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Abstract. We study the multimode operation regimes of midinfrared
quantum cascade lasers (QCLs), taking into account nonlinear phase-
sensitive interactions between transverse modes. We show the possibility
of the coherent coupling of several transverse modes, which results in
a number of interesting effects including frequency and phase locking
between transverse modes, bistability, and beam steering. We present
an analytical model for the modal dynamics and its numerical analysis.
Effects of amplitude and phase fluctuations on the modal stability are
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1 Introduction
Nonlinear interaction of mid/far-infrared radiation with the
active region in quantum cascade lasers (QCLs) is extremely
strong due to a large matrix element of the optical transi-
tions between delocalized electron states in coupled quantum
wells. Even more importantly, the active region of a QCL can
be modified to enhance any particular nonlinear optical in-
teraction by adjusting intersubband resonances and oscillator
strengths. This greatly facilitates intracavity frequency con-
version processes such as generation of harmonics,1–3 dif-
ference frequency in the terahertz range,4, 5 and stimulated
Raman scattering.6

At the same time, the nonlinear coupling between laser
cavity modes within the gain spectrum of the laser transition,
which is so prominent in other types of solid-state lasers
and which leads to a variety of mode-locking phenomena, is
suppressed in QCLs by ultrafast gain recovery time of the
order of 1 ps. This timescale is much shorter than the cav-
ity roundtrip time and the photon lifetime (a class A laser7).
This leads to a strong damping of any perturbation of light in-
tensity in a cavity, except maybe in the fully coherent regime
when the timescale of Rabi oscillations of the population
inversion and laser intensity becomes shorter than the de-
phasing time of the optical polarization (see Refs. 8, 9, and
10). Although in recent work,11 active mode locking by gain
modulation in a short section of a QCL cavity has been
demonstrated near laser threshold, passive mode locking re-
mains an elusive goal. Surprisingly, in a recent study12 we
found out that the phases of different transverse modes can
be coupled in a standard QCL without a saturable absorber
or any other nonlinear element in a cavity. The coherence of
mutual phases of three or four transverse modes has been ver-
ified by near- and far-field measurements, observation of the
beam steering effect, and theoretical modeling, which pre-
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dicted modal amplitudes, frequencies, and phases in agree-
ment with the experiment.12 In the present work, we report
systematic studies of multilateral mode QCLs, which indi-
cate that nonlinear locking of lateral modes is a ubiquitous
phenomenon for buried-heterostructure lasers. We describe
a recently found regime of complete synchronization when
combs of longitudinal modes belonging to different lateral
modes merge into a single comb; see the second reference in
Ref. 12.

2 Experimental Evidence for Transverse
Mode Locking

Higher order lateral modes are routinely observed in QCLs
with waveguide widths exceeding three to four laser wave-
lengths in a medium. For example, in the recent study of
broad-area ridge-waveguide QCLs,13 a variety of multilateral
mode operation regimes were readily observed, although no
evidence for the nonlinear mode coupling was found. How-
ever, the transverse modes do interact with each other through
the inhomogeneous saturation of the active region (spatial
hole burning effect). In certain cases, this nonlinear interac-
tion can prevail over the waveguide dispersion and result in
phase and frequency locking.

Coherent transverse effects in lasers have been the subject
of extensive research over several decades. Dynamical trans-
verse laser pattern formation has been studied in the context
of laser instabilities,14, 15 structured light,16 transverse pat-
tern formation and control,17, 18 and solitons.19 For a review
of the work dating prior to the nineties, see Abraham and
Firth and references therein.20 Limited work on the sub-
ject has been done on QCLs. One possible signature of the
transverse mode coherence in QCLs is the asymmetry in the
near and far field of a laser beam, observed, for example, in
Refs. 12, 21, and 22. QCLs operating in the mid-infrared
range have the advantage of having a longer wavelength,
which allows the fabrication of subwavelength metallic or
dielectric patterns on the laser cavity, resulting in radiation
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Fig. 1 (a) Measured LIV curve, (b) the far field, and (c) the spectra of a buried-heterostructure QCL with wavelength λ ≈ 8.9 μm and an active
region 19.4 μm wide, fabricated by Hamamatsu.

pattern control and plasmonic beam shaping (see, e.g., Ref.
23 for the review). This combined with multitransverse mode
operation can result in dynamic light structures and selective
transverse mode control.

