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Abstract: We describe the properties of guided modes in metallic parallel 
plate structures with subwavelength corrugation on the surfaces of both 
conductors, which we refer to as spoof-insulator-spoof (SIS) waveguides, in 
close analogy to metal-insulator-metal (MIM) waveguides in plasmonics. A 
dispersion relation for SIS waveguides is derived, and the modes are shown 
to arise from the coupling of conventional waveguide modes with the 
localized modes of the grooves in the SIS structure. SIS waveguides have 
numerous design parameters and can be engineered to guide modes with 
very low group velocities and adiabatically convert light between 
conventional photonic modes and plasmonic ones. 
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1. Introduction 

Surface plasmons (SPs) are electron oscillations on the surface of a metal at an interface with 
a dielectric that allow light to be confined and controlled at the subwavelength scale [1–3]. At 
infrared frequencies and below, the properties of metals approach those of a perfect electric 
conductor (PEC), and SPs become Zenneck or Sommerfeld waves which exhibit very poor 
confinement to the interface [4,5]. Therefore, an alternative method to confine and control 
fields at these frequencies is required to enable or improve a number of infrared (IR), 
terahertz (THz), and microwave applications such as surface-enhanced infrared absorption 
(SEIRA) spectroscopy [6], surface enhanced infrared photodetection [7], enhanced THz 
detection [8], outcoupling from photoconductive antennas [9], and THz laser beam-shaping 
[10]. 

Metallic surfaces with corrugations have been previously studied as guides for surface 
electromagnetic modes [11, 12], with the corrugation providing additional control over 
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electromagnetic fields. Recently, THz modes on subwavelength-corrugated conductors have 
been identified as 'spoof' surface plasmons (SSPs), which emulate optical frequency surface 
plasmons on flat metallic surfaces and enable the concentration of THz radiation at a 
metal/dielectric interface [13–16]. To date there have been a number of studies of SSPs on a 
single corrugated surface, but only limited analysis regarding coupled modes across multiple 
corrugated interfaces [17–21]. 

In this article, we analyze the guided modes of a parallel plate waveguide with 
subwavelength corrugations on both surfaces. These corrugations significantly alter the 
electromagnetic modes on both sides of the light line compared to both the non-corrugated 
parallel plate waveguide and the single corrugated interface. The geometrical parameters of 
the corrugations provide a large degree of control over dispersion properties and field 
distributions of light in such a waveguide. We analytically derive the dispersion relations of 
these modes and elucidate their unique properties. We identify several electromagnetic modes 
with flat dispersion and very low group velocity resulting from the coupling of SSPs, and then 
show that interaction between these new modes and the modes of a conventional parallel plate 
waveguide can result in large anti-crossing behavior in the dispersion curves. Because our 
structure is closely related to non-corrugated metal-insulator-metal (MIM) waveguides in 
plasmonics [22–24], we will refer to the doubly-corrugated geometry as a spoof-insulator-
spoof (SIS) waveguide. 

2. Theory of SIS Waveguides 

Before discussing the modes and dispersion of an SIS waveguide, it is instructive to consider 
two well-studied metallic structures: the parallel plate waveguide and a single corrugated 
metallic surface. In both cases, as well as for the majority of this paper, we will assume that 
the metal is highly conductive at our frequency of interest and can be treated as a PEC. 

The conventional parallel plate (or planar mirror) waveguide consists of two flat metallic 
surfaces separated by an air gap g  (Fig. 1(a)). A textbook method of calculating the 

dispersion in this waveguide is to assume that a plane wave is propagating between the two 
parallel plates at some angle θ from the surface tangent and is reflected at each interface, 

imparting a  phase shift in the electric field upon each reflection. By imposing a self-

consistency condition that requires the phase fronts to reproduce themselves after two 
reflections (Fig. 1(a)), we obtain the mode dispersion [25]. This condition can be written as 
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For the case of reflection by a flat PEC at any angle of incidence, the phase of the 

reflected wave is always , therefore the dispersion relation can be written as 

2 2 2 2 2

0 ( ) /k m g   . 
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Fig. 1. (a.) Conventional parallel plate waveguide with the mode self-consistency condition 
illustrated (adapted from [24]). (b.) Periodically corrugated PEC surface with the unit cell 

identified by vertical dashed lines. If the corrugation is substantially subwavelength ( )d  , 

this structure can support bound TM surface modes dubbed spoof surface plasmons (SSPs). (c.) 
Spoof-insulator-spoof (SIS) waveguide comprising two counter-facing structures from Fig. 
1(b) separated by an air gap of height g. The numbers on the right identify the layers used in 
the transfer matrix calculations. 

