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Fluctuation-induced electromagnetic forces between neutral 
bodies become more and more important as micromechani-
cal and microfluidic devices enter submicrometre scales. These 

forces are known by several different names, depending on the 
regime in which they operate, including van der Waals, Casimir–
Polder and, more generally, Casimir forces (of which van der Waals 
forces are special cases)1–4. Casimir forces arise from electromag-
netic waves created by quantum and thermal fluctuations5–21. The 
dramatic progress made in the theoretical understanding and 
measurement of Casmir forces over the past ten years may soon 
allow them to be exploited in novel microelectromechanical sys-
tems (MEMS) and microfluidic devices8,22–24.

Experimentally, Casimir forces have been measured with ever 
greater precision25–34 in microstructured geometries that increas-
ingly deviate from the original parallel-plate configuration26. They 
have even been measured in fluids that allow the sign of the force 
to change35. Theoretically, the calculation of Casimir forces was tra-
ditionally limited to planar or near-planar geometries, but recent 
developments have led to a host of new computational meth-
ods capable of modelling arbitrary non-planar geometries with 
high accuracy36–45. This combined experimental and theoretical 
progress has allowed researchers to design geometries and materi-
als that exhibit force phenomena significantly different from the 
well-known attraction between parallel plates. Such advances may 
lead to new regimes of operation for micromechanical devices8,46 
and may also provide new ways to combat unwanted interactions 
such as ‘stiction’ between moving parts. In this Review, we sum-
marize the basic physics of Casimir and van der Waals interac-
tions, discuss recent experimental systems, outline theoretical 
progress and consider some of the latest predictions of this unusual 
force phenomena.

From van der Waals to Casimir forces
Van der Waals forces are a familiar concept from introductory 
physics and chemistry: two neutral particles have fluctuating 
dipole moments resulting from quantum or thermal effects, which, 
for a particle separation of d, lead to a d–6 interaction energy that 
is commonly used, for example, as a long-range attraction term 
when describing the interactions between atoms and molecules1–4. 
Physically, this attraction arises as shown in Fig. 1a; whenever one 
particle acquires a spontaneous dipole moment p1, the resulting 
dipole electric field (black lines) polarizes the adjacent particle to 
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produce an induced dipole moment p2 ~ d–3  (ref.  4). Assuming 
positive polarizabilities, the direction of the dipole fields means 
that these two dipoles are oriented so as to attract each other, 
with an interaction energy that scales as d–6. This leads to the van 
der Waals ‘dispersion’ force, and similar considerations apply to 
particles with permanent dipole moments that can rotate freely. 
The key to more general considerations of Casimir physics is to 
understand that this d–6 picture of van der Waals forces makes two 
crucial approximations that are not always valid: it employs the 
quasi-static approximation to ignore wave effects, and also ignores 
multiple scattering if there are more than two particles.

The quasi-static approximation assumes that the dipole moment 
p1 polarizes the second particle instantaneously, which is valid if d is 
much smaller than the typical wavelength of the fluctuating fields. 
However, the finite wave propagation speed of light must be taken 
into account when d is much larger than the typical wavelength, as 
shown in Fig. 1b, and it turns out that the resulting Casimir–Polder 
interaction energy asymptotically scales as d–7 for large d (ref. 47). 
More generally, the interaction is not a simple power law between 
these limits, but instead depends on an integral of fluctuations at 
all frequencies scaled by a frequency-dependent polarizability of 
the particles4.

The presence of multiple particles further complicates the situ-
ation because multiple scattering must be considered (Fig. 1b). For 
example, with three particles, the initial dipole p1 will induce polar-
izations p2 and p3 in the other two particles, but p2 will create its 
own field that further modifies p3, and so on. Thus, the interaction 
between multiple particles is generally non-additive, and there is no 
two-body force law that can simply be summed to incorporate all 
interactions. Multiple scattering is negligible for a sufficiently dilute 
gas or for weak polarizabilities4,48, but it becomes very significant 
for interactions between two (or more) solid bodies, which consist 
of many fluctuating dipole moments that all interact in a compli-
cated way through electromagnetic radiation (Fig. 1c). When these 
multiple scattering effects are combined with wave retardation in a 
complete picture, they yield the Casimir force9.

Hendrik Casimir based his prediction on a simplified model 
involving two parallel perfectly conducting plates separated by a 
vacuum. Although the Casimir force arises from electromagnetic 
fluctuations, real photons are not involved. Quantum mechanically, 
these fluctuations can be described in terms of virtual photons of 
energy equal to the zero-point energies of the electromagnetic 
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p • E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p • (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig.  2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ∼100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig.  2c), and therefore the absolute separation (d  −  d0) must be 
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Figure 1 | Relationship between van der Waals, Casimir–Polder and Casimir forces, whose origins lie in the quantum fluctuations of dipoles.  
a, A fluctuating dipole p1 induces a fluctuating electromagnetic dipole field, which in turn induces a fluctuating dipole p2 on a nearby particle, leading to van 
der Waals forces between the particles. b, When the particle spacing is large, retardation/wave effects modify the interaction, leading to Casimir–Polder 
forces. When more than two particles interact, the non-additive field interactions lead to a breakdown of the pairwise force laws. c, In situations consisting 
of macroscopic bodies, the interaction between the many fluctuating dipoles present within the bodies leads to Casimir forces.
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obtained from a calibration procedure8,50. Finally, the electronic 
signal coming out of the measurement set-up must be converted to 
a force. It is therefore necessary to calibrate the instrument with a 
controlled force, usually an electrostatic one.

Accurate comparison between theory and experiments is 
subject to other challenges, particularly at distances below a few 
hundred nanometres. Because the Casimir force depends on the 
optical properties ε of the materials — in particular ε at imaginary 
frequencies — an accurate knowledge of Im(ε) is necessary over a 
wide spectral range. Even though these data are available for met-
als such as gold, they do not correspond to any single gold film but 
rather have been assembled from different authors who have per-
formed measurements on different samples using different depo-
sition processes to cover a large frequency range. A high-precision 
comparison between Casimir theory and measurements would 
require characterization of the thin films actually used in the 
force experiments, and uncertainties in the knowledge of ε alone 
can lead to significant uncertainties in the force calculation52–54. 
Another important factor is a knowledge of the surface rough-
ness, which tends to enhance the measured force with respect to a 
flat surface27,55–57. Accurate surface roughness profiles over a large 

area can be obtained by interferometric methods8 using an opti-
cal profilometer, yielding a statistical model of the roughness that 
can be used to correct the Casimir theory58. Finally, primarily at 
larger (micrometre) separations, there is a temperature correc-
tion to the Casimir force associated with the presence of thermal 
photons16,17,59, which is discussed further below.