In recent work,12 we have shown that the observed axial
asymmetry and beam steering of the radiated field in QCLs
can be a manifestation of phase coherence between several
lateral modes. Phase locking between lateral modes can be
explained through four-wave mixing utilizing resonant third-
order [χ (3)] optical nonlinearity in the active region origi-
nated from inhomogeneous gain saturation. The processes
that affect nonlinear mode coupling in QCLs differ consider-
ably from those in diode lasers, where multitransverse mode
behavior has been previously observed and analyzed.24 As
we already pointed out, QCLs should demonstrate class-A
laser behavior,7 accompanied by weak carrier diffusion and
strong hole burning effects, as opposed to diode lasers that
show class-B dynamics, strong carrier diffusion, and weak
spectral and spatial hole burning.

Although thermal effects can lead to a temperature-
dependent refractive index and far-field distortion in QCLs,22

these effects do not lead to sudden changes in the spectra,
frequency locking, and modal phase coherence. Our experi-
mental results, near- and far-field fitting, and Fourier analysis
of the laser spectra confirmed the presence of these phenom-
ena in the analyzed lasers. The observed coherent coupling of
the transverse modes can only be explained by their nonlinear
interaction.

Even though the phases of the transverse modes observed
in Ref. 12 were correlated, their combs remained distinct
and there was no sudden change in the spectra at the onset
of phase locking. Here we describe an even more fascinat-
ing effect of the complete mode synchronization, in which a
complex spectrum of several distinct combs of longitudinal
modes belonging to different transverse modes merges into
a single comb while the laser maintains a multi-transverse
mode operation; see the second reference in Ref. 12. The tran-
sition to this regime occurs as a bifurcation at a certain value
of the injection current. It is accompanied by the transition
from the multistability regime, where many stable steady-
state solutions are possible to the regime where there exists
only one stable steady state with phase coherence between
lateral modes.

An experimental example of such frequency- and phase-
locked behavior is presented in Fig. 1, which corresponds
to a buried-heterostructure laser fabricated by Hamamatsu
(Japan), with an active region width of 19.4 μm. This is a
high-performance laser based on a three-phonon resonance
design as reported in Refs. 11 and 25. It is operated in a
pulsed-mode, 125-ns pulse length, 1% duty cycle at room
temperature. Starting from threshold, this laser shows three
lateral modes of TM00, TM01, and TM02, and its far field is
well described by an incoherent addition of modal intensi-
ties. The spectrum consists of at least three distinct combs
of longitudinal modes, each comb belonging to a different
lateral mode. At about 1.5 A, both the spectrum and the far
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Fig. 2 (a) Measured LIV curve, (b) the far field, and (c) the spectra of a buried-heterostructure QCL with wavelength λ ≈ 8.45 μm and an active
region 11.2 μm wide, fabricated by Agilent.

field undergo a drastic change. The spectral combs merge
into a single comb [Fig. 1(c)], as if only one lateral mode is
present. This locking of lateral modes is verified by Fourier
analysis of the spectra below and above the bifurcation value
of the current. This analysis reveals three distinct rf peaks be-
low the locking transition, which correspond to the roundtrip
frequencies in three combs. Only one such peak exists above
the locking transition. At the same time, the far-field pat-
tern becomes very asymmetric and shifts by about 30 deg
off the waveguide axis [Fig. 1(b)]. This far field indicates
the presence of all three lateral modes whose combs become
completely synchronized. Moreover, we verified that the far
field can only be fitted by a coherent addition of the fields
of all three lateral modes with fixed mutual phases. Any
incoherent addition of mode intensities cannot lead to the
observed asymmetric distribution, because all lateral modes
are symmetric with respect to the waveguide axis.

This frequency-synchronized, phase-coherent behavior
persists over a wide range of currents and is reproducible.
Then at about 2.75 A, the laser undergoes transition back to
a state with several distinct spectral combs and symmetric
far-field patterns.

