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Nonlinear dynamics of coupled transverse modes in quantum cascade lasers
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Applied Sciences, Harvard University, Cambridge, MA 02138 USA

(Received 16 March 2010; final version received 28 June 2010)

We analyze the dynamics of broad-area mid-infrared quantum cascade lasers (QCLs). We show the possibility of
the coherent coupling of several transverse modes which results in several interesting effects including frequency
and phase locking between transverse modes, bistability, and beam steering. We present an analytical model for
the modal dynamics and its numerical analysis. Effects of amplitude and phase fluctuations on the modal stability
are explored. We compare our theoretical results with our experimental measurements of buried heterostructure
QCLs.
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1. Introduction

Higher order transverse modes are routinely observed
in quantum cascade lasers (QCLs) with waveguide
widths exceeding 3–4 laser wavelengths in a medium.
The transverse modes interact with each other through
the inhomogeneous saturation of the active region
(spatial hole burning effect). In certain cases this
nonlinear interaction can prevail over the waveguide
dispersion and result in phase and frequency locking of
the modes.

Transverse mode effects in lasers have been the
subject of extensive research over several decades.
Dynamical transverse laser pattern formation has been
studied in the context of laser instabilities [1,2],
structured light [3], transverse pattern formation and
control [4,5] and solitons [6]. For a review of work
dating before the 1990s, see Abraham et al. [7] and
references therein. Limited work on the subject has
been done on QCLs. One possible signature of the
transverse mode coherence in QCLs is the asymmetry
in the near and far field of a laser beam, observed, for
example, in [8–10]. QCLs operating in the mid-infrared
range have the advantage of having a longer wave-
length, which allows the fabrication of subwavelength
metallic or dielectric pattern on the laser cavity,
resulting in the radiation pattern control and plasmo-
nic beam shaping, see e.g. [11] for a review. This
combined with multi-transverse mode operation can
result in dynamic light structures and selective trans-
verse mode control.

In recent work [10] we have shown that the
observed axial asymmetry and beam steering of the

radiated field in QCLs is a manifestation of phase

coherence between several lateral modes. The phase

locking between different lateral modes can be

explained through four-wave mixing utilizing resonant

third-order (�(3)) optical nonlinearity in the active

region originated from inhomogeneous gain satura-

tion. The mechanisms that govern nonlinear mode

coupling in QCLs differ considerably from those in

diode lasers, where multi-transverse mode behavior has

been previously observed and analyzed [12]. QCLs

have ultrafast gain recovery time of the order of 1 ps

[13]. This timescale is much shorter than the cavity

roundtrip time and the photon lifetime. Therefore,

QCLs should demonstrate class-A laser behavior [14],

accompanied by weak carrier diffusion and strong hole

burning effects, as opposed to diode lasers that show

class-B dynamics, strong carrier diffusion, and weak

spectral and spatial hole burning.
Although thermal effects can lead to a temperature-

dependent refractive index and far-field distortion,

they do not lead to modal coherence and comb

synchronization. Our experimental results and

Fourier analysis of the laser spectra confirmed the

presence of these two effects in the analyzed lasers. The

observed coherent coupling of three transverse modes

can only be explained by their nonlinear mixing, in

fact, four-wave mixing.
In the present article we derive a model for the

dynamics of the transverse modes in QCLs. The

material gain is modelled as a two level medium,

resulting in Maxwell–Bloch equations. The polariza-

tion and population variables are eliminated
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adiabatically (class-A laser), resulting in a system of

nonlinear differential equations for complex ampli-

tudes of cavity modes, to which amplitude and phase

fluctuations are added phenomenologically. The equa-

tions are solved numerically in time domain, and the

dynamics of the modes is systematically studied as a

function of laser parameters: gain, losses, frequency

detunings, etc. Our analysis is compared with exper-

imental results for buried heterostructure QCLs. The

results can be used to understand and control the

effects of phase locking, beam steering, and pulsed

operation in the mid-infrared range.