For ideal metals and sphere–plate separations d much smaller 
than the sphere radius R, the zero-temperature Casimir force is

(2)FC =−            ħcπ3R
360d3

which is independent of the plate area60. Measurements for dielec-
tric bodies in this geometry were first reported by Derjaguin and 
Abrikossova28. Metallic films are more difficult to use in experi-
ments than dielectric surfaces (which can exploit optical techniques 
for alignment and distance measurements). The first clear experi-
mental evidence of the Casimir effect between metallic surfaces was 
presented by van Blokland and Overbeek34, while the first high-pre-
cision (5% accuracy) measurements were reported by Lamoreaux 

Box 1 | Imaginary frequencies and the disappearance of resonances

Much of classical photonics design centres around narrow-band-
width effects121 such as resonant cavities for filters and enhanced 
light–matter interactions, interference effects such as Mach–Zehnder 
interferometers and diffraction gratings, and even resonances aris-
ing in exotic ‘metamaterials’ that lead to negative effective indices. 
Because the Casimir energy is a result of broad-bandwidth electro-
magnetic fluctuations, most standard photonics phenomena tend to 
cancel out. In particular, looking at the energy or force contributions 
within a narrow bandwidth of ω can be very deceptive. Even if the 
force contributions seem to be dramatically altered within a narrow 
bandwidth, say by a resonant effect, this alteration is usually mostly 
cancelled by contributions at other frequencies. How then, can 
one think about (or even compute) the Casimir force? The answer 
comes from complex analysis: because the force contributions are 
related to causal scattering problems, they are analytic functions 
(no poles) in the upper-half complex frequency plane (Im(ω) > 0), 
and it is mathematically equivalent (by contour integration) to inte-
grate contributions for all imaginary frequencies ω = iκ instead of 
for all real frequencies (that is, in the Laplace domain rather than 
the Fourier domain). At imaginary frequencies, the force contribu-
tions are smooth, mostly non-oscillatory, and exponentially decay-
ing. This is because a field r away from a dipole source oscillating 
at frequency ω is a spherical wave ~eiωr/c/r for real ω, but is expo-
nentially decaying ~e–κr/c/r for ω =  iκ, so at imaginary frequencies 
there are no oscillations, wave interference effects or resonances 
(Fig. B1). Although currents and fields become exponentially grow-
ing quantities in time for ω = iκ, the exponential time dependence is 
not a computational obstacle if the fields are viewed and computed 
in the frequency domain. Correspondingly, the relevant mate-
rial responses are the permittivities ε(iκ) at imaginary frequencies, 
for which all resonant effects disappear; for example, a Lorentzian 
absorption line at real frequencies becomes a monotonically decay-
ing real ε at ω = iκ. This is unfamiliar ground in classical photonics, 
but is crucial for Casimir physics — almost all theoretical work in 
this field relies on such an imaginary-frequency perspective. Thus, 
modifying the Casimir force requires the force integrand to be 
changed over a broad range of imaginary frequencies, in which case 
it is impossible to rely on wave-interference effects like resonances 

or diffraction. For example, metamaterials, which rely strongly on 
resonances to create exotic ‘effective’ materials and were initially 
suggested to strongly alter Casimir interactions122–124, turn out to 
have minimal effect when the full spectrum and realistic micro-
structures are considered125,126.

Figure B1 | Illustration of the conceptual difference underlying 
the physics of narrow-bandwidth classical photonic phenomena, 
best viewed at real frequencies ω, and broad-bandwidth quantum 
electromagnetic fluctuations (Casimir forces), best viewed at 
imaginary frequencies iκ. a, Electric field induced by a dipole source 
oscillating at real frequency ω, showing spatial oscillations that 
decay away from the dipole. b, The field induced by the same dipole 
source evaluated at imaginary frequency ω = iκ (corresponding to an 
exponentially growing dipole in time) is now strictly exponentially 
decaying in space.
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in 1997 using a torsional pendulum and surfaces coated with 0.5-
μm-thick gold31. Figure 2a shows Lamoreaux’s force data for a simi-
lar but more recent experiment33 that corrects for calibration and 
other systematic errors in the original 1997 experiment, showing 
good agreement with the theoretical predictions in the 0.7–7  μm 
separation range. From the data, one can observe that for separa-
tions of ∼< 1 μm, the force due to zero-point energy fluctuations is 
much greater than the Casimir force associated with thermal fluc-
tuations of the electromagnetic field, which scales as kBTR/d2, where 
kB is the Boltzmann constant33. However, the thermal Casimir force 
dominates at separations greater than 3 μm, as can be seen from the 
plateau in Fig. 2a.

In 2002, Bressi et al. unambiguously verified the Casimir force 
in the parallel-plate geometry25 — over fifty years after Casimir’s 
original prediction. In their set-up, the two parallel surfaces 
comprised a chromium-coated cantilever beam that was free to 
oscillate around its clamping point, and a thicker beam (also chro-
mium-coated) that was rigidly connected to a moveable frame, 
thereby allowing the distance from the cantilever to be adjusted. 
The displacement was measured interferometrically with a fibre 
facet on the opposite side of the cantilever, and electrostatic cali-
brations were performed by measuring the voltage between the 
source and the cantilever (which together form a capacitor), or 
alternatively by capacitance measurements using an a.c. bridge. 
The skin-depth of chromium (∼10 nm) is negligible and the ideal-
metal Casimir force of equation  (1) is approximately valid for 
the 0.5–3.0 μm separations used. The measured pressure law was  

~(1.22  ±  0.18)  ×  10–27  N  m2  d–4, which is in good agreement 
with equation (1).

Several additional approaches to high-precision Casimir meas-
urements have been developed so far — primarily for sphere–plate 
geometries — using torsional balances, modified atomic force 
microscope (AFM) set-ups and MEMS.

Experimental techniques have now been sufficiently refined to 
detect patch potentials — small, random variations in the surface 
potential resulting from material strains, impurities and other 
irregularities, which lead to a d-dependent electrostatic potential 
V0 that limits the accuracy of Casimir force measurements. This 
d-dependent V0 was recently unambiguously observed in a number 
of experiments between metal-coated plate and sphere surfaces, 
and has also been systematically modelled51.

AFM-type measurements involve attaching a sphere or cylin-
der (diameter of tens of  micrometres or more) to the cantilever, 
whose distance from another surface is changed using a piezoelec-
tric controller32,50,61,62. The cantilever deflection, which is propor-
tional to the force between the surfaces, is detected by measuring 
the deflection of a laser beam bouncing off the top of the canti-
lever. An advanced AFM experiment50 is shown in Fig. 2c, involv-
ing a 100-μm-radius gold-coated sphere and a metal-coated glass 
plate mounted on a capacitive feedback-controlled piezoelectric 
transducer. This experiment was able to detect a 40–50% decrease 
in the Casimir force at 50–150  nm separations when switching 
between a gold-coated plate and an indium tin oxide (ITO)-coated 
plate50, primarily thanks to the smaller plasma frequency of ITO. 
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Figure 2 | Results and set-ups of various experiments that have measured Casimir forces in the sphere–plate geometry. a, Experimentally measured 
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separation d and plotted in the 0.7–7 μm range33. The force is compared with predictions from Lifshitz theory (red curve). The plateau in the data at 
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dielectric corrections). Inset: Casimir force detection set-up, including a scanning electron microscope micrograph of the torsional device used to measure 
the Casimir force. As the metallic sphere (mounted on the torsional device) approaches the plate, the Casimir force causes the plate to rotate. c, Set-up 
of the sphere–plate experiment of ref. 50, along with definitions of the initial separation (d0), piezoelectric-stage displacement (dpz) and surface–surface 
separation d. The displacement of the sphere is determined by measuring the light reflected from the cantilever. Figure reproduced with permission from: 
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The ability to halve the Casimir force by coating a surface with 
widely available conductive oxides is expected to be important for 
many applications.

The authors of refs 63,64 recently showed that the Casimir force 
spatial gradient between a sphere and a plate can be measured with-
out direct contact, which normally causes irreversible deterioration 
of the probe and the studied surface.

MEMS, typically silicon-integrated circuits with movable parts, 
have proven useful for Casimir force measurements8,65. The inset of 
Fig. 2b shows a prototypical device: a 500 μm2 doped polysilicon plate 
suspended from two of its opposite sides by thin torsional rods. Two 
fixed polysilicon electrodes are located symmetrically underneath the 
plate — one on each side of the torsional rod. The top plate is there-
fore free to rotate about the torsional rods in response to an exter-
nal torque. A schematic of the actuation mechanism based on the 
Casimir force is shown in Fig. 2b. The polystyrene sphere has a radius 
of 100 μm and is covered by a 200-nm-thick gold film. This technique 
has provided force sensitivities of a few piconewtons — comparable 
to that of AFM-type set-ups32,50,61. Figure 2b shows the results of that 
measurement alongside the ideal-metal red curve of equation  (2). 
The difference results from the finite permittivity and surface rough-
ness (tens of  nanometres); theoretical calculations incorporating 
these corrections are in very good agreement with experiments65.

