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a b s t r a c t 

Starting from a full set of effective Maxwell-Bloch equations for a ring quantum cascade laser in the limit 

of fast material dynamics we derive a new set of equations which require a considerably lower numerical 

load because they evolve on the time scale of the electric field. With the further assumption of laser very 

close to threshold the equations take the form of the generalised Lugiato-Lefever equation. Using the 

latter, we study the formation and stability of multi-peaked localised structures which can be regarded 

as portions of a global pattern and exhibit a snaking structure. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the mid seventies of the previous century the analy- 

is of unstable phenomena in nonlinear optical systems has been 

he object of intensive studies, both theoretical and experimental. 

hese investigations have encompassed both instabilities that lead 

o spontaneous temporal oscillations in the longitudinal direction 

f light propagation (see e.g. [1–4] ) and instabilities that produce 

he spontaneous onset of a spatial structure in the planes orthgo- 

al to the propagation direction (see e.g [5–7] ). An immense vari- 

ty of ordered or chaotic patterns in time, in space or in space- 

ime have been discovered. Tito Arecchi, a much estimated col- 

eague and dear friend, has been one of the authors who mostly 

ontributed to these developments, at a worldwide level, and it is 

ow a great pleasure of ours to dedicate him this paper of ours. 

The study of instabilities, and of the temporal/spatial patterns 

hey produce, is ubiquitous in the vast area on nonlinear dynam- 

cs that includes, for example, hydrodynamics, nonlinear chemical 

eactions or biology. These phenomena represent the general ob- 

ect of study of Haken’s synergetics [8] and of Prigogine’s theory 

f dissipative structures [9] . The case of optics is especially inter- 

sting for a number of reasons: first, it studies systems whose dy- 
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amics is governed by the fundamental laws of radiation-matter 

nteraction, second, optical sytems are very fast and have a large 

requency bandwidth, hence they lend themselves naturally for ap- 

lications, for instance to telecommunications and to information 

echnology. 

The usefulness of the investigations on instabilities and pattern 

ormation in nonlinear optical systems is demonstrated especially 

y the realization of microresonator-based Kerr frequency combs 

KFCs), such as those generated by cavity solitons [10,11] . Their be- 

aviour is governed by an equation [called Lugiato-Lefever equa- 

ion (LLE) in the following] formulated in 1987 [12] , 20 years be- 

ore the discovery of Kerr frequency combs: for a discussion of the 

LE and its connections with microresonator frequency combs see 

13–17] . Combined with the ability to miniaturize and integrate 

n chip, Kerr frequency combs have been already found applica- 

ions, e.g., in dual-comb spectroscopy, frequency synthesis, low- 

oise microwave generation, laser frequency ranging and astro- 

hysical spectrometer calibration [15,17,18] . 

Recently frequency combs have been observed in ring Quantum 

ascade Lasers (QCLs) [19,20] , unipolar semiconductor lasers first 

ealized in 1994 [21] emitting in the midinfrared and terahertz re- 

ions. QCLs have raised a noteworthy interest, especially in midin- 

rared spectroscopy and sensing [22,23] because of their tunability 

nd unique physical properties [24,25] . The study of ring QCLs ex- 

ibited a number of similarities with KFCs, in particular the mul- 

https://doi.org/10.1016/j.chaos.2021.111537
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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imode laser instability is produced by the interplay of nonlinear 

nd dispersive effects, as in the modulational instability in passive 

icroresonators. 

In [19] it is shown that, assuming fast material dynamics com- 

ared with that of the optical field envelope (hypothesis very well 

ustified for QCLs [25] ) and near-threshold operation, the behaviour 

f the QCL is described by a complex Ginzburg-Landau equation, 

here the two coefficients of the equation are controlled by the 

inewidth enhancement factor [26] (LEF) or alpha-factor and by the 

roup velocity dispersion. A CGLE was also formulated in [27] in 

988, and can be regarded as the active counterpart of the LLE, 

hat was formulated for passive driven resonators. 