The case of propagating surface modes on a single corrugated metallic interface has been 
extensively analyzed in literature [11–14], and we re-derive the key points below. The system 
is illustrated in Fig. 1(b), and consists of a PEC bounded by air with a periodic corrugation of 

deeply-subwavelength grooves of width ,a period ,d and height .h  

Each groove can be viewed as a truncated parallel plate waveguide in the z direction. 
Since the walls of this waveguide are perfectly conducting, there are no plasmonic modes in 

this geometry. Due to the deeply-subwavelength nature of the corrugation
0( )d a   , the 

only supported mode is the fundamental transverse magnetic (TM) mode for which only the 
y-component of the magnetic field and the x-component of the electric field are non-zero [26]. 
Since the electric field in this mode is also normal to the direction of propagation, it is 
referred to as a transverse electromagnetic (TEM) mode. Since there are no allowed modes 
with y- or z- polarization, the array of deeply-subwavelength grooves behaves as a PEC for y- 

or z-polarized light )( y z   . 

For light in the TEM mode of each groove, 
0zk k  and 0xk  , so the effective mode 

index is simply .eff x yn   In the limit of
0 d  , the characteristic wave impedance is 

simply the weighted average of the impedances of free space ( 1)  and a PEC ( 0)  based 

on the duty cycle of the structure, so / /y x a d   . 

This means that in the metamaterial limit, the structure of Fig. 1(b) can be treated as a 
homogeneous anisotropic layer of thickness h on the flat surface of a PEC, with the 

permittivity of the corrugated layer represented by a diagonal tensor spoof with components 

/x d a and y z   and the permeability represented by 
spoof with components 

1/y z x   and 1x  . The same result was previously obtained by rigorous mode-

matching analysis by García-Vidal et al. [14]. 
Because the groove array functions as a PEC for y- or z-polarized light, the structure of 

Fig. 1(b) is equivalent to a flat PEC surface for all but TM polarized light and hence does not 
support any surface TE modes, so we will only be interested in identifying the TM modes 
which are significantly affected by the corrugation. 
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We calculate the TM electric field reflection coefficient
cr from the corrugated structure of 

Fig. 1(b) by treating it as a three layer system, with air on top, PEC on the bottom, and a 

homogeneous layer of height h in the middle with dielectric properties given by spoof and 

spoof . The TM reflection and transmission coefficients for the electric field upon reflection 

or transmission from layer i to j are given by [26] 
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where , ,/i y i x i  is the wave impedance, 
,x i

is the x-component of the permittivity, and 

,y i is the y-component of the permeability in medium .i Here ,z jk is the z-component of the 

wave vector in material j , and can be written as 2 2

, 0 , ,z j x j y j xk k k  . The value of ijr is 

always 1 when medium j is a PEC, indicating complete reflection of energy with a  phase 

shift in the electric field. 

To calculate
cr we apply the transfer matrix formalism [27], in which the 2 x 2 

matrix ijD describes the i - j interface and 
l describes the propagation through medium l . 
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The total transfer matrix to describe the three layer structure in Fig. 1(b) can then be 

written as 
12 2 23M D D  where 1, 2, and 3 represent the air, the corrugation, and the 

continuous PEC layer, respectively. The reflection coefficient 
cr  can be obtained from M by 

2,1 1,1/ ,c M Mr  where ,i jM is the component of M identified by row i and column j , to yield 
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In Eq. (4), 
zk and

xk refer to the wave vector components in air (i.e. ,1z zk k and ,1x xk k ). 

The phase of the reflected light is both a function of frequency and incidence angle 

1tan ( / ).z xk k  Note that since the metal is a PEC and we assumed that the corrugation is 

deeply-subwavelength, there is no absorption and no diffracted orders other than specular 

reflection, so | | 1cr  . 

Since each groove is a parallel plate waveguide bounded by a PEC on one side and by air 
on the other, it can be viewed as a cavity in the vertical direction. As the mode in each groove 

is a TEM mode with 
0k k , we can write the resonance condition as 0, / 4mh m or 
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/ 4mf mc h where m is an odd positive integer. The field distributions for the first two cavity 

modes are illustrated in Fig. 2(a). Because the impedance of the corrugated layer is higher 
than that of a continuous PEC, yet lower than that of free space, there is an electric field node 
at the bottom of the cavity and an anti-node at the top. 

