2. Near and far field measurements of a buried heterostructure QCL, with a repetition rate of 80 kHz. (¢) The waveguide
structure of the QCL. (b) Near field measurements with a 125ns pulse duration and varying the injection current. (¢) Pulse
duration variation with a 1 A injection current. (d) Injection current variation with a 125ns (1% duty cycle) pulse duration
(from [7]). Reproduced with permission from Yu et al., Phys. Rev. Lett. 2009, 102, 013901. Copyright (2009) by the American
Physical Society. (The color version of this figure is included in the online version of the journal.)

(@) 56 ® ., 1 :

T T (¢)1.0

———— ] 175A
| 2.96A 0.8
3.2 E 12 W 275A 0.6
= 281 12964 o SO L L 2sA 5 04
g 54l 275 & 10 N i'iiA g o2
E SZQA E I N 1.75A é 0.0
E 201 : E 8 : £
5 204 8 _WMWWWWMMMMM 15A & 888 899 9.00 9.01 9.02 9.03
> 161 T IS N DA T 1.0A
‘@ 1.4A 2 1 E @ E
§ 127 13a é 4l oo 111 Y- 12a g 08
< 08/ 1'?2 = e W N—_ | 11a £ 06
J Ton 5 P Y'Y 0.4
0.4 1 ooa N _losa 02
0.0 4 0.87A 0 - M"’*hl._ 0.87A 0'0
-80-60-40-20 0 20 40 60 80 87 8.8 8.9 9.0 8.86 888 890 892 894 896
Angle [deg] Wavelength [um]

Wavelength [um]

Figure 3. Laser measurements in the pulsed regime with different stability regions marked with different colors. (a) Far field
measurements. (b) Spectra measurements. (¢) A detail of the spectrum showing the merging of the combs of multiple transverse
modes into a single comb, while the laser still operates in multi-transverse mode regime (from [8]). Reproduced with permission
from Wojcik et al., Phys. Rev. Lett. 2011, 106, 133902. Copyright (2011) by the American Physical Society. (The color version of

this figure is included in the online version of the journal.)

The observed asymmetry of the field disappears for
longer pulse durations. The same effect can be
observed at higher injection currents, including the
roll over region, as seen in Figure 3. In terahertz QCLs,
a different transverse effect was observed, the mode

hopping between two modes through domain forma-
tion [24]. To distinguish between the regimes, a spectral
analysis is necessary. In general a mixture of both
effects can be expected, resulting in a combination of

coherent and incoherent modal m

ixing.
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The phases of the transverse modes presented in
Figure 2 were correlated but their spectral combs
remained distinct. An even more dramatic effect of the
complete mode self-synchronization has been reported
in [8]. In this case the complex spectrum of several
distinct combs of longitudinal modes belonging to
different transverse modes merges into a single comb
while the laser maintains a multi-transverse mode
operation. The transition to this regime occurs as a
bifurcation at a certain value of the injection current.
It is accompanied by the transition from the multi-
stability regime where many stable steady-state solu-
tions are possible to the regime where there exists only
one stable steady state with phase coherence between
lateral modes.

An experimental example of such a frequency- and
phase-locked behavior is presented in Figure 3. The
laser used is a buried-heterostructure laser fabricated
by Hamamatsu, with an active region width of
19.4um. This is a high-performance laser based on
three phonon resonance design as reported in [13,33].
It is operated at room temperature in a pulsed mode,
with 125ns pulse length and 80kHz repetition rate.
Starting from threshold, this laser shows three lateral
modes: TMg, TMy;, and TMy,, and its far field is well
described by an incoherent addition of modal intensi-
ties. The spectrum consists of at least three distinct
combs of longitudinal modes, each comb belonging to
a different lateral mode. At about 1.5A, both the
spectrum and the far field undergo a drastic change.
The spectral combs merge into a single comb
(Figure 3(b)), as if only one lateral mode is present.
Detailed analysis reveals three distinct RF peaks below
the locking transition which correspond to the round-
trip frequencies in three combs. Only one such peak
exists above the locking transition. At the same time,
the far field pattern becomes very asymmetric and
shifts by about 30° off the waveguide axis (Figure 3(a)).
This far field indicates the presence of all three lateral
modes whose combs become completely synchronized.
Again, we verified that the far field can only be fitted
by a coherent addition of the fields of all three lateral
modes with fixed mutual phases. Any incoherent
addition of mode intensities cannot lead to the
observed asymmetric distribution because all lateral
modes are symmetric with respect to the waveguide
axis.