Another buried heterostructure laser (from Agilent, Santa
Clara, California) showing similar behavior is shown in
Fig. 2. This is a metal organic chemical vapor deposition
(MOCVD)-grown laser based on a double phonon reso-
nance design of the active region.26 It lases at a wavelength
λ ≈ 8.45 μm and the waveguide is 11.2 μm wide. The
light-current-voltage (LIV) curve, far-field measurements,
and spectra are presented in Fig. 2. The laser is operated in
the same regime as the Hamamatsu devices: at room tempera-
ture in a pulsed regime, with 125-ns pulses. The experimental

conditions and setup are the same as the ones described in
Ref. 12.

The laser beam shows asymmetry for currents between
1.25 and 2.1 A. Above this current, the laser enters into a roll-
over region. The beam steering region of currents correlates
with the change in the laser spectrum and is accompanied
by frequency and phase locking, although the combs remain
distinct in this case, as revealed by the Fourier analysis and
far-field fitting, similar to the case studied in Ref. 12.

We emphasize that the existence of this phase-locked
regime within a certain range of currents is not a unique prop-
erty of one peculiar laser device. In total, four Hamamatsu
lasers and 11 Agilent lasers with different waveguide widths
have been tested. All of them show anomalous (asymmet-
ric) far-field patterns with different degrees of asymmetry,
accompanied by strong changes in the laser spectra. About
one third of them show the frequency locking effects; the
rest do not show the locking of modal combs, likely due
to incomplete lateral mode locking. The common property
between different devices was that all devices were of buried-
heterostructure type, with the active stripe overgrown by a
thick low-loss dielectric cladding. This design gives rise to
very similar losses for several lateral modes. In fact, most of
the devices started lasing at a higher order lateral mode.
In comparison, in the recent study of broad-ridge QCLs
with lossy metal sidewalls,13 multilateral mode operation
was readily observed, but no indication of phase coherence
was found. A probable reason for this is a much larger losses
for high order lateral modes in the ridge waveguide as com-
pared to buried-heterostructure devices. Our numerical anal-
ysis does show that in this situation the transverse mode
locking would be suppressed.
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3 Theoretical Model
We consider the simplest possible model for the dynam-
ics of the transverse modes in QCLs, which still includes
the effect of phase-sensitive nonlinear mode coupling. The
material gain is modeled as a two-level medium, resulting
in Maxwell-Bloch equations. The polarization and popula-
tion variables are eliminated adiabatically (class-A laser),
resulting in a system of nonlinear differential equations for
complex amplitudes of cavity modes, to which amplitude
and phase fluctuations are added phenomenologically. The
equations are solved numerically in the time domain, and
the dynamics of the modes are systematically studied as a
function of laser parameters: gain, losses, frequency detun-
ings, etc. Our analysis is compared with experimental results
for buried-heterostructure QCLs. The results can be used to
understand and control the effects of phase locking, beam
steering, and pulsed operation in the midinfrared range.

3.1 Equations of Motion
Our analysis starts with a set of two-level Maxwell-Bloch
equations, in which we perform modal decomposition of the
electric field into waveguide modes, and the adiabatic elim-
ination of the population inversion and coherence. The final
derivation leads to a system of coupled nonlinear equations
for complex amplitudes of the cavity modes.

Starting with Maxwell’s equations, we decompose the
electric field in the cavity into a sum of quasiorthogonal
waveguide modes:

E =
∑

i

ei (t, z)Ei (r⊥), (1)

where r⊥ is the radius vector in the cross section of the
waveguide and z is the coordinate along the cavity. We intro-
duce slowly varying complex amplitudes of the electric field:

ei = 1
2 [ai exp(−iω0t + iβi z) + a∗

i exp(iω0t − iβi z)], (2)

where ω0 is the laser transition frequency and βi is the prop-
agation constant of the i’th mode.

The active region is modeled using density matrix equa-
tions for a two-level medium, with optical polarization ex-
pressed through a slowly varying amplitude σ of the off-
diagonal element of the density matrix as

P = Nd[σ exp(−iω0t) + σ ∗ exp(iω0t)]. (3)

By integrating Maxwell’s equations over the cross section
AT of the waveguide, making use of the orthogonality of the
modes, and eliminating the fast oscillating terms (rotating
wave approximation), we obtain

∂σ

∂t
+ γ⊥σ = − id

2h̄
D

∑
i

Ei ai , (4)

∂ D

∂t
+ γ‖(D − Dp) = − id

h̄

∑
i

(a∗
i σ − aiσ

∗), (5)

∂ai

∂t
+ c

μi

∂ai

∂z
+ (κi + i
ci )ai = 4π iω0 Nd

μi AT

∫
AR

σ Ei d A,

(6)

where N is the total electron density in the active region,
d is the dipole moment of the laser transition, 
ci is the
detuning of the i’th mode from the central frequency ω0, μi

is the modal refractive index, γ −1
⊥ and γ −1

‖ are relaxation
times for coherence and population inversion, respectively,
and Dp is the population inversion supported by pumping in
the absence of laser generation.