It turns out that while the reflection phase  is π for a flat PEC interface for all angles of 

incidence, in the corrugated PEC structure in Fig. 1(b)  strongly deviates from π for 
frequencies which correspond to these localized cavity resonances. For a duty 

cycle / 0.1a d  ,  is plotted in Fig. 2(b) for several frequencies in the vicinity of the 

fundamental resonance frequency
1f of the metallic groove cavity. Off resonance,  

approaches π for all but very small incidence angles (grazing incidence); however exactly on 

resonance, the  is identically 0 for all θ. Around the resonant frequency, then, the corrugated 
interface acts as a perfect magnetic conductor (PMC). A PMC is like a PEC in that it reflects 

100% of electromagnetic energy incident on it, but it does so with no reflection phase ( = 0). 
Though no broadband PMC surfaces have ever been demonstrated, PMC boundary conditions 
are commonly used to simplify electromagnetic simulations [28], and a body of literature 
exists regarding artificial PMCs that achieve zero reflection phase over a narrow frequency 
range (see, for example [29–31], ). The corrugated structure of Fig. 1(b) is one such artificial 
PMC. Note that the structure of Fig. 1(b) can also be viewed as a type of Gires-Tournois 
interterferometer, which is a classical optical element which reflects all of the light incident 
on it with a reflection phase that strongly depends on the wavelength of incident light [32]. 

 

Fig. 2. (a.) Illustrated first and second order resonances of a groove cavity, with an electric 

field node at the bottom and an antinode at the opening. (b.) Reflection phase  vs. incidence 

angle θ from a corrugated interface around the fundamental resonant frequency
1

f of the 

metallic grooves. 

For all real incidence angles θ, 
0xk k . By relaxing this condition and allowing values 

of
0xk k , we are able to begin analyzing fields which are evanescent in the z direction 

2 2

0( ),z x kk i k   corresponding to a complex θ. For either real or complex θ, the values at 

which the reflection coefficient 
cr  is undefined (i.e. the denominator of Eq. (4), 1,1 0M  ) 

correspond to eigenmodes of the structure [33]. This approach has been used to analyze 
Zenneck waves and surface plasmons on finitely conducting metals where the divergence of 

cr happens at the complex Brewster angle of incidence [34,35]. 

Thus, setting the denominator of Eq. (4) to zero leads to the dispersion relation of the 
surface modes of the structure of Fig. 1(b): 
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2 2 2 2
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The dispersion relation of Eq. (5) is plotted as the black solid lines in Fig. 3(a) for h = 
50μm along with the dispersion of the parallel plate waveguide of Fig. 1(a). Only the m = 0 
(transverse-electromagnetic or TEM, blue) and m = 1 (TM1, red) modes exist in this range of 
frequencies in the parallel plate waveguide. 

 

Fig. 3. (a.) Dispersion diagram of the parallel plate waveguide in Fig. 1(a) (red and blue lines) 
with g = 50μm, and of the single corrugated structure in Fig. 1(b) (solid black lines) with a = 
1μm, d = 10μm, and h = 50μm. The red line is the dispersion of the fundamental TEM mode of 
the parallel plate waveguide, which is symmetric, while the blue line represents the 
antisymmetric TM1 mode. The horizontal dashed black lines indicate the first and second 
resonance frequencies of the grooves (Fig. 2(a)), the former being the lowest asymptotic spoof 
plasmon frequency. (b.) Dispersion diagram of the SIS structure in Fig. 1(c) as calculated by 
Eq. (7i) (blue lines) and Eq. (7ii) (red lines), and finite element eigenfrequency analysis 
(circles). The geometrical parameters are the same as in (a). Points calculated by using by the 