Realistic calculations of the Casimir force must also include 
corrections for non-zero temperatures (the thermal Casimir force), 
and an interesting prediction is that the finite conductivity of a real 
metal, as described by the Drude model, has a significant impact 
on these corrections66. Various experiments, complicated by the 
many uncertainties discussed above, have attempted to observe 
this impact, and controversy has arisen because some experiments 
claim not to observe this correction58,67. However, a recent experi-
ment by the Lamoreaux group33 — the first to report high-precision 
measurements for separations of more than 3 μm, where thermal 
effects are dominant — indicates an agreement with the Drude 
model. In the context of Casimir forces in complex microstruc-
tures, however, most efforts have focused on achieving qualitative 
changes in the force behaviour that are not dependent on the pre-
cise nature of these small (typically <5%) corrections.

Recent theoretical progress
Researchers did not stray far from the parallel-plate geometry in 
the first 50 years after Casimir’s prediction9. Lifshitz, Pitaevski ̆ı, 
Dzyaloshinski ̆ı and others generalized Casimir’s work to arbitrary 
dielectric materials10,11 and eventually to arbitrary multilayer-film 
geometries (where the Casimir force can be related to the classical 
reflection spectrum)68–70. Although exotic materials such as perfect 
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magnetic conductors71 were considered, the geometries remained 
mostly planar. Forces in nearly planar geometries, such as a sphere 
and a plate with separation much smaller than the radius68,72,73 (as 
in equation (2)), were also considered in a lowest-order approxima-
tion known as the proximity force approximation (PFA)60, in which 
the force per unit area of an equivalent parallel-plate geometry is 
summed for all adjacent surfaces (also called a pairwise additive 
approximation). For dilute or weakly polarizable media, alterna-
tive methods employed the Casimir–Polder approximation, which 
involves summing pairwise particle–particle interactions74,75. Only 
a few artificial non-planar geometries admit semi-analytical solu-
tions, such as the hollow perfect-metal spherical shell6,76,77 or the 
‘Casimir piston’, which consists of two perfect-metal blocks sliding 
between perfect-metal walls78–80. Self-energies were computed semi-
analytically for the perfect-metal box6 and sphere configurations76,77 
and seemed to predict a repulsive (expansion-inducing) self-force, 
but these predictions turned out to be problematic: the repulsion 
disappears if the object is cut in half 81 or is cutoff-dependent82, or 
if the box expansion is replaced by the rigid ‘piston’ motion of one 
wall79. A crude timeline of these developments is shown in Fig. 3a.

Over the past ten years, a number of techniques have been 
demonstrated that can accurately predict Casimir interactions for 
arbitrary geometries and materials, limited only by the available 
computational power38. These techniques began with pioneering 
results for corrugated surfaces83 and cylinder–plate geometries84,85, 
and have recently led to solutions for a plethora of complex three-
dimensional structures (Fig.  3a, right). Like the single-particle 
example outlined above, these new techniques ultimately reduce 
to solving many classical scattering problems, such as computing 
the fields in response to a complete set of current sources40,41,44,45 
or incident waves (for example, a set of spherical or plane 
waves)36,39,42,48,85–89. Although the most intuitive connection to scat-
tering problems arises from the physical fluctuating dipoles in the 
materials, most recent techniques have more subtle (but ultimately 
equivalent) derivations ranging from path integrals36,42,90 to the sta-
tistics of photon fluctuations44, all of which reduce the problem to 
a smaller number of scattering problems involving sources or inci-
dent waves only on surfaces around the bodies, instead of within 
entire volumes. These approaches can be crudely divided into two 

main categories: those that are mainly oriented towards semi-
analytical study by exploiting symmetries of specific geometries 
and expanding incoming/outgoing waves in a Fourier-like basis 
(analogous to classical Mie scattering), and those that use localized 
current sources and generic grids/meshes (analogous to finite-dif-
ference/finite-element and boundary-element methods in classi-
cal electromagnetism)40,41,43,45,91. Ref. 38 provides a thorough review 
that emphasizes the connections to classical techniques, including 
two key differences from classical computations: that the results are 
integrated in some fashion over imaginary frequencies, and that 
multiple scattering solutions must also be combined in unfamiliar 
ways to obtain a single force.

Recent theoretical predictions
Although Casimir calculations tend to be more computationally 
intensive than classical photonics simulations owing to the large 
number of classical scattering problems that must be solved to 
compute a single force, recent work has demonstrated that a wide 
variety of highly non-planar geometries can be modelled exactly, 
starting from early solutions for corrugated plate83, cylinder–
plate84, eccentric cylinders88, sphere–plate92 and sphere–sphere36 
geometries, extending to piston-like suspended-waveguide 
geometries93, corrugated dielectrics22,86 and even cones94 and fluid-
suspended objects90,95 with realistic permeable materials. The goal 
of much of this recent theoretical work has been to identify new 
geometries in which Casimir interactions behave in ways that dif-
fer qualitatively from the 1948 monotonic power-law attraction 
between parallel plates and that differ substantially from the PFA 
picture of pairwise surface–surface attractions. A small sampling 
of recent work that exploits the generality of these new numeri-
cal developments, including non-additive or unusual Casimir 
phenomena, is shown in Fig. 3. By breaking translation symmetry 
with corrugated surfaces, one can induce lateral forces83,86. For two 
waveguides sandwiched between parallel plates or suspended above 
a single plate, there is a non-additive effect in which the presence 
of the plate(s) non-monotonically alters the attraction between 
the waveguides as a function of plate–waveguide separation93,96. 
More recently, the ratio of the sphere–plate force at temperatures 
of 0 K and 300 K was found to depend non-monotonically on the 

1.0

1.2

1.4

0.8

1.6

200 300 400 500

d Λ

t

1.22

1.18

150 200

1.14

1.10

1.06

1.02

0.98

250 300 350 400 450 500
Separation d (nm)Separation d (nm)

F’/
F’

PF
A

 

F’/
F’

PF
A

 

–
+

Va.c.1Va.c.2

a b c

400 nm 1 µm

Figure 4 | Experimental and theoretical works on a nanotrench geometry in which the Casimir force deviates significantly from the predictions of the 
PFA. a, Lateral (upper-left panel) and top (upper-right panel) cross-sections of the rectangular trench geometry studied in ref. 26: a silicon trench of 
periodicity Λ = 400 nm and depth t = 0.98 μm is suspended by a distance d above two stacked 50 μm glass spheres mounted on a movable 3.5-μm-
thick, 500 μm2 silicon plate. A schematic of the experimental set-up is also shown (lower panels). b, Ratio F’/F’PFA of the measured Casimir force gradient 
between the sphere and the grating to the force gradient expected from the PFA, for samples A (2Λ/t = 1.87, circles) and B (2Λ/t = 0.82, squares), 
respectively. The Casimir force gradient was measured from the shifts in the resonant frequency of the oscillator (movable plate) and the results show 
strong (up to 20%) deviations from the PFA predictions. Theoretical values obtained in the ideal case of perfectly conducting surfaces110 are plotted as 
the solid (2Λ/t = 2) and dashed (2Λ/t = 1) lines. The experiment shows conclusive evidence of the strong geometry dependence and non-additivity of 
the Casimir force. c, F’/F’PFA for samples A (blue circles) and B (green squares) computed using a recently developed scattering method that incorporates 
material (experimental ε) effects86. Figure reproduced with permission from: a,b, ref. 26, © 2008 APS; c, ref. 86, © 2008 APS.