In the present section, under the mean-field approxima-
tion, the detuning variables represent the separation between
adjacent transverse modes. In the second part of this work,
we analyze the case where a given number of longitudinal
modes is analyzed (five per each lateral modes) and their
detunings are determined by the cavity modal structure.

The relaxation times in QCLs are faster than photon decay
times, which allows us to perform adiabatic elimination of
the polarization dσ/dt = 0 and population d D/dt = 0. We
expand the polarization term in series and retain only the
first two terms [χ (3) approximation]. Since we have a large
number of longitudinal modes per one lateral mode, as seen
in the experimental spectra next, we employ the mean-field
approximation by averaging the last equation over z and
including mirror losses into the total losses κi . The equation
of motion for the i’th mode becomes as follows:

dai

dt
+ (κi + i
ci )ai = g�i ai − g

IS

∑
j,k,l

a j a
∗
k al Gi jkl , (7)

where the material gain and saturation intensity are defined
by

g = 2πω0 Nd2 Dp

γ⊥h̄μi
, IS = h̄2γ‖γ⊥

d2
. (8)

Here the overlap integrals are defined as

�i =
∫

AR εE2
i d A∫

AT
εE2

i d A
, Oi = 1

AT

∫
AR

εE2
i d A, (9)

Gi jkl = 1

AT (Oi O j Ok Ol )
1
2

∫
AR

εEi E j Ek Eld A, (10)

where AR is the cross sectional area of the active region.
The factors Gi jkl are symmetric with respect to any permu-
tation of the subindices, which is clear from the definition in
Eq. (10). The symmetry simplifies the numerical calcula-
tions.

The second term on the right-hand side of Eq. (7) de-
scribes the phase-sensitive nonlinear coupling between dif-
ferent modes, which can lead to their frequency and phase
locking. This process competes with the effect of waveguide
dispersion and losses described by the complex detunings
[the second term on the left-hand side of Eq. (7)].

As the final step, we add phenomenologically a noise term
to the equations. Since the QCLs are class-A lasers, noise
analysis differs from that of standard semiconductor lasers,
and it gets more complicated by the correlation of photons
through the reuse of electrons while they travel inside the
cavity. The specifics of noise correlation effects are discussed
in the literature.27, 28

Our numerical analysis showed that fluctuations in the
injection current do not influence the basic behavior of the
modes, and we neglect it to concentrate on fluctuations of
the complex amplitudes of the modes. One possible source
of these fluctuations is the spontaneous emission.

The noise enters our equations as an extra equation, with a
stochastic source term added to the complex field amplitude,

ai (t) → ai (t) + ãξi (t). (11)
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Fig. 3 Time-dependent dynamics of modal amplitudes for five ran-
dom initial conditions. The gain is 3.5 times gth.

The noise term has the following characteristics:

〈ξi (t)〉 = 0,

|〈ξi (t)ξ j (t
′)〉| = δi jδ(t − t ′). (12)

Here ã is the noise amplitude and ξ (t) is a stochastic
process, with a complex uniform distribution function and
0 ≤ |ξ (t)| ≤ 1.

3.2 Numerical Modeling
We solve the resulting system of coupled nonlinear differ-
ential equations [Eq. (7)] numerically. The initial conditions
for the amplitudes are taken as a set of randomly distributed
complex amplitudes, with magnitudes of the order of 10−3.
This accounts for the amplification of the cold cavity modes
from spontaneous emission. The equations are integrated un-
til the amplitudes reach either steady state or a periodic form.
In the present section, we focus on three transverse modes,
which is the number of modes observed in our experiments.