self consistency condition of Eq. (1) using the reflection phase  given by Eq. (4) overlap 
exactly with those obtained by Eqs. (3i) and (3ii), so they are not plotted. The dispersion curves 
of the unpatterned parallel plate waveguide (Fig. 1(a)) as well as the local cavity resonance 
frequencies (Fig. 2(a)) are indicated by dashed lines. Anticrossings occur when the parallel 
plate waveguide dispersion curves intersect the localized cavity resonance frequencies. Modes 
of opposite symmetries do not interact, so their dispersion curves can cross; for example, the 
lowest-frequency antisymmetric (red) mode does not share symmetry with the fundamental 
TEM mode of a parallel plate waveguide (blue, dashed), so a crossing occurs. (c.) Dispersion 
diagram of a gold SIS structure with the same geometrical parameters as in (b) calculated by 
finite element analysis, with material dispersion and losses taken into account (d.) Zoom in on 
the low frequency bands for a PEC SIS structure for gaps g = 10μm (solid lines) and 50μm 
(dashed lines) and a = 5μm, d = 10μm, and h = 50μm. The light line and the groove resonance 
frequency are shown in dotted black lines. The single surface SSP dispersion is shown by the 
dashed black line. The antisymmetric (red) mode becomes very flat for small gaps g. Inset: 
magnetic field distributions of approximately one period of the symmetric and antisymmetric 
modes for the points in the dispersion indicated by circular markers. The charge distribution on 
the two metallic surfaces has the opposite symmetry compared to that of the magnetic fields. 
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In the above discussion, we used the plane wave self consistency condition of Eq. (1) to 
determine the modes of the parallel plate waveguide of Fig. 1(a), and the transfer matrix 
method (Eqs. (2) and (3)) to determine the modes of the single corrugated interface of Fig. 
1(b). Both of these approaches can be used to analyze the SIS waveguide, the basic geometry 
of which is shown in Fig. 1(c). Two metallic surfaces are separated by an air gap g and 
periodically corrugated with grooves of width a, period d, and height h. As for the single 
corrugated surface, the subwavelength corrugation is equivalent to a continuous PEC for TE 
polarized light, so we will only be analyzing the nontrivial TM case. 

To apply the transfer matrix formalism, the SIS geometry can be viewed as a 6-layer 
system as shown in Fig. 1(c), and the matrices describing the system can be written down 
from Eqs. (2) and (3). Though we used this method to obtain the dispersion relation for the 
single corrugated interface of Fig. 1(b), it is not immediately apparent that calculating the 
reflection coefficient from the SIS structure using transfer matrices provides any information 
about the guided modes between the PEC slabs because the continuous PEC of layer 2 blocks 
all fields from entering the waveguide. The existence of layer 2 ensures that the reflection 

coefficient is identically 1, so it must hold that 
2,1 1,1.M M  However, when the layers 

underneath the first PEC layer are included in the calculation of M, 1,1M  (as well as 2,1M ) has 

a series of zeros corresponding to removable singularities in the reflectance, which are 
associated with the eigenmodes of the buried structure. Therefore, it is possible to extract the 
guided modes of the SIS structure via the transfer matrix formalism. 

We calculate the transfer matrix describing this system 

as
12 2 23 3 34 4 45 5 56.M D DD D D     By defining 

23 32 ,1rr    the wave vector inside the 

PEC region ,2zk is cancelled out in the derivation. Note that ,2zk is undefined, since no waves 

can propagate through a PEC. The condition 1,1M  yields the dispersion relation of the SIS 

structure that can be written as 
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 (6) 

where  is the mode propagation constant and
0k is the free space wave vector. 

In Fig. 3(b), we plot the dispersion relation for a representative SIS structure designed to 
operate in the THz regime, where spoof plasmonic structures have been previously 
experimentally realized [10,16]. The geometric parameters are a = 1μm, d = 10μm, h = 50μm, 
g = 50μm. The range of plotted propagation constants β is significantly below the Brillouin 

zone boundary at / ,BZ d  ensuring the validity of the metamaterial limit and Eq. (6). 

Solid lines indicate the analytically calculated dispersion, while the circles represent points 
calculated by eigenfrequency analysis using the finite element method [36]. The analytical 
calculation and finite element analysis yield nearly identical results, verifying our derivation. 

Due to the reflection symmetry of the waveguide structure about the x-axis, the modes 
possess either a symmetric (blue) or antisymmetric (red) character, with the symmetry in 
terms of the magnetic field with respect to the waveguide axis. The distribution of charges 
induced on the metallic surfaces possesses the opposite symmetry compared to that of the 
magnetic fields. 