2. Equations of motion

Our analysis starts with a set of two-level Maxwell–

Bloch equations, in which we perform modal decom-

position of the electric field into cavity modes and the

adiabatic elimination of the population inversion and

coherence. The final derivation leads to a system of

coupled nonlinear equations for complex amplitudes

of the cavity modes.
Starting with Maxwell’s equations, we decompose

the electric field in the cavity into a sum of quasi-

orthogonal waveguide modes:

E ¼
X
i

eiðt, zÞEiðr?Þ, ð1Þ

where r? is the radius vector in the cross-section of the

waveguide and z is the coordinate along the cavity.

We have assumed that it is possible to separate the

transverse and longitudinal field dependence.

The transverse profile of the electric field Ei(r?) is

the eigenmode solution of Maxwell’s equations for a

2D laser waveguide. We introduce slowly varying

complex amplitudes of the electric field:

ei ¼
1

2
ai expð�i!0tþ i�izÞ þ a�i expði!0t� i�izÞ
� �

,

ð2Þ

where !0 is the laser transition frequency and �i is the
propagation constant of the ith mode.

The active region is modelled using density matrix

equations for a two-level medium, with optical polar-

ization expressed through a slowly varying amplitude �
of the off-diagonal element of the density matrix as

P ¼ Nd � expð�i!0tÞ þ �
� expði!0tÞ½ �: ð3Þ

By integrating Maxwell’s equations over the cross-

section AT of the waveguide, making use of the

orthogonality of the modes, and eliminating the fast

oscillating terms (rotating wave approximation),

we obtain

@�

@t
þ �?� ¼ �

id

2�h
D
X
i

Eiai, ð4Þ

@D

@t
þ �k ðD�DpÞ ¼ �

id

�h

X
i

ða�i � � ai�
�Þ, ð5Þ

@ai
@t
þ

c

�i

@ai
@z
þ ð�i þ iDciÞai ¼

4pi!0Nd

�iAT

ð
AR

�Ei dA ð6Þ

where N is the total electron density in the active

region, d is the dipole moment of the laser transition,

Dci is the detuning of the ith mode from the central

frequency !0, �i is the modal refractive index, ��1? and

��1k are relaxation times for coherence and population

inversion, respectively, and Dp is the population inver-

sion supported by pumping in the absence of laser

generation.
The relaxation times in QCLs are faster than

photon decay times, which allows us to do adiabatic

elimination of the polarization d�/dt¼ 0 and popula-

tion dD/dt¼ 0. We expand the polarization term in

series and retain only the first two terms (�(3) approx-
imation). Since we have a large number of longitudinal

modes per one lateral mode as seen in the experimental

spectra below, we employ the mean-field approxima-

tion by averaging the last equation over z and

including mirror losses into waveguide losses �i. The
equation of motion for the ith mode becomes as

follows:

dai
dt
þ ð�i þ iDciÞai ¼ gGiai �

g

IS

X
j,k,l

aja
�
kalGijkl, ð7Þ

where the material gain and saturation intensity are

defined by

g ¼
4p!0Nd 2Dp

2�?�h�i
, IS ¼

�h2�k�?
d 2

: ð8Þ

Here the overlap integrals are defined as

Gi ¼

Ð
AR"E

2
i dAÐ

AT
"E2

i dA
, Oi ¼

1

AT

ð
AR

"E2
i dA, ð9Þ

Gijkl ¼
1

ATðOiOjOkOl Þ
1=2

ð
AR

"EiEjEkEl dA ð10Þ

where AR is the cross-sectional area of the active

region. The factors Gijkl are symmetric with respect to

any permutation of the sub-indices, which is clear from

the definition (Equation (10)). The symmetry simplifies

the numerical calculations.
As the final step we add phenomenologically a

noise term to the equations. Since the QCLs are
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class-A lasers, noise analysis differs from that of
standard semiconductor lasers and it gets more com-
plicated by the correlation of photons through the
reuse of electrons while they travel inside the cavity.
The specifics of noise correlation effects are discussed
in the literature [15,16].