Review articleS | focus Nature photonics doi: 10.1038/nphoton.2011.39



© 2011 Macmillan Publishers Limited.  All rights reserved. 

nature photonics | VOL 5 | APRIL 2011 | www.nature.com/naturephotonics	 217

sphere–plate separation — a non-trivial interplay between geom-
etry and temperature that is absent in pairwise approximations97,98. 
Both of these non-monotonic effects are depicted in Fig. 3.

Over the past five years, much progress has been made in 
answering the longstanding question of whether and how the 
Casimir force between two objects can become repulsive from the 
system geometry alone. For example, one theorem now states that 
mirror-symmetric geometries involving vacuum-separated objects 
can never lead to repulsive forces99, nor can vacuum-separated 
metal/dielectric objects ever be suspended in a stable non-touch-
ing equilibrium because of Casimir forces alone100. However, it is 
still possible to change the sign of the force merely by changing the 
geometry; repulsion was recently demonstrated between a needle-
like metallic particle and a metal plate with a hole101. Repulsion can 
also arise in circumstances involving interleaved objects because 
of the trivial competition between pairwise attractive interactions 
(lateral forces) between surfaces22.

In addition to forces, quantum fluctuations can also induce 
torques on objects that are free to rotate8. This possibility was first 
studied theoretically in geometries consisting of planar objects 
with anisotropic materials102–104, and recently in more compli-
cated geometries involving corrugated metallic surfaces105, dilute 
rectangular objects suspended above plates106, and eccentric 
metallic waveguides107.

Emerging experimental regimes
The combination of new theoretical tools and experimental capa-
bilities at submicrometre scales has led to a growing number of 
experiments that probe the geometry and material dependence of 
Casimir interactions outside of the planar metallic regime.

Controlling film thickness. One of the simplest ways of tailoring 
the Casimir force is to use films of varying thickness8,62,108,109. At 
submicrometre distances, the Casimir force depends on the reflec-
tivity of the interacting surfaces for wavelengths in the ultraviolet 
to the far-infrared. The attraction between transparent materials 
is expected to be smaller than that between highly reflective mir-
rors because of the lower effective confinement of electromagnetic 

modes inside the optical cavity (as is the case for ITO compared 
with gold)50. A thin metallic film can be transparent to electromag-
netic waves that would otherwise be reflected by the bulk metal, 
particularly when the film thickness is much smaller than the mate-
rial skin depth62,108,109. Consequently, the Casimir force on a metallic 
film is significantly reduced when its thickness is smaller than the 
skin depth of the bulk metal at ultraviolet to infrared wavelengths. 
For most common metals, this condition is reached when the layer 
thickness is around 10 nm.

Demonstrating the skin-depth effect requires the thickness 
and surface roughness of the film to be carefully controlled. The 
experiment described in ref.  8 involved coating a sphere with a 
9.23-nm-thick film of palladium. The sphere was imaged with an 
optical profiler to determine its roughness. After Casimir force 
measurements between the sphere and a metal-coated flat surface 
had been made, the sphere was removed from the experimental 
apparatus, coated with an additional 200 nm of palladium and ana-
lysed with the optical profiler. Repeated measurements showed that 
the Casimir force was larger with the thicker palladium film, by an 
amount that was in good agreement with the Lifshitz theory8.

Surface nanostructuring. A recent experiment by Chan and co-
workers26 reported measurements of the Casimir force between 
nanostructured silicon surfaces (periodic rectangular trenches) and 
a gold-coated sphere (Fig. 4a), clearly showing the non-additivity of 
the Casimir force. Consider the interaction between a trench array, of 
trench periodicity Λ and depth t, and a parallel flat surface placed a 
distance d away from the top surface of the trenches. Under the PFA, 
the total pressure is P = pPC, where p is the fraction of solid trench 
area exposed to the plate and PC is the Casimir pressure between two 
flat infinite surfaces. Such an additive approximation is only expected 
to be accurate when the deviation from a parallel-plate geometry (the 
source of PFA) is controlled by a small parameter, for example in the 
limits of t << d or d << Λ. Computing the exact force in this geom-
etry recently became possible using the modern methods outlined 
above, and was performed first for perfect metals110 and later for real-
istic ε  values (ref. 86). As expected, strong deviations (∼20%) from 
PFA were observed for d comparable to Λ (Fig. 4b); however, exact 

 b
G

old

Silicon

d

Ethanol

Lithium
 niobate

t

50 100 150 200 250 300 350

2.5

 

 

 

c

0

50

100

150

200

250

0 50 100 150 200 250 300

Silica–silicon

Eq
ui

lib
riu

m
 s

ep
ar

at
io

n 
 d

 (n
m

)

Gold–silicon

Sphere radius/plate thickness R (nm)

Eq
ui

lib
riu

m
 s

ep
ar

at
io

n 
d 

(n
m

)

t = 30 nm

t = 2 µm

0

0.5

1.0

1.5

2.0

Temperature T (K)

Ethanol frozen

Fo
rc

e 
(p

N
)

Repulsive

-150

-100

-50

0

50

100

150

200

250
a

Silica

Silicon Silicon

20 40 60 80 100 120 140

Gold

Attractive

Gold

Gold

Distance (nm)

Figure 5 | Experimental and theoretical works demonstrating the possibility of achieving Casimir repulsion, stable suspension of objects and large 
temperature effects in fluids. a, Measured repulsive (blue) or attractive (yellow) Casimir force between a gold-coated (100 nm) polystyrene sphere 
and a silica (blue) or gold-coated (yellow) plate immersed in bromobenzene35. Circles represent the average force, averaged over 50 data sets, with 
corresponding error bars. b, Stable (solid) and unstable (dashed) equilibrium surface–surface separation d between a semi-infinite silicon slab and a 
sphere (circles) or film (lines) of radius or thickness R, immersed in ethanol, as a function of R. Yellow and blue lines denote gold and silica spheres/
films, respectively. The dramatic sensitivity of d to the choice of material and geometry is a consequence of a the strong interplay between material 
and geometric dispersion: depending on the choice of material, decreasing the thickness of a film can lead to the decrease and eventual disappearance 
of its stable d with the silicon plate, whereas decreasing the radius of a sphere, regardless of the material, acts to increase d. c, Stable (solid) and 
unstable (dashed) d between a semi-infinite gold slab and a layered lithium niobate (LiNbO3)-on-silicon substrate immersed in ethanol, as a function of 
temperature T. Red and blue lines correspond to the different LiNbO3 thicknesses of t = 30 nm and t = 2 μm, respectively. As shown, d is very sensitive to t, 
and can change dramatically and even disappear as T is changed. Figure reproduced with permission from: a, ref. 35, © 2009 NPG; b, ref. 95, © 2010 APS, 
c, ref. 114, © 2010 APS.

focus | Review articleSNature photonics doi: 10.1038/nphoton.2011.39



© 2011 Macmillan Publishers Limited.  All rights reserved. 

218	 nature photonics | VOL 5 | APRIL 2011 | www.nature.com/naturephotonics

calculations demonstrate reasonable agreement (Fig.  4c). To attain 
such sensitivity, researchers measured the Casimir force gradient 
through shifts in the oscillation frequency of a torsional oscillator, on 
which the sphere was mounted. More recently, measurements of the 
lateral Casimir force between two corrugated metal plates produced 
an even larger deviation from PFA111, although the definition of PFA 
is particularly ambiguous for such lateral forces.