The experimental results can be studied through
numerical solution of the above modal equations of
motion. The model allows one to study the transient
effects, stability and steady state behavior of the modes
and explain the observed experimental behavior. We
studied the modal dynamics as a function of laser
parameters: gain, losses, frequency detunings, etc. Two
important limiting cases were analyzed: the single

mode and the mean-field approximation. The mean-
field approximation is presented first. In this approach
the detuning variables represent the separation
between adjacent transverse modes, while the longitu-
dinal dependence is averaged out.

Before presenting numerical results we can derive
simple analytic conditions for lateral mode locking [7].
Consider the four-wave mixing process of the type
TMo; + TMg; <> TMgg+ TMq, relevant for the laser
shown in Figure 2. Express the complex amplitude of
the jth mode via its real amplitude and phase as
a; (1) = f; (¢) exp(ig; (1) — i4;t), where 4; = w; — wy is the
detuning of the frequency of a jth ‘hot” mode from the
transition frequency. Here ‘hot’ denotes actual
(unknown) frequencies, phases, and amplitudes of
laser modes with the nonlinear interaction taken into
account. Then Equation (5) yields six equations with
real coefficients for the amplitudes and phases of these
modes. The phase difference corresponding to the
above four-wave mixing process is

d(2¢s —p1 — ¢3)/dt+61 483 — 26>
= —(g/L)[2f} +/5)G11225In 2P 13 + (215 +/3) Gan33 sin 2P3;
+ (T =G 133 sin2®s31 + 2651 /f3 —f3//1)G 1223 5in 3
— @A/ AU +3/11)Grs sin Py
+ (/s =) fiGussin®sy + (fi —f3/f1)f3G1333 sin @],
(11)

where indices 1, 2, and 3 correspond to modes TM,
TMy,, and TMp, respectively, §; = wj — @, P = ¢j—
¢k — (wj —awp)t, and Pz = 2¢0 — ¢ — 3 — QLwr—
w] — w3)l.

From Equation (11) we see that there are two
possibilities to achieve phase locking d(2¢,—
¢ — ¢3)/dt = 0. The first situation is when w; =
w; = w;, 1.e. three combs belonging to different lateral
modes merge into a single comb. In this case the modal
amplitudes f; can be arbitrary as long as they corre-
spond to a steady state. The second possibility is when
the frequencies of the ‘hot” modes are distinct but are
locked to the relation w; + w3 = 2w,. In this case the
modal amplitudes must satisfy the relation f; =f3
whereas the amplitude of the mode 2 (TM,; mode) can
be arbitrary. In both cases, the modal amplitudes have
to be sufficiently large so that the nonlinear term on
the right-hand side of Equation (5) cancels the term
with complex detunings on the left-hand side originat-
ing from the waveguide dispersion of the ‘cold” modes.
These conditions qualitatively agree with the observed
behavior of the amplitudes, phases, and frequencies of
the lateral modes reported in [7-9].

The stability of the lateral mode locking can be
analyzed by linearizing the phase difference in
Equation (11) with respect to the phase-locked
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steady state. There is a well known result [11] which
says that the saturation nonlinearity of the inverted
medium cannot give rise to a stable mode locking of
longitudinal modes belonging to single transverse
mode: the time derivative of the perturbation of the
phase difference in Equation (11) is always positive. To
achieve stable mode locking one has to add interaction
with an absorbing medium (a saturable absorber).
However, this result is no longer valid when the
interacting longitudinal modes belong to different
transverse modes. This is clear from the structure of
Equation (11) where the factors G, on the right-hand
side can be of either sign and the overall sign of the
time derivative of the perturbation can be negative
even if there is no nonlinear element in the cavity other
than the nonlinearity of the gain transition.

We solve the system of coupled nonlinear differen-
tial equations (5) using Matlab. The initial conditions
for the amplitudes are taken as a set of randomly
distributed complex amplitudes, with magnitudes of
the order of 107> in CGS units. This accounts for
the amplification of the cold cavity modes from
spontancous emission. The equations are integrated
until the amplitudes reach either steady state or a
periodic form. We focus on the dynamics of three
transverse modes, which has been the number of modes
observed in the coherent coupling experiments. The
transverse distributions, losses, frequencies, and prop-
agation constants of cold waveguide modes were found
with COMSOL software using the Finite Element
Method and were consequently used to find the
overlap integrals G and I'.

An example of such analysis is shown in Figure 4(a)
for the magnitudes of the complex amplitudes a;. The
nonlinear interaction leads to frequency pulling, merg-
ing the transverse modes into a single frequency with a
constant phase difference between them. This can be
observed from Figure 4(b), where the frequency is the
slope of the phase. Experimentally this effect corre-
sponds to the merging of three combs belonging to
different transverse modes into a single comb, while the
far field pattern shows the presence of all three
transverse modes with locked phases. This is in good
agreement with the results presented in Figure 3(c).
The phase difference between the modes determines the
exact form and the amount of the beam steering in the
far field.