In a recent paper [28] we unified the description of frequency 

ombs in passive and active systems by introducing a Generalized 

LE (GLLE in the following), corresponding to the simplest equation 

hat includes the passive and the active LLE as special cases. Since 

n the passive case the resonator is driven by an external coher- 

nt field, the GLLE leads naturally to consider the configuration of 

 ring QCL with injected signal. This has been studied in [28] and 

lso in [29] where the existence of highly correlated spatial pat- 

erns (also referred to as ’global patterns’) in form of Turing Rolls 

nd Localised Structures (LSs) in the form of Temporal Solitons (or 

avity Solitons (CSs)) was predicted. While the former are associ- 

ted with optical frequency combs with repetition rate multiple of 

he fundamental one given by the cavity FSR and equal to the in- 

erse of the rolls pitch, a CS is characterised by a set of modes with

ech 2 envelope spaced by the FSR. Finally, by external addressing 

e numerically demonstrated in [28,29] the possibility to switch 

n one or more CSs in the intracavity field profile thus modifying 

p to some extent the associated optical frequency combs features 

e.g. repetition rate). 

In this paper we propose an alternative derivation of the GLLE 

 Section 2 ) and we use it to complete the study of LSs in a coher-

ntly driven ring QCL by focusing on the universal phenomenon of 

Ss snaking. 

. The generalized LLE for a coherently driven QCL, an 

lternative derivation 

Recently, a set of effective semiconductor Maxwell-Bloch equa- 

ions (ESMBEs) originally introduced in [30] was successfully ap- 

lied [31] to describe the coherent multimode dynamics of QCL. 

he set of ESMBEs in presence of an injected signal E I , whose fre-

uency ω 0 is taken as reference and is additionally assumed coin- 

ident with the laser gain peak, is 

˜ 
 

∂E 

∂z 
+ 

∂E 

∂t 
= 

1 

τp 

[
−(1 + iθc ) E + E I + P + iβ| E| 2 E − i ̃  c τp 

k ′′ 
2 

∂ 2 E 

∂t 2 

]
, 

(1) 

∂P 

∂t 
= 

1 

τd 

( 1 − iα) [ (1 − iα) ED − P ] , (2) 

∂D 

∂t 
= 

1 

τe 

[ 
μ − D − 1 

2 

( E ∗P + EP ∗) 
] 

, (3) 

here τp , τd and τe are the damping time of the cavity field, the 

ephasing time and the carriers lifetime respectively, and μ is the 

ump parameter scaled to its threshold value. The damping time of 

he cavity field τp is defined as τp = 2 L/ ( ̃ c T eff ) where the effective

oss parameter T eff = T + αL L accounts for both reflectors losses ( T ),

nd distributed waveguide losses ( αL L ). The variables E, P and D 

re scaled as in [31] while E I is introduced as in [16] . 

In Eq. (1) ˜ c = c/n is the group velocity in the active medium, 

hile θc = (ω c − ω 0 ) τp where ω c is the cavity resonance closest 
2 
o ω 0 . The α factor in Eq. (2) is the LEF calculated at the gain

eak. Finally, β and k ′′ are the background medium Kerr nonlin- 

arity parameter (relevant, in general, for high pump rates) and 

he second-order dispersion coefficient due to the waveguide, re- 

pectively [32] . Eqs. (1) - (3) satisfy the periodic boundary condition 

(0 , t) = E(L, t) . (4) 

n the Supplementary Material of [28] it was shown that the 

SMBEs can be reduced to a single equation for the electric field 

n the double limit of fast atomic variables ( τp � τd , τe ), which ap- 

lies well to QCLs, and of laser very close to threshold ( μ = 1 + r

ith r > 0 and r � 1 ). The derivation was based on a perturba-

ive expansion of the temporal derivative in the equations for the 

tomic variables. The final equation, which has the form of a forced 

omplex Ginzburg-Landau equation was named Generalized LLE 

GLLE in the following). 

In this paper we propose an alternative derivation of the same 

quation which allows to write an intermediate set of equations 

here the fast dynamics of the material variables are adiabatically 

liminated in the limit τp � τd , τe . Those equations are valid even 

or a laser pumped well above threshold, thus in principle allowing 

or the interpretation of a wider variety of experimental results. 

hen the limit μ = 1 + r with r � 1 is reintroduced, one coher- 

ntly obtains the GLLE again. 