An example of the dynamics of three transverse modes is
presented on Fig. 3. The modes are the TM 00, TM 01, and
TM 02 modes. The transverse distributions, losses, frequen-
cies, and propagation constants of cold waveguide modes
were found with COMSOL software using the finite ele-
ment method, and were consequently used to find the over-
lap integrals G and �. The laser geometry corresponded to
buried-heterostructure lasers, shown in the experimental sec-
tion next. Details of the mode calculation methodology can
be found in Ref. 29. The values of parameters used for the
simulations are presented in Table 1. The gain gth is the

Table 1 Parameters and modes used in the simulations.

Mode TM 00 TM 01 TM 02


ci (rad/s) −6.52×1010 0 6.29×1010

κi (rad/s) 7.86×1010 6.82×1010 9.08×1010

� 0.517 0.496 0.448

IS (erg/s/cm2) 1.21×103

ã (statV/cm) 1×10−2

gth (rad/s) 1.37×1011
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Fig. 4 Phases corresponding to the same simulations as in Fig. 3.

threshold gain for the TM 01 mode, which has the lowest
threshold.

Next, we find stable-steady state solutions by solving
Eq. (7) starting from a large set of random initial condi-
tions and following the modal evolution with time until a
stable solution is reached. An example of such analysis is
shown in Fig. 3 for the amplitudes and Fig. 4 for the phases
of complex amplitudes ai . The nonlinear interaction leads to
frequency pulling, merging the transverse modes into a sin-
gle frequency with a constant phase difference between them.
This can be observed from Fig. 4 as well, where the slope of
the phase is the frequency. Experimentally, this effect should
lead to merging of three combs belonging to different trans-
verse modes into a single comb, while the far-field pattern
shows the presence of all three transverse modes with locked
phases. The phase difference between the modes determines
the exact form and amount of beam steering in the far field.

The same time-dependent simulations starting from a ran-
dom set of initial conditions were made for a broad range of
gain values. The values of the parameters were the same as
before, only the parameter g was varied. The results are plot-
ted in Figs. 5 and 6, where the gain is normalized to the value
gth from Table 1.

The three modes lock to a single frequency, forming a
gain-dependent far-field pattern. The dominant mode TM 01
starts lasing with a normalized gain of 1, while the other
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Fig. 5 Amplitudes of the modes as a function of gain, normalized to
gth. All three modes are present.

Optical Engineering November 2010/Vol. 49(11)111114-5

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 23 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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two modes appear almost simultaneously when the gain is
two times higher, as seen from Fig. 6. The relative phase
of the modes also depends of the gain, varying almost
monotonously, as presented in Fig. 7. The figure shows only
the phase relation between modes TM 00 and TM 02 at the
final time of the simulation. This phase dependence of the
gain determines the exact angular distribution of the pump-
dependent asymmetric beam pattern.

We extend our analysis to the case where noise becomes
negligible, which in our case represents taking the noise
amplitude ã below approximately 1×10−3 statV/cm. In this
case, the laser shows bistability behavior. The amplitudes of
steady-state solutions from a time-dependent simulation are
shown in Fig. 8. The simulation is repeated for the same value
of gain, but randomly taking another set of initial conditions.
The final amplitude takes one of the two branches depending
of the initial condition – the effect that did not exist when the
noise was an order of magnitude higher. All transverse modes
lock to the same frequency, but this frequency is different for
each of the bistable states, as shown in Fig. 9.

Interestingly, there exists an intermediate range of gains
where only one stable steady-state solution exists, as shown
in Figs. 8 and 9. The two boundaries of this region are points
of bifurcations where the second solution appears. In the
immediate vicinity of each boundary, there is an unstable
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Fig. 7 Phases of the modes as a function of gain, normalized to gth.
The phase relation between the modes is a function of gain, resulting
in beam steering of the field.
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Fig. 8 Bistability in modal amplitudes as a function of gain, normal-
ized to gth.

region where multiple solutions exist, depending on the initial
conditions and the level of noise. In this region the laser is
expected to randomly hop between different mode patterns.

The coexistence of two stable solutions may seem puz-
zling, but close inspection of Fig. 8 reveals that the second
stable solution contains only two lateral modes – the third
mode has zero amplitude. The latter mode is actually the
TM 01 mode, which has the lowest threshold and starts lasing
first when the pump is turned on; therefore, its suppression
and the emergence of the second, two-mode solution is en-
tirely due to a strong nonlinear interaction and competition
between modes.