Now we make an assumption which is in a sense
opposite to the mean-field approximation adopted
above. We assume that the longitudinal dependence of
the electric field corresponds to the standing wave
modes in a cold lossless cavity, o sin(N;nz/L.), where
L. is the cavity length and »; is an integer number of
the order of ~1800 for our lasers. This approximation
neglects any z-dependence of modal amplitudes and
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Figure 4. (a) Bistability in modal amplitudes as a function of
gain, normalized to g,. (b) Frequencies of all three modes
lock to two different frequencies, normalized to gy, (from [9]).
Reproduced with permission from Wojcik et al., Opt. Eng.
2010, 49, 111114. Copyright (2010) by SPIE. (The color
version of this figure is included in the online version of the
journal.)

carrier diffusion along z. The equations for the
complex amplitudes Equations (5) remain of the
same form, only the modal index i becomes a double
index counting both transverse and longitudinal
modes. Also, the overlap integrals G, now have to
be taken over the cavity volume. These integrals
contain the product of four sines with different
arguments, so they are non-zero only for certain
values of the longitudinal indices N,.

One example of spectral location of frequencies of
cold cavity modes is schematically shown in
Figure 5(a). The spectrum can be split into the triplets
where each triplet consists of longitudinal modes that
belong to different lateral modes and have different
longitudinal indices. The separation between the
modes within each triplet is determined by the geom-
etry of the cavity. Various cases of the mode alignment
were explored with spectrally resolved near-field mea-
surements in [34]. The lateral modes interact most
efficiently when the overlap integral corresponding to
the four-wave mixing process within each triplet is
non-zero. Even in this case the interaction is weaker
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than in the case of the mean-field approximation
because many interaction paths between the modes
become forbidden. Nevertheless, simulations show that
frequency and phase coupling is still possible.

Figure 5(b)—(d) shows the result of solving
Equations (5) when each of the three lateral modes
consists of five longitudinal modes, resulting in five
triplets. The separation of the modes within each triplet
is about two times smaller than the distance
hen/(negeLe) ~ 0.1 meV between neighboring longitudi-
nal modes. In Figure 5(b) the dynamics of the total
phases @;(f) (a; o exp[i®@;(1)]) of three modes in a
single triplet is shown for six randomly chosen initial
conditions. Each mode is started from a random
amplitude and phase. After the initial time of the order
of the inverse growth rate of laser oscillations,
frequencies of all three modes become locked to a
single frequency independently on the initial condi-
tions. Figure 5(d) demonstrates similar behavior for all
five triplets. Moreover, we found that the evolution of
modes constituting a single triplet is practically the
same no matter how many triplets we included in
the modeling. This allows us to consider in detail the
dynamics of only one triplet.

The dynamics of the modes showed different
regimes, depending on the gain. At lower gain values,
the steady state was oscillatory, while at higher values
the frequencies of the modes merged into a single
frequency and steady state was achieved. This behavior
is presented in Figure 6(a) and (b). The far field
corresponding to the same simulations is shown in
Figure 6(c), for completeness. The amplitude and
frequencies of all stable steady state solutions of
Equations (5) based on a large set of random initial
conditions are presented in the same figure. For a given
gain, we solve Equations (5) starting from a set of
random initial conditions and identifying the steady
states that were asymptotically approached by time-
dependent solutions. The frequency of each mode in
Figure 6 is defined as a derivative of the total phase;
it is constant when the steady state is reached.

Simulations in Figure 6 reveal the existence of a
certain critical current above which there is only one
stable steady-state solution. A remarkable feature of
this solution is that frequencies of all modes are locked
to the same frequency. Below this critical current,
there are multiple steady-state solutions with different
uncorrelated frequencies and phases. This behavior
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is in qualitative agreement with the experimental
results under the mean-field approximation and those
presented in Figure 3. Better agreement can be
obtained by including interactions between different
triplets (see [8]).

3. Mode locking and generation of ultrashort pulses

QCLs have tremendous technological potential and it
would be highly desirable to operate them in the
regime of ultrashort pulse generation. The QCL
spectrum can be broad enough to support sub-
picosecond pulses. Common mechanisms that destabi-
lize continuous-wave (CW) generation and drive lasers
into pulsed operation include gain or Q-switching,
periodic external modulation of gain or loss, and the
presence of an additional nonlinear element in the laser
cavity (saturable absorber), which in effect provides
self-modulation of both real and imaginary parts of
net laser gain [35,36]. In the modal language, periodic
(self-) modulation at frequency equal to intermode
separation frequency or its multiple facilitates non-
linear coupling of frequencies and phases of

longitudinal cavity modes (mode locking). The pulsed
operation emerges when the spectral comb of longitu-
dinal modes becomes equidistant and the EM field
oscillations of modes are added with ‘right’ phases
(zero phases).