Our numerical analysis showed that fluctuations in
the injection current do not influence the basic
behavior of the modes and we will neglect it, concen-
trating on fluctuations of the complex amplitudes of
the modes. One possible source of these fluctuations is
the spontaneous emission.

The noise enters our equations as an extra equa-
tion, with a stochastic source term added to the
complex field amplitude,

aiðtÞ ! aiðtÞ þ ~a�iðtÞ: ð11Þ

The noise term has the following characteristics:

h�iðtÞi ¼ 0,

jh�iðtÞ�jðt
0Þij ¼ 	ij	ðt� t0Þ:

ð12Þ

Here ~a is the noise amplitude and �(t) is a stochastic
process, with a complex uniform distribution function
and 0� j�(t)j � 1.

3. Numerical modeling

We solve the resulting system of coupled nonlinear
differential equations (Equations (7)) numerically. The
initial conditions for the amplitudes are taken as a set
of randomly distributed complex amplitudes, with
magnitudes of the order of 10�3. This accounts for
the amplification of the cold cavity modes from
spontaneous emission. The equations are integrated
until the amplitudes reach either steady state or a
periodic form.

An example of the dynamics of three transverse
modes is presented in Figure 1. The modes are the
TM00, TM01 and TM02 modes. The transverse distri-
butions, losses, frequencies, and propagation constants
of cold waveguide modes were found with COMSOL
software using the Finite Element Method and were
consequently used to find the overlap integrals G and
G. The laser geometry corresponded to buried hetero-
structure lasers shown in the experimental section
below. Details of the mode calculation methodology
can be found in [17]. The values of parameters used for
the simulations are presented in Table 1. The gain gth is
the threshold gain for the TM01 mode which has the
lowest threshold.

Next, we find stable steady state solutions by
solving Equations (7) starting from a large set of
random initial conditions and following the modal
evolution with time until the stable solution is reached.

An example of such analysis is shown in Figure 1 for
the amplitudes and Figure 2 for the phases of complex
amplitudes ai. The nonlinear interaction leads to
frequency pulling, merging the transverse modes into
a single frequency with a constant phase difference
between them. This can be observed from Figure 2 as
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Figure 1. Time-dependent dynamics of modal amplitudes for
five random initial conditions. The gain is 3.5 times gth. (The
color version of this figure is included in the online version of
the journal.)
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Figure 2. Phases corresponding to the same simulations as in
Figure 1. (The color version of this figure is included in the
online version of the journal.)

Table 1. Parameters and modes used in the simulations.

Mode TM00 TM01 TM02

Dci (rad s
�1) �6.52� 1010 0 6.29� 1010

�i (rad s
�1) 7.86� 1010 6.82� 1010 9.08� 1010

G 0.517 0.496 0.448
IS (erg s�1 cm�2) 1.205� 103

~a (statV cm�1) 1� 10�2

gth (rad s�1) 1.37� 1011

1894 A.K. Wójcik et al.



well, where the slope of the phase is the frequency.
Experimentally this effect should lead to merging of
three combs belonging to different transverse modes
into a single comb, while the far-field pattern shows
the presence of all three transverse modes with locked
phases. The phase difference between the modes
determines the exact form and the amount of the
beam steering in the far field. This behavior is in fact
observed as we discuss below.

The same time-dependent simulations starting from
a random set of initial conditions were made for a
broad range of gain values. The values of the param-
eters were the same as previously, only the parameter g
was varied. The results are plotted in Figures 3 and 4,
where the gain is normalized to the value gth from
Table 1.

The three modes lock to a single frequency,
forming a gain-dependent far-field pattern. The dom-
inant mode TM01 starts lasing with a normalized gain
of 1, while the other two modes appear almost

simultaneously when the gain is two times higher, as
seen from Figure 4. The relative phase of the modes
also depends on the gain, varying almost monoto-
nously, as presented in Figure 5. This figure shows only
the phase relation between modes TM00 and TM02 at
the final time of the simulation. This phase dependence
of the gain, determines the exact angular distribution
of the pump-dependent asymmetric beam pattern.