The SIS modes can be analytically separated according to their symmetry by using the 
transfer matrix method to calculate the reflection from two complementary structures, which 

comprise a corrugated layer, an air gap of thickness / 2,g and a flat layer comprised of either 

(i) a PEC or (ii) a fictitious infinitely broadband PMC, with the PEC or PMC boundary 
conditions imposed at the axis of symmetry of the structure, shown as the grey dashed line in 
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Fig. 1(c). The antisymmetric modes of the SIS waveguide have an electric field node on the 
axis of symmetry, and therefore remain unchanged if the axis is replaced by a PEC boundary 
condition; likewise, the symmetric modes have an anti-node on the same axis, so a PMC 
boundary condition is used to isolate these modes. Applying this analysis yields the 
symmetric (i) and antisymmetric (ii) modes of the SIS waveguide: 
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Eqs. (7i) and (7ii) both correspond to Eq. (14) of [14] in the limit of ,g  recovering 

the single surface SSP dispersion, and also to the non-corrugated parallel plate waveguide 

dispersion relation in the limit of 0.h  Eq. (7ii) is also equivalent to Eq. (1) of [21] in the 

long-wavelength limit. 
As in the case of the parallel plate waveguide, the SIS modes can be viewed as the 

combination of plane waves reflecting from the corrugated walls at some angle θ. The phase 
front self-consistency condition of Eq. (1) applies to the SIS waveguide, with the phase of 

reflection  given by Eq. (4) and plotted in Fig. 2(b). This analysis breaks down for non-real 

angle θ 
0( ),k  so it can only capture the waveguide modes above the light line. We 

calculated the dispersion points above the light line by using this approach and found that the 
results match exactly with those obtained by the transfer matrix method (Fig. 3(b)). 

The dispersion diagram in Fig. 3(b) can be understood in terms of the coupling between 
the modes of a parallel plate waveguide (dashed blue and red lines in Figs. 3(a) and 3(b)) and 
the localized cavity resonances of the grooves making up the SIS structure. The first and 

second order groove resonance frequencies (at
1 / 4f c h and

2 / 2f c h ) are plotted as 

horizontal dashed lines in Figs. 3(a) and 3(b). A single unit cell of the SIS structure consists of 
two counter-facing grooves separated by a gap g (shown by the dashed lines in Fig. 1(c)). The 
close proximity of the grooves hybridizes the modes of the grooves, creating a symmetric and 
antisymmetric mode, similar to the bonding and anti-bonding states of coupled quantum 
wells. These localized modes interact with the propagating modes of a conventional parallel 
plate waveguide, with some interactions disallowed by symmetry selection rules. At a point in 
wave vector - frequency space where a symmetric parallel plate waveguide mode (e.g. the 
fundamental TEM mode which follows the light line in Fig. 3) intersects a symmetric 
localized cavity mode, an anticrossing occurs. The same is true for antisymmetric modes, 
such as the TM1 waveguide mode (dashed red line in Figs. 3(a) and 3(b)) upon intersection 
with an antisymmetric cavity mode. This coupled mode behavior in the SIS waveguide is 
similar in character to the hybrid SSP/dielectric waveguide modes which have recently been 
investigated [37]. We performed finite element simulations to show that this behavior persists 
when gold is used instead of a PEC (Fig. 3(c)), with Drude parameters taken from Ref [38]. 
Note that the groove resonance frequencies are lower for a gold structure than one made from 
a PEC with the same geometric parameters, and the strength of the higher frequency 
anticrossings is smaller due to increasing waveguide losses at higher frequencies. 

The modes below the light line in Figs. 3(b)–3(d) can also be viewed as the result of the 
evanescent coupling between SSP modes on each interface, in close analogy to the modes of a 
conventional MIM waveguide. In the MIM waveguide case, the symmetric and antisymmetric 
modes arise due to the coupling of surface plasmon modes on the two metal/dielectric 
interfaces [24, 39]. In the case of the SIS waveguide, the spoof plasmon modes due to the 
corrugations on the walls are likewise coupled to create two hybrid modes of opposite 
symmetries. Such modes have been previously observed in full-wave simulations both in the 
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metamaterial limit 
0( )d  and away from it [18–20]. Representative magnetic field profiles 

for the symmetric and antisymmetric modes are shown in the inset of Fig. 3(d). 

3. Applications of SIS Waveguides 

As the gap g and duty cycle /a d decrease, the corrugation-enabled antisymmetric bands 

become extremely flat (e.g. solid red curve in Fig. 3(d)). Since the group velocity is defined as 

/ ,grv    flat bands correspond to very slow light, for which numerous applications have 

been identified [40]. The flat band in Fig. 3(d) is analogous to the 'omni-directional resonance' 

previously observed in MIM waveguides [41], which becomes progressively flatter as g0, 
instead of only existing for a particular value of g as in MIM waveguides. Furthermore, the 
spectral position of this omnidirectional resonance given by the SIS structure can be 
engineered by varying the groove depth h. 