Unfortunately, all of the above mechanisms of
pulsed operation are facing a fundamental obstacle
when applied to QCLs: ultrafast gain recovery dynam-
ics. The measured gain relaxation time in QCLs
utilizing a strong vertical laser transition is of the
order of 1 ps [10], which is much shorter than the cavity
roundtrip time (~50 ps in a few mm-long devices) and
the photon lifetime (~10ps). This unique feature
enables ultrafast modulation of QCLs since it elimi-
nates the relaxation oscillation peak in the high-
frequency response [37,38]. At the same time, ultrafast
build-up of laser field in the cavity makes gain or
Q-switching methods of pulsed operation ineffective
since it prevents accumulation of the EM field energy
in the pulse. Recently demonstrated gain switching in
terahertz QCLs required a sophisticated scheme imple-
menting sub-picosecond turn-on of laser gain through
the use of a femtosecond laser and an integrated
Auston switch [39].
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The situation is even worse with pulsed generation
schemes that utilize CW pumping and periodic mod-
ulation of laser parameters. Here the analysis based on
rate equations shows that to achieve stable single-pulse
operation the gain should remain saturated by the
pulse and stay below CW lasing threshold during the
time the pulse traverses the cavity. It is impossible to
achieve single-pulse operation through active or pas-
sive mode locking if the gain recovers from its
saturated value to a small-signal value much faster
than the cavity round-trip time. Although locking of
cavity modes to equidistant frequencies and constant
mutual phases is still possible under these conditions,
the modes are locked to ‘wrong’ phases which corre-
spond to a random output rather than isolated pulses.
In the pioneering work [40] a sharp peak in the
microwave spectrum at the cavity round-trip frequency
was observed, which indicated the presence of coherent
self-pulsations at the intermodal beat frequency, or, in
other words, phase coherence between longitudinal
modes that existed over the timescale of many thou-
sand round-trip times. It was argued that self-mode
locking was achieved due to the presence of saturable
absorption mediated by the resonant Kerr effect in the
active laser medium: the radiation spectrum was
concentrated on the blue side of the gain resonance
where the intensity dependent contribution to the
refractive index was positive. As a result, the transverse
mode experienced focusing to the waveguide axis with
increasing intensity, and therefore its losses due to
overlap with metal waveguide walls decreased.
However, no pulse measurements were attempted in
that work.

Frequency and phase locking between combs of
longitudinal modes belonging to different lateral
modes has been achieved in recent work reviewed in
Section 2. Although there was no attempt to make
time-resolved measurements in those experiments as
well, numerical modeling indicated that phase coher-
ence did not lead to formation of isolated pulses.
Instead, simulated lasers either showed quasi-CW
output originated from addition of many sinusoidal
oscillations with different phases, or randomly
switched between several steady states.

A breakthrough in QCL mode locking has been
reported in [13.,41]. In that work, a specially designed
QCL with a ‘superdiagonal’ transition between widely
separated electron states was employed. The upper
state lifetime was of the order of 50 ps, i.e. comparable
to the round-trip time. Although the gain recovery
dynamics still had fast timescales related to the lower
state depopulation and transport across the injector,
the presence of a long timescale facilitated mode
locking. Furthermore, the injection current was mod-
ulated at a frequency resonant to the cavity round-trip

DC+RF DC

Figure 7. Configuration of the actively mode locked QCL
(from [13]). (a) The geometry of the actively mode locked
laser. (b) Both RF and DC components of the current are
applied to the short section. In the longer section only the
DC current is applied. Reproduced with permission from
Wang et al., Opt. Express 2009, 17, 12929. Copyright (2009)
by the Optical Society of America. (The color version of this
figure is included in the online version of the journal.)

frequency only over the short section of the laser
cavity, as shown in Figure 7.

Isolated mode-locked pulses of 3 ps duration were
measured by interferometric autocorrelation technique
when the laser was pumped just above threshold. With
increasing CW component of the injection current, the
pulses disappear because the RF modulation is not
capable of keeping the gain below threshold. This work
underscores difficulties in achieving robust active mode
locking, while passive mode locking still remains a
challenge.