The bistability effect is not strongly dependent of the
spectral separation between the cold waveguide modes, or 

parameters in our model. We explored the dependence of the
modal amplitude on a 
 plane, and observed that bistability
is fairly independent of 
3 and needs a certain threshold for

1,th < 
1 to appear, as can be seen from Figs. 10 and 11. In
the case analyzed here, 
1,th � 0.05 meV, which is about half
the frequency separation between neighboring longitudinal
modes within one comb.

The amplitude of the mode TM 00 is different from 0, in-
dependently of 
3 as long as 
1 is below 0.05 meV. The
same case follows for mode TM 02, as long as 
3 is below
0.05 meV. The separation of the modes depends directly on
the shape of the cavity and the design of the QCLs. A more
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Fig. 9 Frequencies of all three modes locked to two different frequen-
cies, normalized to gth.
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Fig. 10 The amplitudes of mode TM00 as a function of 
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detailed experimental study of the spectral distribution of
the cavity modes has been performed by Stelmakh et al.13

He found a broad range of values for spectral separation be-
tween lateral modes, from nearly degenerate cases of merg-
ing lateral modes to fairly large separations of the order of
the distance between neighboring longitudinal modes (about
0.1 meV for a 2-mm-long cavity). Spectral position of cold
cavity modes is an important design and optimization param-
eter for the control of nonlinear transverse mode dynamics.

The stable steady-state solutions found with the time-
dependent analysis can be compared with a set of all
frequency- and phase-locked steady-state solutions that can
be obtained by eliminating time derivatives from the equa-
tions and solving for only the steady-state solutions. By
changing the complex field variables into phases and ampli-
tudes, we look for constant-amplitude, steady-state solutions
of the form

a j (t) = f j exp (i�t + iφ j ). (13)

The amplitudes and phases f j and φ j become time in-
dependent and the modes lock to a single frequency �. The
system of equations has one more unknown than the resulting
number of equations. In this case it is possible to set one of
the phases φ j = 0, without loss of generality, and eliminate
one of the variables. The steady-state system of equations
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Fig. 11 The amplitudes of mode TM02 as a function of 
.
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Fig. 12 Steady-state solutions as a function of gain for the mode
TM01.

takes the following form,

κ j f j − g� j f j = −2g

I s

∑
k,l,m

Gjklm fk fl fm cos φ jklm,

� f j + 
 j f j = −2g

I s

∑
k,l,m

Gjklm fk fl fm sin φ jklm,

φ jklm = φk + φl − φm − φ j . (14)

In our case, we take φ2 = 0. The solutions for the TM 01
mode are presented in Fig. 12.

Both stable solutions from the bistability regime are
present among all steady-state solutions. The change from
the bistable to stable regime is accompanied by a change in
the total number of steady-state solutions.

3.3 Nonlinear Interactions of Cold Cavity Modes
Now we make an assumption that is in a sense opposite to
the mean-field approximation adopted before. We assume
that the longitudinal dependence of the electric field corre-
sponds to the standing wave modes in a cold lossless cavity,
∝ sin(Niπ z/Lc), where Lc is the cavity length and Ni is an
integer number of the order of 1800 for our lasers. This ap-
proximation neglects any z-dependence of modal amplitudes
and carrier diffusion along z. The equations for the complex
amplitudes Eq. (7) remain of the same form, only the modal
index i becomes a double index, counting both transverse
and longitudinal modes. Also, the overlap integrals Gi jkl
now have to be taken over the cavity volume. These integrals
contain the product of four sines with different arguments, so
they are nonzero only for certain values of the longitudinal
indices Ni .

One example of the spectral location of frequencies of cold
cavity modes is schematically shown in Fig. 13(a). The spec-
trum can be split into triplets where each triplet consists of
longitudinal modes that belong to different lateral modes and
have different longitudinal indices. The separation between
the modes within each triplet is determined by the geometry
of the cavity. Various cases of mode alignment were ex-
plored with the spectrally resolved near-field measurements
in Ref. 13. The lateral modes interact most efficiently when
the overlap integral corresponding to the four-wave mixing
process within each triplet is nonzero. Even in this case,
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the interaction is weaker than in the case of the mean-field
approximation, because many interaction paths between the
modes become forbidden. Nevertheless, simulations show
that frequency and phase coupling are still possible.