Repulsion and suspension effects in fluids. In fluid-separated sit-
uations, it has been known for decades that even planar geometries 
can exhibit repulsion — an interaction that is apparent in surface 
wetting/dewetting effects in thin films14 and that was recently 
measured quantitatively, as described below. In the simple van der 
Waals picture of Fig. 1, involving two microspheres of permittivi-
ties ε1,2 and fluctuating dipole moments p1,2, it is straightforward to 
see how the force will reverse in sign if the particles are immersed 
in a fluid with permittivity ε3 such that ε1 > ε3 > ε2. As described 
previously, the electric field E1 from the first particle’s dipole 
moment p1 will induce a dipole moment p2 in the second parti-
cle, and for spheres in the quasi-static limit this obeys the formula 
p2 ~ (ε2 − ε3)/(ε2 + 2ε3)E1, which reverses sign if ε2 < ε3 (ref. 10). That 

is, when particle 2 is less polarizable (smaller ε) than the surround-
ing medium, its effective negative polarizability reverses the sign of 
the induced dipole moment p2, which in turn changes the sign of 
the force. Repulsion also requires ε1 > ε3, as otherwise both particles 
will have reversed dipole moments and the force will remain attrac-
tive, because the force is proportional to the product of the two 
polarizabilities10. Repulsion under these ε conditions turns out to 
hold more generally in the Casimir regime, where retardation and 
non-additivity are present10.

As demonstrated by Dzyaloshinski ̆ı, Lifshitz and Pitaevski ̆ı, the 
sign of the Casimir force between two plates immersed in a fluid 
depends on the dielectric properties of the materials involved10. 
Two plates made from the same material will always attract, 
regardless of the choice of intermediate material (typically a fluid 
or vacuum). However, the force between slabs of different materials 
(here labelled ‘1’ and ‘2’) can become repulsive by suitable choice of 
the intermediate liquid (labelled ‘3’). Specifically, as in the van der 
Waals case, the condition for repulsion is

		      ε1(iκ) > ε3(iκ) > ε2(iκ)� (3)

where the dielectric functions εi of the materials are evaluated at 
imaginary frequencies ω = iκ (ref. 10), as explained above.

An easy-to-see limit for the above repulsion is the case in which 
region 2 is air or vacuum and region 1 is a solid substrate. In this 
limit, substance 3, rather than forming a droplet, spreads out to 
achieve maximum proximity with the substrate — a wetting effect14. 
Because ε generally varies with frequency, it is conceivable that the 
above inequality may be satisfied for some frequencies and not for 
others. In fact, only a few material systems, mostly those consisting 
of two solids separated by a liquid, obey the above inequality over a 
large frequency range. One such solid–liquid–solid material com-
bination comprises gold, bromobenzene and silica (SiO2).

In a recent experiment, the long-range repulsive Casimir force 
between a gold-coated sphere and a silica plate immersed in bro-
mobenzene was measured. The silica plate was then replaced by 
a thick gold film, and the measurements were repeated35. The 
results show (Fig. 5a) that the force is attractive for a gold film but 
repulsive for a silica plate, which is in agreement with theoretical 
predictions10. A known force between the sphere and plate — the 
hydrodynamic force — was used to calibrate the cantilever force 
constant and the surface separation at contact112. Repulsive forces 
in systems satisfying equation (3) were previously reported in the 
van der Waals (quasi-static) regime, although with much larger 
uncertainties (see ref. 113 and references therein).

Material dispersion and geometry can conspire to induce a vari-
ety of additional effects in fluids. For example, the force can switch 
sign with separation because fluctuations at different wavelengths 
become important at different separations and ε changes with wave-
length, leading to unstable or stable equilibria4,95. If equation (3) is 
only satisfied for large κ, which becomes increasingly important at 
small separations, it is possible for the force to be repulsive at small 
separations and attractive at large separations95, leading to a stable 
point of zero force at some intermediate separation. Such stable 
non-touching suspensions are particularly interesting for micro-
fluidic colloid applications or for frictionless static bearings. As 
shown in Fig. 5b, the equilibrium separations between objects can 
be tuned for a given material pair by changing the geometry, such as 
the sphere radii, which introduces additional wavelength depend-
ence to the polarizability95. There has also been considerable inter-
est in observing the temperature dependence of the Casimir force, 
in which changing the temperature changes the photon-fluctua-
tion distribution and hence the force. In traditional parallel-plate 
geometries the temperature dependence turns out to be very small 
in practice59 and has only recently been clearly observed33, but a 
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much larger temperature dependence can be designed in microflu-
idic suspensions114. As shown in Fig. 5c, the equilibrium separation 
of two suspended plates can vary rapidly with temperature and can 
even experience a temperature-induced bifurcation, in which the 
stable equilibrium completely disappears above a critical tempera-
ture114. Other large corrections to the temperature dependence have 
been calculated recently in geometries consisting of vacuum-sep-
arated spheres97,98 or cones94 and plates, although in these systems 
what is computed is the change in the ratio of magnitudes between 
the finite force and the zero-temperature force, which tends to be 
small at submicrometre separations. In general, many possibilities 
remain to be explored for temperature-tunable long-range interac-
tions in fluids, not only for particle suspensions but also perhaps 
for surface-wetting phenomena and other fluid-flow problems.

Device applications. The development of increasingly complex 
MEMS will give more attention to scaling issues as this technology 
evolves towards NEMS (nanoelectromechanical systems). The issue 
of Casimir interactions between metallic and dielectric surfaces in 
close proximity will inevitably need to be faced, with particular 
attention being given to potentially troublesome phenomena such 
as stiction — the irreversible adhesion of moving parts resulting 
from electrostatic and Casimir forces115,116. On the other hand, such 
phenomena might be exploited to add new functionality to the 
architecture of NEMS.

An instructive example of the applications of Casimir forces is 
to use the device of Fig. 2b as a driven electromechanical oscilla-
tor. As the distance between the plate and the sphere decreases, the 
Casimir interaction adds a nonlinear term to the force that leads to 
the characteristic bistable effect evident in the resonance peak as it 
transforms from case i to case iv in Fig. 6a, corresponding to a hys-
teresis in the distance dependence shown in Fig. 6b. This Casimir 
anharmonic oscillator, first studied theoretically in ref. 117, func-
tions as a nanometric sensor for measuring the separation between 
two uncharged metallic surfaces.

Repulsive Casimir forces could also be of significant technologi-
cal interest, such as for the development of ultrasensitive force and 
torque sensors that levitate objects above surfaces without disturb-
ing electric or magnetic interactions and with virtually no static 
friction to rotation or translation8.

Concluding remarks
The days of considering long-range van der Waals interactions 
between neutral bodies as monotonic, additive and attractive 
with simple power laws has come to a close. Experimental work is 
beginning to regularly enter submicrometre regimes with micro-
structured materials that cannot be characterized by simple paral-
lel- or sphere–plate results, and a recently developed experimental 
technique based on a force sensor is particularly promising in this 
regard118. Fortunately, these developments have coincided with 
the emergence of new theoretical tools that are rapidly exploring 
the potential for new phenomena outside of the additive regime. 
Many interesting theoretical and experimental avenues remain 
to be pursued in this fascinating field. For instance, many of the 
recent theoretical predictions of unusual Casimir physics outlined 
above, including non-monotonic force dependencies, repulsive 
forces, large temperature effects, fluid suspensions and orientation 
transitions arising from fluid dispersion or geometry, have yet to be 
observed experimentally. There are interesting theoretical predic-
tions concerning anisotropic crystals that are awaiting experimental 
verification, such as the orientation-dependent Casimir force aris-
ing from highly anisotropic crystals119 and the quantum electrody-
namical torque between birefringent materials8,102–104. An important 
question is whether the Casimir force can undergo a significant 
change near a suitable phase transition. Interesting candidates for 

this effect are materials undergoing a metal–insulator transition, as 
these experience large variations in the plasma frequency.