A possible way to achieve ultrashort pulse opera-
tion in QCLs with fast gain recovery is to utilize
coherent mechanisms of mode locking which go
beyond rate equation approximation and do not rely
on the saturation nonlinearity. This happens when the
timescales of coherent interaction processes between
laser light and active medium become shorter than the
dephasing time 7, of the optical polarisation. Such
timescales may include the pulse duration, the build-up
time of laser oscillations, or the period of Rabi oscilla-
tions of the population inversion and laser intensity.
Because of a large matrix element of the intersubband
laser transition this may actually happen at modest
intracavity intensities easily reachable in QCLs.

An interesting theoretical and practical question is
whether QCLs can be self-mode locked if the inter-
action of the radiation pulse with active medium and
saturable absorber is coherent, i.e. the pulse duration is
much shorter than the dephasing time of the optical
polarisation at both amplifying and absorbing transi-
tion. Coherent pulse propagation in two-component
media has been studied for over 40 years.
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Numerical simulations reviewed in [42] show that an
isolated stationary pulse can be formed and the
shortest duration is reached under the conditions of
self-induced transparency (SIT) [43], i.e. when the pulse
area corresponds to a m-pulse in the amplifying
medium and a 2m-pulse in the absorbing medium.
A stationary pulse could also form when only the
interaction with an amplifying medium is coherent;
however, in this case its shape will be asymmetric and
complicated.

The possibility of stable passive mode locking in
lasers with saturable absorber under SIT conditions
has been shown theoretically by Kozlov [44]. In the
recent paper [16] these ideas were applied to QCLs and
the specific QCL design implementing SIT conditions
in both amplifying and absorbing parts of the laser has
been proposed. A nice feature of this approach is that
it requires that the gain relaxation time 7', be much
shorter than the cavity round-trip time, i.e. fast gain
relaxation inherent to QCLs is an advantage rather
than an obstacle in this case. Unfortunately, numerical
simulations presented in [16] show that the laser in
such a SIT mode-locked regime does not self-start: it
requires seeding with pulses shorter than 7 with area
larger than approximately 7. For typical QCL param-
eters this implies seeding with pulses of < 1 ps duration
and intensity at the level of at least a few MW cm 2.

Another intriguing possibility to achieve passive
mode locking under self-starting conditions in multi-
mode lasers is to utilize the RNGH instability, named
after the initials of the authors who predicted it in the
late 1960s: Risken and Nummedal [45] and indepen-
dently Graham and Haken [46]. The origin of this
phenomenon is the oscillation of the population
inversion at the Rabi frequency Qgapi in the coherent
regime, i.e. faster than (7} Tz)l/z, which takes place
when the intracavity laser intensity becomes suffi-
ciently large. This results in a nonlinear deformation of
the gain spectrum and the emergence of sidebands
separated from the maximum of the small-signal gain
curve by an amount corresponding to the Rabi
frequency. These sidebands can be regarded as a
manifestation of parametric instability of the central
mode tuned to the peak of the small-signal gain. The
process is sometimes called the second laser threshold
as opposed to the first threshold corresponding to the
onset of lasing. The small-signal gain corresponding to
the second threshold is at least nine times higher than
the first threshold. A similar destabilising mechanism
with the same threshold operates in single-mode
homogeneously broadened lasers [47], where, however,
an additional requirement has to be fulfilled: the
photon lifetime in a cavity must be shorter than the
dephasing time 7. In other words, the gain linewidth

should fit within the cavity linewidth; see [11] for
review.

Although the RNGH instability was predicted
more than 40 years ago, its experimental demonstra-
tion remained debatable for decades [48-53].

The lack of an unambiguous experimental obser-
vation can be explained essentially by two reasons.
First, the laser must be pumped approximately nine
times above the lasing threshold for the RNGH
instability to be observed [45,46]. This result, which
can be established analytically, suggests that other
nonlinearities or instabilities kick in before the RNGH
mechanism becomes relevant. The second reason is the
fact that for many lasers, the Rabi frequency is usually
smaller than or comparable to the separation between
adjacent longitudinal cavity modes. In other words,
there are no modes within the unstable region of the
spectrum.

If the RNGH instability does develop, it may lead
to the multimode generation of frequency- and phase-
locked modes. In [54] this mechanism was invoked to
explain apparent self-mode locking in a ring fiber laser
[50], which is a class-B laser with slow relaxation of
inversion. The coupling occurs through parametric
resonance between Rabi oscillations and the beatnote
frequency of adjacent cavity modes. It was not entirely
clear, however, how to explain the fact that in
experiments the mode locking started at pumpings
much lower than nine times the first laser threshold. In
class-B lasers the presence of even weak saturable
absorption can initiate conventional mode locking
before the RNGH instability has a chance to develop.