Figures 13(b), 13(c), and 13(d) show the result of solving
Eq. (7) when each of the three lateral modes consists of five

longitudinal modes, resulting in five triplets. The separation
of the modes within each triplet is about two times smaller
than the distance h̄cπ/(nef f Lc) ∼ 0.1 meV between neigh-
boring longitudinal modes. In Fig. 13(b), the dynamics of the
total phases � j (t) {a j ∝ exp[i� j (t)]} of three modes in a
single triplet are shown for six randomly chosen initial con-
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Fig. 14 Stable steady-state solutions for a large set of random initial conditions as the function of the linear gain normalized to the threshold
gain for the TM02 mode. (a) Modal amplitudes and (b) modal frequencies.
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ditions. Each mode is started from a random amplitude and
phase. After the initial time of the order of the inverse growth
rate of laser oscillations, frequencies of all three modes be-
come locked to a single frequency independently on the ini-
tial conditions. Figure 13(d) demonstrates similar behavior
for all five triplets. Moreover, we found that the evolution
of modes constituting a single triplet is practically the same
no matter how many triplets we included in the modeling.
This allows us to consider in detail the dynamics of only one
triplet.

Figure 14 shows the amplitude and frequencies of all sta-
ble steady-state solutions of Eq. (7) based on a large set
of random initial conditions. For a given gain, we solve
Eq. (7) starting from a set of random initial conditions and
identifying the steady states that were asymptotically ap-
proached by time-dependent solutions. The frequency of
each mode in Fig. 14 is defined as a derivative of the to-
tal phase; it is constant when the steady state is reached.

Simulations in Fig. 14 reveal the existence of a cer-
tain critical current above which there is only one stable
steady-state solution. A remarkable feature of this solution
is that frequencies of all modes are locked to the same fre-
quency. Below this critical current, there are multiple steady-
state solutions with different uncorrelated frequencies and
phases.

4 Conclusions
In conclusion, we observe and theoretically analyze the ef-
fect of frequency and phase locking between lateral modes
in buried-heterostructure QCLs. The effect persists for lasers
of different designs and manufacturers over a broad range
of injection currents. Therefore, transverse mode locking ap-
pears to be a universal phenomenon for high power QCLs
that support multiple low-loss lateral modes.

Our data can be explained by phase-sensitive nonlinear
coupling of transverse modes through resonant four-wave
mixing interaction, mediated by inhomogeneous saturation
of the active region (spatial hole burning). A model for the
nonlinear dynamics of transverse modes in QCLs is derived
and solved numerically. The numerical analysis predicts sta-
ble mode locking of multiple lateral modes. We find that
nonlinear frequency pulling can lead to a complete synchro-
nization of lateral modes: above a certain critical value of
the injection current, the combs belonging to different lateral
modes lock to a single comb with stable phase differences
between lateral modes. This prediction is confirmed by ob-
servations.

For a low level of the amplitude and phase fluctuations,
there may exist more than one stable phase-locked state.
This multistability regime manifests itself by the presence
of several separate combs in time-averaged measurements
or as large intensity, fluctuations in the beam direction, and
spectral fluctuations in time-resolved data.

The phase coupling of transverse modes can be affected
and controlled by selectively inhomogeneous current injec-
tion, or by selective modulation of modal losses through the
fabrication of metallic structures on top of the laser waveg-
uide. The resulting frequency- and phase-locked multimode
spectrum can be further utilized for creating stable midin-
frared frequency combs and various far-field radiation pat-
terns, controlling the beam quality and beam steering, or
facilitating ultrashort pulse generation.
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Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quan-
tum cascade laser transverse modes,” Opt. Express 15(20), 13227–235
(2007).

Biographies and photographs of the authors not available.

Optical Engineering November 2010/Vol. 49(11)111114-10

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 23 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://dx.doi.org/10.1109/JQE.2008.2003499
http://dx.doi.org/10.1109/TNANO.2009.2029099
http://dx.doi.org/10.1109/JQE.1979.1070087
http://dx.doi.org/10.1063/1.3062981
http://dx.doi.org/10.1063/1.2203964
http://dx.doi.org/10.1103/PhysRevB.65.125313
http://dx.doi.org/10.1364/OPEX.13.002032
http://dx.doi.org/10.1364/OE.15.013227