MEMS can be used to study the interplay of Casmir forces and 
optical forces resulting from intensity gradients, whose interplay 
may result in many interesting applications. Although the impact 
of this progress on practical devices remains to be seen, one thing 
is clear: compared with the vast array of geometries, materials and 
phenomena that have been explored for classical photonics, work 
on Casimir phenomena is only now beginning to scratch the sur-
face of what may be possible.
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van der Waals forces. Adv. Phys. 10, 165–209 (1961).

11.	 Kardar, M. & Golestanian, R. The ‘friction’ of vacuum, and other fluctuation-
induced forces. Rev. Mod. Phys. 71, 1233–1245 (1999).

12.	 Lambrecht, A. The Casimir effect: a force from nothing. Phys. World 15, 29–32 
(Sept. 2002).

13.	 Lamoreaux, S. K. The Casimir force: background, experiments, and 
applications. Rep. Prog. Phys. 68, 201–236 (2005).

14.	 Lamoreaux, S. K. Casimir forces: Still surprising after 60 years. Phys. Today 60, 
40–45 (2007).

15.	 Lifshitz, E. M. The theory of molecular attractive forces between solids.  
Sov. Phys. JETP 2, 73–84 (1956).

16.	 Milonni, P. W. The Quantum Vacuum: An Introduction to Quantum 
Electrodynamics (Academic, 1993).

17.	 Milton, K. A. The Casimir Effect: Physical Manifestations of Zero-Point Energy 
(World Scientific, 2001).

18.	 Milton, K. A. The Casimir effect: Recent controversies and progress. J. Phys. A 
37, R209–R277 (2004).

19.	 Onofrio, R. Casimir forces and non-Newtonian gravitation. New J. Phys. 8, 
237 (2006).

20.	 Plunien, G., Muller, B. & Greiner, W. The Casimir effect. Phys. Rep. 134, 
87–193 (1986).

21.	 Spruch, L. Long-range Casimir interactions. Science 272, 1452–1455 (1996).
22.	 Rodriguez, A. W., Joannopoulos, J. D. & Johnson, S. G. Repulsive and 

attractive Casimir forces in a glide-symmetric geometry. Phys. Rev. A 77, 
062107 (2008).

23.	 Miri, M. & Golestanian, R. A frustrated nanomechanical device powered by 
the lateral Casimir force. Appl. Phys. Lett. 92, 113103 (2008).

24.	 Genet, C., Lambrecht, A. & Reynaud, S. The Casimir effect in the nanoworld. 
Eur. Phys. J. Spec. Top. 160, 183–193 (2008).

25.	 Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir 
force between parallel metallic surfaces. Phys. Rev. Lett. 88,  
041804 (2002).

26.	 Chan, H. B. et al. Measurement of the Casimir force between a gold sphere 
and a silicon surface with a nanotrench array. Phys. Rev. Lett. 101,  
030401 (2008).

27.	 Decca, R. S., Lopez, D., Fischbach, E. & Krause, D. E. Measurement of the 
Casimir force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003).

28.	 Derjaguin, B. & Abrikossova, I. Direct measurements of molecular attraction 
of solids. J. Phys. Chem. Solids 5, 1–10 (1958).

29.	 Ederth, T. Template-stripped gold surfaces with 0.4-nm rms roughness 
suitable for force measurements: Application to the Casimir force in the 
20‑100‑nm range. Phys. Rev. A 62, 062104 (2000).

30.	 Krause, D. E., Decca, R. S., López, D. & Fischbach, E. Experimental 
investigation of the Casimir force beyond the proximity-force approximation. 
Phys. Rev. Lett. 98, 050403 (2007).

focus | Review articleSNature photonics doi: 10.1038/nphoton.2011.39



© 2011 Macmillan Publishers Limited.  All rights reserved. 

220	 nature photonics | VOL 5 | APRIL 2011 | www.nature.com/naturephotonics

31.	 Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μm range. 
Phys. Rev. Lett. 78, 5–8 (1997).

32.	 Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 
to 0.9 μm. Phys. Rev. Lett. 81, 4549–4552 (1998).

33.	 Sushkov, A. O., Kim, W. J., Dalvit, D. A. R. & Lamoreaux, S. K. Observation of 
the thermal Casimir force. Nature Phys. 7, 230–233 (2011).

34.	 van Blokland, P. H. G. M. & Overbeek, J. T. G. Van der Waals forces between 
objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. I 74, 
2637–2651 (1978).

35.	 Munday, J., Capasso, F. & Parsegian, V. A. Measured long-range repulsive 
Casimir–Lifshitz forces. Nature 457, 170–173 (2009).

36.	 Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Casimir forces between 
arbitrary compact objects. Phys. Rev. Lett. 99, 170403 (2007).

37.	 Gies, H. & Klingmuller, K. Worldline algorithms for Casimir configurations. 
Phys. Rev. D 74, 045002 (2006).

38.	 Johnson, S. G. Numerical methods for computing Casimir interactions. 
Preprint at http://arxiv.org/abs/1007.0966 (2010).

39.	 Lambrecht, A., Maia Neto, P. A. & Reynaud, S. The Casimir effect within 
scattering theory. New J. Phys. 8, 243 (2006).

40.	 McCauley, A. P., Rodriguez, A. W., Joannopoulos, J. D. & Johnson, 
S. G. Casimir forces in the time domain: Applications. Phys. Rev. A 81, 
012119 (2010).

41.	 Pasquali, S. & Maggs, A. C. Fluctuation-induced interactions between 
dielectrics in general geometries. J. Chem. Phys. 129, 014703 (2008).

42.	 Rahi, S. J., Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Scattering theory 
approach to electrodynamic Casimir forces. Phys. Rev. D 80,  
085021 (2009).

43.	 Reid, M. T. H., Rodriguez, A. W., White, J. & Johnson, S. G. Efficient 
computation of three-dimensional Casimir forces. Phys. Rev. Lett. 103, 
040401 (2009).

44.	 Rodriguez, A., Ibanescu, M., Iannuzzi, D., Joannopoulos, J. D. & Johnson, 
S. G. Virtual photons in imaginary time: Computing Casimir forces in 
arbitrary geometries via standard numerical electromagnetism. Phys. Rev. A 
76, 032106 (2007).

45.	 Rodriguez, A. W., McCauley, A. P., Joannopoulos, J. D. & Johnson, S. G. 
Casimir forces in the time domain: Theory. Phys. Rev. A 80, 012115 (2009).

46.	 Chan, H. B., Aksyuk, V. A., Kleinman, R. N., Bishop, D. J. & Capasso, F.  
Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87, 
211801 (2001).

47.	 Casimir, H. B. G. & Polder, D. The influence of retardation on the London–
van der Waals forces. Phys. Rev. 13, 360–372 (1948).

48.	 Milton, K. A., Parashar, P. & Wagner, J. Exact results for Casimir interactions 
between dielectric bodies: the weak-coupling or van der Waals limit.  
Phys. Rev. Lett. 101, 160402 (2008).

49.	 Sparnaay, M. Measurements of attractive forces between flat plates. Physica 24, 
751–764 (1958).

50.	 de Man, S., Heeck, K., Wijngaarden, R. J. & Iannuzzi, D. Halving the Casimir 
force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009).

51.	 Kim, W. J., Sushkov, A. O., Dalvit, D. A. R. & Lamoreaux, S. K. Surface 
contact potential patches and Casimir force measurements. Phys. Rev. A 81, 
022505 (2010).