We extend our analysis to the case where noise
becomes negligible, which in our case represents taking
the noise amplitude below approximately ~a51� 10�3

statV cm�1. In this case the laser shows a bistability
behavior. The amplitudes of steady state solutions
from a time dependent simulation are shown in
Figure 6. The simulation is repeated for the same
value of gain, but randomly taking another set of
initial conditions. The final amplitude takes one of the
two branches depending of the initial condition – the
effect that did not exist when the noise was an order of
magnitude higher. All transverse modes lock to the
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Figure 4. Frequencies of the modes as a function of gain,
normalized to gth. The modes lock to a single frequency.
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same frequency, but this frequency is different for each
of the bistable states, as shown in Figure 7.

Interestingly, there exists an intermediate range of
gains where only one stable steady state solution exists,
as shown in Figures 6 and 7. The two boundaries of
this region are points of bifurcations where the second
solution appears. In the immediate vicinity of each
boundary, there is an unstable region where multiple
solutions exist depending on the initial conditions and
the level of noise. In this region the laser is expected to
randomly hop between different mode patterns.

The coexistence of two stable solutions may seem
puzzling, but close inspection of Figure 6 reveals that
the second stable solution contains only two lateral
modes – the third mode has zero amplitude. The latter
mode is actually the TM01 mode which has the lowest
threshold and starts lasing first when the pump is
turned on; therefore its suppression and the emergence
of the second, two-mode solution is entirely due to a
strong nonlinear interaction and competition between
modes.

The bistability effect is not strongly dependent on
the spectral separation between the cold waveguide
modes, or D parameters in our model. We explored the
dependence of the modal amplitude on a D plane, and
observed that the bistability is fairly independent of D3

and needs a certain threshold for D1,th5D1 to appear,
as can be seen from Figures 8 and 9. In the case
analyzed here, D1,th’ 0.05meV. The amplitude of the
mode TM00 is different from 0, independently of D3 as
long as D1 is below 0.05meV. The same case follows
for mode TM02, as long as D3 is below 0.05meV.

The actual separation of the lateral modes depends
directly on the shape of the cavity and the design of
the QCLs. A more detailed experimental study of the
spectral distribution of the cavity modes has been
performed by Stelmakh et al. [18]. He found a broad

range of values for spectral separation between lateral

modes, from a nearly degenerate case of merging

lateral modes to fairly large separation of the order of

the distance between neighboring longitudinal modes

(about 0.1meV for a 2mm long cavity). Spectral

position of cold cavity modes is an important design

and optimization parameter for the control of the

nonlinear transverse mode dynamics.
The stable steady-state solutions found with the

time-dependent analysis can be compared with a set of

all frequency- and phase-locked steady-state solutions

that can be obtained by eliminating time derivatives

from the equations and solving for only the steady-

state solutions. By changing the complex field variables

into phases and amplitudes, we look for constant-

amplitude, steady-state solutions of the form

aj ðtÞ ¼ fj expðiOtþ i
j Þ: ð13Þ
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version of the journal.)
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The amplitudes and phases fj and 
j become time

independent and the modes lock to a single frequency

O. The system of equations has one more unknown

than the resulting number of equations. In this case it is

possible to set one of the phases, 
j¼ 0, without

loss of generality, and eliminate one of the variables.

The steady-state system of equations takes the

following form,

�j fj � gGj fj ¼
�2g

Is

X
k,l,m

Gjklm fk fl fm cos
jklm,

O fj þ Dj fj ¼
�2g

Is

X
k,l,m

Gjklm fk fl fm sin
jklm,


jklm ¼ 
k þ 
l � 
m � 
j: ð14Þ

In our case we take 
2¼ 0. The solutions for the

TM01 mode are presented in Figure 10.
Both states from the bistability regime are present

among all steady state-solutions. The change from the

bistable to stable regime is accompanied by the change

in the total number of steady-state solutions.