In recent papers [14,15] the unambiguous observa-
tion of the RNGH instability was reported in different
kinds of QCLs. It was shown that class-A lasers such
as QCLs are ideal candidates for observing the RNGH
instability because the conventional mechanism of
instability of the CW operation based on saturable
absorption is strongly suppressed by ultrafast gain
relaxation. Moreover, it was found that the presence of
a saturable absorber dramatically lowers the threshold
of the RNGH instability, so that it can start almost
immediately after the first laser threshold. Figure 8
shows one example of measured spectra which clearly
shows generation of sidebands separated by twice the
Rabi frequency. The waveguide was only 3 um wide;
therefore any nonlinear phase coupling mechanism
related to interaction of multiple lateral modes is ruled
out.

The surprising feature of the laser shown in
Figure 8 and other lasers studied in [14,15] is a low
instability threshold. For the laser in Figure 8 the
current at the RNGH threshold is only 1.2 times higher
than the current at the first laser threshold. One
possible explanation is the presence of saturable
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Figure 8. (a) Optical spectra versus injection current in CW
regime at 300 K with a 3 um-wide buried heterostructure
laser emitting at 8.47 pm. (b) Spectral splitting and twice the
Rabi frequency rabi/2m versus square root of output power
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Wang et al. Phys. Rev. A 2007, 75, 031802. Copyright (2007)
by the American Physical Society. (The color version of this
figure is included in the online version of the journal.)

absorption due to the Kerr effect, similar to the devices
studied in [40]. This suggestion is supported by the fact
that the RNGH instability is observed only in lasers
with narrow waveguides.

Below we derive some analytical results illustrating
the main features of the RNGH instability. For
simplicity we present the results for laser radiation
propagating in one direction (a ring cavity laser),
neglecting the grating of population inversion formed
by counter-propagating waves in a Fabry—Pérot cavity.
This neglects the effect of spatial hole burning (SHB)
which also leads to a multimode generation and which
is actually quite important in QCLs. In [15] both
RNGH and SHB instabilities are included and it is
shown that they can be analysed independently. The
treatment of the RNGH instability of unidirectional
waves presented below is slightly more general than in

[15] because here we do not assume that the steady
state solution is constant in space and perturbations
are plane waves along the cavity.

Since we are interested in the coherent and ultrafast
processes, the polarisation and inversion of the gain
medium cannot be adiabatically eliminated. Therefore,
we start from the full set of Maxwell-Bloch equations
in a two-level medium for slow amplitudes and in
dimensionless form, in which we split complex ampli-
tudes of the field and polarization into real amplitudes
and phases. We will generally follow the technique
described in [55].

de  de . 1 1 qe
—+——2f<psm<1>—§ne—§m), (12)

dz ot
dp Oy
b r__ 13
e e 2fpcos @, (13)
ap .
i g[(1/2)nesin @ — p], (14)
oy
P = Ap + (1/2) gnecos @, (15)
on .
E:d—n—Zpesm(D, (16)

e(0,1) = RiRye(2L, 1), ¢(0,1) = (2L, 1). (17)

Here n is the normalized inversion, d is the inversion
supported by pumping in the absence of generation;
slow amplitudes of the electric field and polarisation
are suitably normalized and defined as

1
E= Eeexp[i(a)t —kz+ @) +cc.,

1
P= Ep expli(wt — kz + ¢)] + c.c. (18)

The electric field is normalized according to
¢ = pe/T1T>/h, wherep is the dipole moment of the
gain transition, and all dependent variables and
parameters are made dimensionless using 7' and v,
where v is the phase velocity of a given waveguide
mode. For example ¢ =1¢/T), z =z/(vT;), and all
primes are dropped in the above equations. Other
parameters introduced above are 4 = Ti(w— w,),
where w, is the central frequency of the gain spectrum,
S=T/T,, g=T1/T>, n=oaw/oy, ¢=oa/o;, T, the
photon lifetime in a cavity, «,, the waveguide losses, o,
the unsaturated losses due to absorber, 7, the satura-
tion intensity of the absorber, o« = oy + a,+
(1/D)In[1/(R1Ry)] = 1/(vTp) the total small-signal
losses, L the cavity length, R; » the amplitude reflection
factors of the cavity mirrors. Unless specified



Journal of Modern Optics 739

otherwise, in all plots below we assume 7 = 2ps,
T, =0.05ps, To=5ps, L=2mm, I,=2.

We will assume the field to be split in a set of
longitudinal modes: w; = w4+ 2nj/T, where T'=2L/v
is the round-trip time in a cavity, j is integer.