52.	 Munday, J. N. & Capasso, F. Reply to “Comment on ‘Precision measurement 
of the Casimir–Lifshitz force in a fluid’”. Phys. Rev. A 77, 036103 (2008).

53.	 Pirozhenko, I., Lambrecht, A. & Svetovoy, V. B. Sample dependence of the 
Casimir force. New J. Phys. 8, 238 (2006).

54.	 van Zwol, P. J., Palasantzas, G. & De Hosson, J. T. M. Influence of dielectric 
properties on van der waals/Casimir forces in solid–liquid systems.  
Phys. Rev. B 79, 195428 (2009).

55.	 Genet, C., Lambrecht, A., Maia Neto, P. & Reynaud, S. The Casimir force 
between rough metallic plates. Europhys. Lett. 62,  
484–490 (2003).

56.	 Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Roughness correction to the 
Casimir force: Beyond the proximity force approximation. Europhys. Lett. 69, 
924–930 (2005).

57.	 Klimchitskaya, G. L., Mohideen, U. & Mostapanenko, V. M. The Casimir 
force between real materials: Experiment and theory. Rev. Mod. Phys. 81, 
1827–1885 (2009).

58.	 Decca, R. S. et al. Tests of new physics from precise measurements of 
the Casimir pressure between two gold-coated spheres. Phys. Rev. D 75, 
077101 (2007).

59.	 Brevik, I., Aarseth, J. B., Hoye, J. S. & Milton, K. A. Temperature dependence 
of the Casimir effect. Phys. Rev. E 71, 056101 (2005).

60.	 Derjaguin, B. V. Untersuchungen über die reibung und adhäsion. Kolloid Z. 
69, 155–164 (1934).

61.	 Roy, A., Lin, C. Y. & Mohideen, U. Improved precision measurement of the 
Casimir force. Phys. Rev. D 60, 111101(R) (1999).

62.	 Palasantzas, G., van Zwol, P. J. & De Hosson, J. Th. M. Transition from 
Casimir to van der Waals force between macroscopic bodies. Appl. Phys. Lett. 
93, 121912 (2008).

63.	 Decca, R. et al. Precise comparison of theory and new experiment for the 
Casimir force leads to stronger constraints on thermal quantum effects and 
long-range interactions. Ann. Phys. 318, 37–80 (2005).

64.	 Jourdan, G., Lambrecht, A., Comin, F. & Chevrier, J. Quantitative non-contact 
dynamic Casimir force measurements. Europhys. Lett. 85,  
31001 (2009).

65.	 Chan, H. B., Aksyuk, V. A., Kleinman, R. N., Bishop, D. J. & Capasso, F. 
Quantum mechanical actuation of microelectromechanical systems by the 
Casimir force. Science 291, 1941–1944 (2001).

66.	 Bostrom, M. & Sernelius, B. E. Thermal effects on the Casimir force in the 
0.1–0.5 μm range. Phys. Rev. Lett. 84, 4757–4760 (2000).

67.	 Masuda, M. & Sasaki, M. Limits on nonstandard forces in the submicrometer 
range. Phys. Rev. Lett. 102, 171101 (2009).

68.	 Klimchitskaya, G. L., Mohideen, U. & Mostepanenko, V. M. Casimir and van 
der Waals forces between two plates or a sphere (lens) above a plate made of 
real metals. Phys. Rev. A 61, 062107 (2000).

69.	 Tomaš, M. S. Casimir force in absorbing multilayers. Phys. Rev. A 66,  
052103 (2002).

70.	 Zhou, F. & Spruch, L. Van der waals and retardation (Casimir) interactions of an 
electron or an atom with multilayered walls. Phys. Rev. A 52,  
297–310 (1995).

71.	 Boyer, T. H. Van der Waals forces and zero-point energy for dielectric and 
permeable materials. Phys. Rev. A 9, 2078–2084 (1974).

72.	 Derjaguin, B. V., Abrikosova, I. I. & Lifshitz, E. M. Direct measurement of 
molecular attraction between solids separated by a narrow gap.  
Q. Rev. Chem. Soc. 10, 295–329 (1956).

73.	 Bordag, M. Casimir effect for a sphere and a cylinder in front of a plane and 
corrections to the proximity force theorem. Phys. Rev. D 73,  
125018 (2006).

74.	 Golestanian, R. Casimir–Lifshitz interaction between dielectrics of arbitrary 
geometry: A dielectric contrast perturbation theory. Phys. Rev. A 80,  
012519 (2009).

75.	 Milton, K. A. & Wagner, J. Multiple scattering methods in Casimir 
calculations. J. Phys. A 41, 155402 (2008).

76.	 Boyer, T. H. Quantum electrodynamic zero-point energy of a conducting 
spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 
1764–1776 (1968).

77.	 Milton, K. A., DeRaad, L. L. Jr & Schwinger, J. Casimir self-stress on a 
perfectly conducting spherical shell. Ann. Phys. 115, 388–403 (1978).

78.	 Cavalcanti, R. M. Casimir force on a piston. Phys. Rev. D 69, 065015 (2004).
79.	 Hertzberg, M. P., Jaffe, R. L., Kardar, M. & Scardicchio, A. Casimir forces in a 

piston geometry at zero and finite temperatures. Phys. Rev. D 76,  
045016 (2007).

80.	 Marachevsky, V. N. Casimir interaction: Pistons and cavity. J. Phys. A 41, 
164007 (2008).

81.	 Kenneth, O., Klich, I., Mann, A. & Revzen, M. Repulsive Casimir forces.  
Phys. Rev. Lett. 89, 033001 (2002).

82.	 Jaffe, R. L. Unnatural acts: Unphysical consequences of imposing boundary 
conditions on quantum fields. Proc. AIP Conf. 687, 3–12 (2003).

83.	 Emig, T., Hanke, A., Golestanian, R. & Kardar, M. Probing the strong 
boundary shape dependence of the Casimir force. Phys. Rev. Lett. 87,  
260402 (2001).

84.	 Emig, T., Jaffe, R. L., Kardar, M. & Scardicchio, A. Casimir interaction 
between a plate and a cylinder. Phys. Rev. Lett. 96, 080403 (2006).

85.	 Mazitelli, F. D., Dalvit, D. A. & Lobardo, F. C. Exact zero-point interaction 
energy between cylinders. New J. Phys. 8, 1–21 (2006).

86.	 Lambrecht, A. & Marachevsky, V. N. Casimir interactions of dielectric 
gratings. Phys. Rev. Lett. 101, 160403 (2008).

87.	 Balian, R. & Duplantier, B. Electromagnetic waves near perfect conductors II: 
Casimir effect. Ann. Phys. 112, 165–208 (1978).

88.	 Dalvit, D. A. R., Lombardo, F. C., Mazzitelli, F. D. & Onofrio, R. Exact Casimir 
interaction between eccentric cylinders. Phys. Rev. A 74, 020101(R) (2006).

89.	 Kenneth, O. & Klich, I. Casimir forces in a T-operator approach. Phys. Rev. B 
78, 014103 (2008).

90.	 Reid, H., White, J. & Johnson, S. G. Efficient computation of Casimir 
interactions between arbitrary 3d objects with arbitrary material properties. 
Preprint at http://arxiv.org/abs/1010.5539 (2010).

91.	 Xiong, J. L., Tong, M. S., Atkins, P. & Chew, W. C. Efficient evaluation of 
Casimir force in arbitrary three-dimensional geometries by integral equation 
methods. Phys. Lett. A 374, 2517–2520 (2010).