We start by applying to Eqs. (1) - (3) the modal expansion 

 

E(z, t) 
P (z, t) 
D (z, t) 

} 

= 

∑ 

n 

{ 

e n (t) 
p n (t) 
d n (t) 

} 

e ik n (z− ˜ c t) , (5) 

ith k n = (2 π/L ) n , n = 0 , ±1 , ±2 , allowed by the boundary condi-

ion (4) . The equations for the slowly varying modal amplitudes e n , 

p n , and d n read 

de n 

dt 
= 

1 

τp 

[ 

−(1 + iθc ) e n + E I δn, 0 + p n 

+ iβ
∑ 

j,k 

e ∗j e k e n + j−k + i ̃  c 3 τp 
k ′′ 
2 

k 2 n e n 

] 

, (6) 

dp n 

dt 
− i ̃  c k n p n = 

1 

τd 

( 1 − iα) 

[ 

(1 − iα) 
∑ 

j 

e n − j d j − p n 

] 

, (7) 

dd n 

dt 
− i ̃  c k n d n = 

1 

τe 

[ 

μδn, 0 − d n − 1 

2 

∑ 

j 

(
e ∗j−n p j + e n + j p ∗j 

)] 

. (8) 

n the limit τp � τd , τe of fast atomic variables we can set d p n /d t =
 d n /d t = 0 and then we can proceed in two ways. One way con-

ists in solving the linear algebraic system for the p n , p ∗n and d n 
ariables to obtain values for p n at quasi-steady-state to be in- 

erted in Eq. (6) which now describes in a closed form the tem- 

oral evolution of each amplitude e n and thus the laser dynamics. 

Alternatively, we can sum again the modes defining the new 

ariables 
 

E (z, t) 
P (z) 
D (z) 

} 

= 

∑ 

n 

{ 

e n (t) 
p n 
d n 

} 

e ik n z , (9) 

here z is the spatial coordinate in a reference frame moving at 

he light velocity in the cavity, which obey the equations 

∂ E 

∂t 
= 

1 

τp 

[
−(1 + iθc ) E + E I + P + iβ| E | 2 E − i ̃  c 3 τp 

k ′′ 
2 

∂ 2 E 

∂z 2 

]
, (10) 

˜ 
 

d P 

dz 
= − 1 

τd 

( 1 − iα) [ (1 − iα) E D − P ] , (11) 
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˜ 
 

d D 

dz 
= − 1 

τe 

[ 
μ − D − 1 

2 

( E 
∗P + E P ∗) 

] 
. (12) 

he latter equation set retains the effects of radiation propagation, 

ain shape and dispersion, associated with multimode dynamics, 

s opposed to standard adiabatic elimination which implies a flat 

ain line (since it corresponds to the assumption ∂ D/∂ t = ∂ P/∂ t =
 in Eqs. (2) and (3) ). 

Moreover, both sets of Eqs. (6) - (8) with dp n / dt = dd n / dt = 0 and

10) - (12) can be numerically integrated much more quickly than 

he original set (1) - (3) because the fast varying variables have been 

liminated and much longer time steps can be used. We veri- 

ed that with τp = 10 −10 s, τd = 10 −13 s, and τe = 2 τd [consistently 

ith QCL rates (see Tab.1)] the integration time was reduced by a 

actor of � 100. 

A careful check was performed in order to ascertain that 

qs. (10) - (12) could reproduce the results provided by the full 

odel Eqs. (1) - (3) . This was done using two different numer- 

cal codes (based on modal decomposition and pseudo-spectral 

ethod) and we could verify that homogeneous steady states, roll 

atterns and CSs in the two models were perfectly comparable 

ithin a 0 . 1% accuracy. 