4. Experimental results

An experimental example of such frequency- and
phase-locked behavior is presented in Figure 11,
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which corresponds to a buried-heterostructure laser

fabricated by Hamamatsu, with an active region width

of 19.4 mm. Starting from threshold, this laser operates

at three lateral modes TM00, TM01, and TM02, and

its far field is well described by an incoherent addition

of modal intensities. The spectrum consists of at least

three distinct combs of longitudinal modes, each comb

belonging to a different lateral mode. At about 1.5A,

both the spectrum and the far field undergo a drastic

change. The spectral combs merge into a single comb

(Figure 11(c)), as if only one lateral mode is present.

This locking of lateral modes is verified by Fourier

analysis of the spectra below and above the bifurcation

value of the current. At the same time, the far-field

pattern becomes very asymmetric and shifts by about

30� off the waveguide axis (Figure 11(b)). This far field

indicates the presence of all three lateral modes.

Moreover, it can only be fitted by a coherent addition

of the fields of all three lateral modes with fixed mutual

phases. The beam steering is unlikely to originate from

the thermal lens effect for two reasons. First, all

heating-related effects are expected to be small because

the laser operated in the pulsed regime with a low duty

cycle. Second the changes in the beam pattern

correlated with the spectral changes. In the case of

thermal lensing, one should not expect to see strong

changes in the spectrum.
This frequency-synchronized, phase-coherent

behavior persists over a wide range of currents and is

reproducible. Then at about 2.75A, the laser under-

goes the transition back to a state with several distinct

spectral combs and symmetric far-field pattern.
Another buried heterostructure laser (from Agilent)

showing a beam steering effect and phase locking is

shown in Figure 12. The device lases at a wavelength

�� 8.45 mm and has an active region 11.2mm wide.

The LIV curve, far-field measurements and spectral

dependence on injection current are presented in

Figure 12. The laser is operated at room temperature

in a pulsed regime, with a 80 kHz repetition rate.

The pulse duration is 125 ns. The experimental

conditions and setup are the same as the ones

described in [10].
The laser beam shows asymmetry for currents

between 1.25 and 2.1A. Above this current, the laser

enters into a roll-over region. The beam steering region

of currents correlates with the frequency and phase

locking region, although the combs remain distinct as
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revealed by the Fourier analysis, similarly to the case

studied in [10].
We emphasize that the existence of the phase-

locked regime within a certain range of currents is not

a unique property of one peculiar laser device. We

observed the same behavior in many devices of

different wavelengths and waveguide widths, fabri-

cated by different manufacturers. The only common

property was that all devices were of buried hetero-

structure type, with the active stripe overgrown by

thick low-loss dielectric cladding. This design gives rise

to very similar losses for several lateral modes. In fact,

most of the devices started lasing at a higher-order

lateral mode. In comparison, in the recent study of

broad-ridge QCLs with lossy metal sidewalls [18],

multi-lateral mode operation was readily observed, but

no indication of phase coherence was found.

5. Conclusions

A model for the dynamics of transverse modes in

QCLs has been derived and solved numerically. The

numerical analysis predicted stable mode locking of

three transverse modes through four-wave mixing

interaction mediated by inhomogeneous saturation of

the active region (spatial hole burning). The modes

experience frequency pulling and lock to a single

frequency, with a constant phase difference between

them. We confirmed the results experimentally in a

number of buried heterostructure QCLs.
For low level of the amplitude and phase fluctua-

tions, there may exist two stable phase-locked states.

This bistability regime would manifest itself by the

presence of two separate combs in time-averaged

measurements or as large intensity and spectral fluc-

tuations in time-resolved data. In the pulsed regime,

one could observe strong pulse-to-pulse fluctuations

in laser intensity and spectra, which, however, would

also require time-resolved measurements. We are not

aware of any experimental confirmation of bistability

in QCLs.
The phase coupling of transverse modes can be

affected and controlled by selective inhomogeneous

current injection or by selective modulation of modal

losses through the fabrication of metallic structure

on top of the laser waveguide. This could lead to the

development of integrated mid-infrared sources with

complex beam phase structure or to the generation of

ultrashort pulses.
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