Consider for simplicity the stability of the jth mode
with zero normalized detuning 4; =0, i.e. the mode
tuned to the center of the gain spectrum. For this
mode the stability for the amplitude and phase
variables can be studied separately, because in the
steady state cos @ = 0, i.e. there is /2 shift between the
CW field and polarisation. Consider amplitude equa-
tions in Equations (12), (14) and (16). First, we find the
non-trivial steady state solution (denoted with a bar
below) corresponding to a stable CW generation by
dropping all time derivatives and solving the resulting
differential equations with respect to z. We write
e = e + ¢ and the same for p and n. Then we linearize
with respect to variables with tilde and take the
Laplace transform

(o¢]

e(z,s) = Jo e(z, t)exp(—st)dt

and the same for p and n, and finally obtain for
Laplace transforms e(z, s), p(z, s), and n(z, s):

1 1‘19(1 —1—)

0 :
—e+se:2f p—=ne—=

oz 2 2 (1+%>2 +e(z,1=0),

(19)
1 - )
sp = E(gke +gke —gp +p(z,1 = 0), (20)

sn=—n—2pe—2pe+n(z,t =0). 21

Then we eliminate p and n in Equations (19)—(21) and
solve the resulting differential equation for e(z,s). Of
course we cannot completely integrate it because
barred variables are integrals over z themselves.
However, we do not need the answer fully integrated.
Instead, we notice that using the boundary condition
the solution for the Laplace transform e(2L,s) can be
written as the ratio of two quasi-polynomials:

(L, s)

e(2L,s) = m,

(22)

where I'(2L,s) contains complicated integrals over
initial distributions of e, p, and n that we do not need
to know, while

2L
$(2L,s) =1 — RR, exp(—J F(z) dz), (23)
0

where

_ (1—(*/L))
F(z)=s+fn+fq 7(1 n (éz/la))z
2fg(s+ 1) [ pe n

(s+os+1)+ge|[s+1 _E]‘ 24)

Taking the inverse Laplace transform and closing
the integration loop in the complex s-plane in the
appropriate way allows us to write

1 o0
éQL, 1) = 5 f 2L, s)exp(st)ds = Y Ciexp(sif),

i=—00

(25)

where s; are roots of the quasi-polynomial (2L, s) that
determine the residues of the integrand in Equation
(25). If at least one of them has a positive real part, this
means instability of CW generation. After some
manipulation, using steady-state (barred) solutions
for e, p, and n in the expression for F(z), we find that
the eigenvalues s; should be the roots of the character-
istic equation

Ii+d—1

S3+52<1+f+g+iQm_M>

+ s<f+ dg+iQu(g+ 1) —f—q(;{ ;B(f;; D)

fagd—1)"

2f -1 'Qm - -
+2/g(d—1)+1Qydg I rd_1

0. (26)
Here Q,,, = 2umT, /T and m is integer. Equation (26) is
the main result of the linear stability analysis. It can be
easily analyzed on a computer and further simplified
because we expect the solution of interest to have an
imaginary part close to —iQ,,. If we write this root as
s = —1Q,, + x and linearise with respect to x, we obtain
the analytic result for x:

D= A +iQ(— A(g+1) —g(d = DS ~ )
Q2 —1Q,(g+ 1 +2(f— A+ f+dg— A(g+1)
27)

where 4 = fq(d — 1)/(I, + d — 1) is a small parameter
characterizing a saturable absorber. Real parts of the
exact solution for s and approximate expression for x
are very close to each other in the region of interest
where the real part of s is greater than zero.

Figure 9 shows the spectrum of the RNGH
instability, namely the instability growth rate normal-
ized by T (real part of x in Equation (27)) when the
pumping is two times above threshold for two values of
the normalized unsaturated losses in the absorber:
q=0 (dashed curve) and ¢=0.2 (solid curve).
The modal frequency along the horizontal axis is
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RNGH gain (Re{x}) normalized to T,

2

Figure 9. Growth rate of the RNGH instability, defined as a
real part of x in Equation (27), as a function of the mode
frequency for d=2 and two values of the normalized
unsaturated losses in the absorber: ¢ =0 (dashed curve) and
¢=0.2 (solid curve). The instability takes place where
N{x} > 0. (The color version of this figure is included in
the online version of the journal.)

converted back to dimensional units and expressed
in THz.

The instability takes place where the real part of x
is positive. The peak growth rate scales roughly as the
Rabi frequency, which for a constant CW field
amplitude and in the absence of a saturable absorber
is equal to Qrapi = [g(d — 1)]"/*. The spectral bound-
aries of the instability regions are the solutions of the
bi-quadratic equation

Q1 —A) - Qgd— D3 -24)+ A(F +g+1)—1]
+g*d(d—1)2—A)=0. (28)

The instability regions are symmetric with respect to
Q,, =0, so we will consider only positive frequencies.
The bifurcation value of the frequency corresponding
to the set of laser parameters when these two bound-
aries shrink to a single point is given by

QB =24+ A(F +g+1—1

Q> =
m 2(1 — A)

Laser parameters corresponding to this bifurcation
(emergence of an instability) can be obtained by
equating the determinant of Equation (28) to zero.
For example, one can find the pumping parameter d
needed to reach the instability threshold as a function
of the unsaturated losses in the absorber ¢. The result is
shown in Figure 10.