92.	 Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Casimir energy between a 
plane and a sphere in electromagnetic vacuum. Phys. Rev. A 78,  
012115 (2008).

Review articleS | focus Nature photonics doi: 10.1038/nphoton.2011.39



© 2011 Macmillan Publishers Limited.  All rights reserved. 

nature photonics | VOL 5 | APRIL 2011 | www.nature.com/naturephotonics	 221

93.	 Rodriguez, A. et al. Computation and visualization of Casimir forces in 
arbitrary geometries: Non-monotonic lateral-wall forces and failure of 
proximity force approximations. Phys. Rev. Lett. 99, 080401 (2007).

94.	 Maghrebi, M. F. et al. Casimir force between sharp-shaped conductors. 
Preprint at http://arxiv.org/abs/1010.3223 (2010).

95.	 Rodriguez, A. W. et al. Non-touching nanoparticle diclusters bound by 
repulsive and attractive Casimir forces. Phys. Rev. Lett. 104,  
160402 (2010).

96.	 Rahi, S. J. et al. Nonmonotonic effects of parallel sidewalls on Casimir forces 
between cylinders. Phys. Rev. A 77, 030101(R) (2008).

97.	 Canaguier-Durand, A., Neto, P. A. M., Lambrecht, A. & Reynaud, S. 
Thermal Casimir effect in the plane–sphere geometry. Phys. Rev. Lett. 104, 
040403 (2010).

98.	 Weber, A. & Gies, H. Nonmonotonic thermal Casimir force from geometry-
temperature interplay. Phys. Rev. Lett. 105, 040403 (2010).

99.	 Kenneth, O. & Klich, I. Opposites attract: A theorem about the Casimir force. 
Phys. Rev. Lett. 97, 160401 (2006).

100.	Rahi, S. J., Kardar, M. & Emig, T. Constraints on stable equilibria with 
fluctuation-induced forces. Phys. Rev. Lett. 105, 070404 (2010).

101.	Levin, M., McCauley, A. P., Rodriguez, A. W., Reid, M. T. H. & Johnson, S. G. 
Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett. 105, 
090403 (2010).

102.	Parsegian, V. A. & Weiss, G. H. Dielectric anisotropy and the van der waals 
interaction between bulk media. J. Adhesion 3, 259–267 (1972).

103.	Barash, Y. Moment of van der Waals forces between anisotropic bodies.  
Izv. Vuz. Radiofiz. 21, 1138–1143 (1978).

104.	Munday, J. N., Iannuzzi, D., Barash, Y. & Capasso, F. Torque induced on 
birefringent plates by quantum fluctuations. Phys. Rev. A 71,  
042102 (2005).

105.	 Rodrigues, R. B., Maia Neto, P. A., Lambrecht, A. & Reynaud, S. Vacuum-
induced torque between corrugated metallic plates. Europhys. Lett. 76, 
822–828 (2006).

106.	Milton, K. A., Parashar, P., Wagner, J. & Pelaez, C. Multiple scattering Casimir 
force calculations: layered and corrugated materials, wedges, and Casimir-
Polder forces. J. Vac. Sci. Tech. B 28, C4A8–C4A16 (2010).

107.	Rodriguez, A. W. et al. Stable suspension and dispersion-induced transition 
from repulsive Casimir forces between fluid-separated eccentric cylinders. 
Phys. Rev. Lett. 101, 190404 (2008).

108.	Duraffourg, L. & Andreucci, P. Casimir force between doped silicon slabs. 
Phys. Lett. A 359, 406–411 (2006).

109.	Lambrecht, A., Pirozhenko, I., Duraffourg, L. & Andreucci, P. The Casimir 
effect for silicon and gold slabs. Europhys. Lett. 77, 44006 (2007).

110.	Büscher, R. & Emig, T. Nonperturbative approach to Casimir interactions in 
periodic geometries. Phys. Rev. A 69, 062101 (2004).

111.	Chiu, H.‑C., Klimchitskaya, G. L., Marachevsky, V. N., Mostepanenko, V. M. & 
Mohideen, U. Lateral Casimir force between sinusoidally corrugated surfaces: 
asymmetric profiles, deviations from the proximity force approximation, and 
comparison with exact theory. Phys. Rev. B 81, 115417 (2010).

112.	 Munday, J. N. & Capasso, F. Measurement of the Casimir–Lifshitz force in 
fluids: the effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 
032109 (2008).

113.	Feiler, A. A., Bergstrom, L. & Rutland, M. W. Superlubricity using repulsive 
van der Waals forces. Langmuir 24, 2274–2276 (2008).

114.	Rodriguez, A. W., Woolf, D., McCauley, A. P., Capasso, F. & Johnson, S. G. 
Achieving a strongly temperature-dependent Casimir effect. Phys. Rev. Lett. 
105, 060401 (2010).

115.	Buks, E. & Roukes, M. L. Metastability and the Casimir effect in 
micromechanical systems. Europhys. Lett. 54, 220–226 (2001).

116.	Serry, F. M., Walliser, D. & Jordan, M. G. The role of the Casimir effect in the 
static deflection of and stiction of membrane strips in microelectromechanical 
systems MEMS. J. Appl. Phys. 84, 2501–2506 (1998).

117.	Serry, F. M., Walliser, D. & Jordan, M. G. The anharmonic Casimir 
oscillator — the Casimir effect in a model microelectromechanical system.  
J. Microelec. Sys. 4, 193–205 (1995).

118.	Zuurbier, P., de Man, S., Gruca, G., Heeck, K. & Iannuzzi, D. Measurement of 
the Casimir force with a ferrule-top sensor. New J. Phys. 13, 023027 (2011).

119.	Romanowsky, M. B. & Capasso, F. Orientation-dependent Casimir force 
arising from highly anisotropic crystals: Application to Bi2Sr2CaCu2O8+δ. 
Phys. Rev. A 78, 042110 (2008).

120.	Davids, P. S., Intravaia, F., Rosa, F. S. S. & Dalvit, D. A. R. Modal approach to 
Casimir forces in periodic structures. Phys. Rev. A 82,  
062111 (2010).

121.	Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, 1991).
122.	Leonhardt, U. & Philbin, T. G. Quantum levitation by left-handed 

metamaterials. New J. Phys. 9, 254 (2007).
123.	Rosa, F. S. S., Dalvit, D. A. R. & Milonni, P. W. Casimir–Lifshitz theory and 

metamaterials. Phys. Rev. Lett. 100, 183602 (2008).
124.	Zhao, R., Zhou, J., Koschny, T., Economou, E. N. & Soukoulis, C. M. Repulsive 

Casimir force in chiral metamaterials. Phys. Rev. Lett. 103, 103602 (2009).
125.	McCauley, A. P. et al. Microstructure effects for Casimir forces in chiral 

metamaterials. Phys. Rev. B 82, 165108 (2010).
126.	Rosa, F. S. S. On the possibility of Casimir repulsion using metamaterials. 

J. Phys. Conf. Ser. 161, 012039 (2009).

Acknowledgements
The authors thank D. Iannuzzi, D. Woolf, M. Ibanescu, A. P. McCauley, H. Chan, 
J. N. Munday, V. A. Parsegian, S. Lamoreaux, J. D. Joannopoulos, M. Kardar, R. L. Jaffe,  
T. Emig, D. A. R. Dalvit and M. Lissanti for collaborations and discussions.

focus | Review articleSNature photonics doi: 10.1038/nphoton.2011.39

http://arxiv.org/abs/1012.5787

	The Casimir effect in microstructured geometries
	Main
	From van der Waals to Casimir forces
	Experimental validations
	Recent theoretical progress
	Recent theoretical predictions
	Emerging experimental regimes
	Concluding remarks
	Acknowledgements
	References