As mentioned above, starting from Eqs. (10) - (12) one can easily 

btain the generalized LLE of [28,29] in the limit of laser very close 

o threshold. To this aim we observe that the formal solutions of 

qs. (11) and (12) are 

 = (1 − iα) 

(
1 + 

τd ̃  c 

1 − iα

∂ 

∂z 

)−1 

E D , (13) 

 = μ − 1 

2 

(
1 + τe ̃  c 

∂ 

∂z 

)−1 

( E 
∗P + E P ∗) . (14) 

or each mode we have 

d ̃  c 
∂ 

∂z 
∼ τd ̃  c k n = τd αn , τe ̃  c 

∂ 

∂z 
∼ τe ̃  c k n = τe αn , (15) 

here αn = ˜ c k n is the frequency of the n -th sidemode. Assuming 

n � τ−1 
d 

, τ−1 
e we can perform a power expansion of the operators 

n Eqs. (13) and (14) . This holds in the hypothesis, very well ver-

fied in most of the experiments, that the number of longitudinal 

odes involved in the field dynamics span a spectral range much 

maller than the FWHM of the gain lineshape. 

For the polarization P we must include terms up to second or- 

er in the expansion in order to keep information about the shape 

f the susceptibility, and we obtain 

 � (1 − iα) E D − τd ̃  c 
∂( E D ) 

∂z 
+ 

τ 2 
d ̃

 c 2 

(1 − iα) 

∂ 2 ( E D ) 

∂z 2 
(16) 

t turns out that the operator in Eq. (14) applies to a quantity of

rder | E | 2 . If the laser is very close to threshold | E | 2 � 1 , we can

hen keep only the zero order term of the operator and we simply 

et 

 � μ(1 − | E | 2 ) � μ − | E | 2 , (17) 

here we have taken into account that μ � 1 (near threshold op- 

ration), and insert it in Eq. (16) to finally obtain 

 � (1 − iα) E (μ − | E | 2 ) − τd ̃  c 
∂ E 

∂z 
+ 

τ 2 
d ̃

 c 2 

(1 − iα) 

∂ 2 E 

∂z 2 
. (18) 
3 
f we insert this expression for P in Eq. (10) we obtain 

τd 

τp 
˜ c 
∂ E 

∂z 
+ 

∂ E 

∂t 
= 

1 

τp 

[
−( 1 + iθc ) E + E I + μ( 1 − iα) E − ( 1 − iα) | E | 2 E 

+ 

τ 2 
d ̃

 c 2 

( 1 − iα) 

∂ 2 E 

∂z 2 
+ iβ| E | 2 E − i ̃ c 3 τp 

k ’ ’ 

2 

∂ 2 E 

∂z 2 

]
(19) 

gain, the derivative with respect to z in the LHS of Eq. (19) is 

egligible with respect to the term with the derivative with respect 

o t because for each mode we have 

˜ 
 

∂ 

∂z 
∼ ˜ c k n = αn ∼ ∂ 

∂t 
(20) 

nd τd � τp . If we define θ0 = θc − μβ , 
 = α + β , 

 R = ( ̃ c τd ) 
2 / (1 + α2 ) and d I = d R (α + ζ ) with ζ =

k ′′ ˜ c τp 

(
1 + α2 

)
/ 
(
2 τ 2 

d 

)
we can write finally 

p 
∂E ( z, t ) 

∂t 
= E I − ( 1 + iθ0 ) E + μ( 1 − i 
) 

(
1 − | E | 2 )E 

+ ( d R + id I ) 
∂ 2 E 

∂z 2 
, (21) 

t is convenient to scale the quantities in this way 

= tr /τp , 

= z 
√ 

r/d R , 

F = E/ 
√ 

r , (22) 

 I = E I /r 3 / 2 , 

nd define 

= (θc + α) /r + α , G = d I /d R = α + ζ , (23)

o that Eq. (21) takes the form of the GLLE for the laser [28] 

∂F (η, τ ) 

∂τ
= F I + (1 − iθ ) F − (1 − i 
) | F | 2 F + (1 + iG ) 

∂ 2 F 

∂η2 
, (24)

f we consider the scaling (22) , the fact that r � 1 and the fact

hat F I must have the same order of magnitude as F (see Fig. 1 ),

e observe that E I is smaller than E by a factor r; this implies 

hat the system can be operated with an injected field of small 

ntensity, which is particularly convenient when the laser cavity is 

ing-shaped. 