The extensive control over mode dispersion provided by tuning the many degrees of 
freedom of the SIS waveguide enables the design of structures with multiple applications. In 
addition to the above slow light and 'omnidirectional resonance' configuration, by 

adiabatically tapering the parameters h, g, and /a d  one can achieve the trapping (similar to 

Refs [42,43].) and super concentration (such as Ref. [44]) of light. Furthermore, one can 
envision dynamically changing the group velocity in the SIS waveguide by mechanically 
adjusting the gap g, creating a tunable delay line. 

As a demonstration of the power of dispersion engineering in SIS waveguides, we propose 
a SIS waveguide with tapered groove depth h as a device to convert photonic modes into 
plasmonic ones, and the converse. The mode converter is illustrated in Fig. 4(a) and 4(b) and 
consists of three sections: the leftmost and rightmost sections are SIS waveguides with a = 
5μm, d = 10μm, and g = 50μm and two different values of h (30μm and 60μm, respectively), 
while the middle is an adiabatically tapered SIS waveguide with h increasing linearly from 
left to right. The dispersion relation for one of the symmetric branches of a SIS waveguide 
with these geometric parameters is shown in Fig. 4(c) for a set of groove heights h from 30μm 
to 60μm. 

Light is injected into the left port of the mode converter (h = 30μm) with an operating 
frequency of 3 THz (black dotted line in Fig. 4(c)). At this value of h, the dispersion curve lies 

above the light line (solid blue line in Fig. 4(c)), so 
0k  and the mode can be called 

photonic. The magnetic field profile is shown in Fig. 4(a). As light passes through the middle 
part of the mode converter and enters the right part, h is gradually increased to 60μm, at which 

point
0k  and the mode becomes plasmonic (blue dashed line in Fig. 4(c)). The power flow 

diagram in Fig. 4(b) clearly shows that when the mode is photonic in character, the majority 
of the power flows through the middle of the waveguide, but when the mode becomes 
plasmonic, the power flow becomes localized around the edges of the waveguide. This 
photonic-plasmonic converter operates in an identical fashion in reverse: light injected into a 
plasmonic mode from the right port is converted into a photonic mode on the output. 
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Fig. 4. (a.) Normalized magnetic fields in an SIS photonic-plasmonic mode converter 
calculated by the finite element method when a symmetric mode is injected from the left. (b.) 
The relative magnitude of the power flow in the mode converter. In the photonic mode on the 
left side, the majority of the power is flowing through the center of the waveguide, whereas in 
the plasmonic mode on the right side, the power flow is confined to the edges of the waveguide 
(c.) Dispersion diagram of an SIS waveguide with a = 5μm, d = 10μm, and g = 50μm for 
different values of h. The operating frequency of the mode converter is indicated by the 
horizontal dotted black line and the light line is indicated by the diagonal dashed black line. 

While implementations of the SIS structures proposed here could be difficult to fabricate 
due to the ~λ/4 requirement for the groove height h coupled with the deep-subwavelength 

limit required for a and d (a,d  λ), other geometries are possible for which we expect similar 

dispersion to exist. It has been shown that nearly-planar geometries involving a metallic back-
plane, a thin dielectric spacer, and metallic structures on top can support SSP modes [45, 46] 
and can function as artificial narrowband PMC surfaces (e.g. [29–31]). It is likely that these 
geometries can be used in the place of vertical grooves to create SIS waveguides which would 
be significantly easier to fabricate using conventional techniques. 

4. Conclusion 

We have analyzed the photonic and plasmonic modes of doubly-corrugated parallel plate 
structures which we refer to as spoof-insulator-spoof (SIS) waveguides. We analytically 
derived the dispersion relations of these modes in the limit of deeply-subwavelength 
corrugation, and found that they can be viewed as the interaction between the modes of a 
conventional parallel plate waveguide and hybridized localized cavity resonances of the 
grooves that make up the SIS structure. We found that the existence of this coupling, which is 
indicated by anticrossings in the dispersion curves, is dependent on symmetry-based selection 
rules. We anticipate that these SIS structures will be useful as waveguides in the mid-IR, THz, 
and RF regimes due to the extensive range of tunability in their dispersion curves provided by 
the many geometrical degrees of freedom of the structures, enabling applications such as low-
group-velocity delay lines and photonic-plasmonic mode converters. 
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