As is clear from the figure, with increasing losses in
the absorber the pumping at the instability threshold
approaches the first laser threshold of CW lasing. The
threshold for the RNGH instability also decreases with

N W OO N

d at instability threshold

0.1 0.2 0.3 0.4 0.5
g-Ratio of unsaturated loss to total loss

Figure 10. Pumping parameter d corresponding to RNGH
instability threshold normalized to pumping at CW lasing
threshold as a function of the unsaturated loss in the
absorber ¢ normalized to the total photon losses in the cavity.
(The color version of this figure is included in the online
version of the journal.)

increasing saturation intensity of the absorber and
increasing ratio 7' /7> and T1/T,.

The above analytic theory describes only the linear
stage of the instability. Laser dynamics at the nonlinear
stage has been investigated numerically in [14,15] and
compared with experiment. These studies have shown
that the competing mechanism for the multimode
operation based on the SHB in the Fabry—Pérot cavity
plays an important role in QCLs and in many cases sets
in before the RNGH instability becomes relevant.
Moreover, the SHB mechanism appears to strongly
affect laser spectra and phases of the modes even when
the RNGH instability is prominent. Strong mode
coupling via the SHB nonlinearity could be one reason
why none of the lasers studied in [14,15] showed the
formation of isolated pulses. The interferometric
autocorrelation traces always indicated the random
output. It could be interesting to explore the dynamics
of QCLs fabricated in the shape of a ring cavity and
check if the RNGH instability can lead to pulsed
operation.

4. Conclusions

In conclusion, recent experimental and theoretical
studies show that phase-sensitive nonlinear mixing of
laser modes in mid-infrared QCLs is the universal
phenomenon affecting the devices of various active
region design and overall geometry. Factors that make
nonlinear phase coupling so prominent and stable
include giant saturation nonlinearity of the intersub-
band transitions which facilitates four-wave mixing
interaction and Kerr nonlinearity, high Rabi frequency
of the intracavity field which can be comparable to or
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higher than the relaxation rates in the active medium,
and ultrafast relaxation time of population inversion
across the gain transition, which leads to overdamped
relaxation oscillations.

A particularly interesting case of nonlinear mode
mixing is realized in buried heterostructure QCLs with
wide waveguides which are able to lase simultaneously
on several transverse (lateral) modes with similar
modal losses. At high enough radiation intensities,
the nonlinear coupling between combs of longitudinal
modes belonging to different lateral modes leads to
frequency and phase locking of multiple lateral modes
(three modes in the experiment). In some cases this
locking results in a complete synchronization of lateral
modes when three combs merge into a single comb
whereas the far field pattern experiences a strong beam
steering effect. Transverse mode locking originates
from the four-wave mixing interaction with the satu-
ration nonlinearity of the gain transition only, without
any additional nonlinear element in the cavity or an
external modulation.

The phase coupling of transverse modes can be
affected and controlled by selective inhomogeneous
current injection or by selective modulation of modal
losses through the fabrication of the metallic structure
on top of the laser waveguide. The resulting phase
locked multimode spectrum could be further utilized
for creating stable mid-infrared frequency combs and
various far-field radiation patterns, controlling the
beam quality and beam steering, or facilitating ultra-
short pulse generation.

Narrow waveguide QCLs which support only one
transverse mode demonstrate a peculiar coherent
mechanism of the nonlinear phase locking of longitu-
dinal modes associated with the RNGH instability.
In fact, QCLs seem to constitute the first unambiguous
case of observation of this instability because of the
absence of the competing conventional mode locking
mechanism based on the saturable absorption non-
linearity. However, in all experiments so far the
RNGH-based mechanism of mode coupling did not
lead to generation of isolated ultrashort pulses. The
only demonstrated way to obtain mode-locked pulse
generation at the cavity round-trip frequency is
through the active mode locking, namely an RF
modulation of the current through a short section of
the QCL. Pulsed operation is inhibited by ultrafast
gain relaxation and by the pervasive multimode
instability associated with the spatial hole burning
which seems to be present in virtually all studies of
multimode dynamics of QCLs. It remains to be seen
whether these challenges can be overcome and ultra-
short pulse generation through passive mode locking
becomes possible.
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