In Fig. 1 we compare the results obtained with Eqs. (10) –(12) 

n panel (a) to those obtained with Eq. (24) in panel (b). The pa-

ameters used for Eqs. (10) –(12) are listed in Table 1 , and, accord- 

ng to the definitions of 
, G and θ they amount to 
 = 2 , G = 3 ,

= 4 . 7 , and a scaled cavity length ηmax = 100 . For the sake of

omparison we plotted the field intensities of Eqs. (10) –(12) with 

he same scaling adopted for Eq. (24) . Therefore, in both figures 

he output intensity X = | F | 2 is plotted versus the input intensity 

 = F 2 
I 

[see Eq. (22) ]. The blue symbols mark the minimum and

aximum intensity of the Turing patterns emerging at the modu- 

ational instability threshold, which in our system are regular rolls 

see Fig. 2 a in [29] ), while the red symbols show the maximum 

ntensity for the CSs. The stationary curves are indistinguishable. 

wo symbols are present when the CS is oscillating because the 

ackground is unstable, to indicate the minimum and maximum 

ntensity attained by the oscillating CS. Branches of CS and Turing 

atterns exist according to both models, slightly more extended ac- 

ording to Eq. (24) . We also observe that according to Eqs. (10) –

12) only oscillating CS exist. 

. Temporal localised structures and snaking ladder 

In the previous sections and in our previous works, CSs exis- 

ence and stability have been shown to be a robust prediction of 
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Fig. 1. Homogeneous stationary state, branch of stable CSs and Turing patterns obtained with Eqs. (10) –(12) (a) and with Eq. (24) (b). The parameters used for Eqs. (10) –(12) 

are listed in Table 1 , the parameters for Eq. (24) are 
 = 2 , G = 3 and θ = 4 . 7 . 

Table 1 

Parametric set for Eqs. (10) - (12) (or, equivalently, Eqs. (6) –(8) ). 

θc α μ L τd τp τe n β k ′′ 

-1.9865 2 1.005 5.8 mm 0.1 ps 100 ps 0.2 ps 3.3 0 -440 fs 2 fs 2 /mm 

Fig. 2. A pulse with w = 2 d CS is injected at t = 400 until t = 1400 . Left: the emis- 

sion switches to the roll pattern for Y = 6 . 9 . Right: a broader pulse w = 4 d CS decays 

to a single CS for Y = 6 . 5 . The spatial coordinate is normalised to its maximum 

value ηmax = 100 . 
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Fig. 3. Y = 6 . 7 A pulse with w = 2 d CS is injected at t = 400 until t = 1400 . (a) at 

regime we obtain a LS with one peak (LS 1 ); (b) the intensity profile reveals that 

the LS 1 shape and peak are different from that of the CS (see Fig.2g in [28] ). 

t

e

S
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p
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s

b

t

s
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t

s

t

s
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p

ifferent QCL models. The proper addressing of external pulses al- 

ows to create states with a number of coexisting CSs (see Fig.8b in 

29] ). This property not only allows to encode information in the 

eld profile but also allows to change the shape of the comb asso- 

iated to the single CS, shown on Fig.2g in [28] . In both perspec-

ives, it would be highly desirable to prove the existence of other 

lasses of localised structures other than CSs, in order to widen the 

encoding alphabet’and to gain more flexibility for comb tailoring. 

A cue in this direction is the well-established evidence that 

hen a modulational instability gives rise to a global stationary 

atterns (rolls, in our case), there may emerge a class of LSs ex- 

ibiting a self-confined portion of the global pattern, embedded 

n a homogeneous background. The extent of such portion varies 

nd since the global pattern is generally characterised by intensity 

eaks, the LSs differ by the number of peaks appearing in the self- 

onfined modulated region. In our case where the global pattern is 

epresented by 1D Turing Rolls, the LSs can be unambiguously des- 

gnated by the number n of their peaks, and we will dub them LS n 
n the following. Several LS n (or even all the possible LS n the sys- 
4 
em can sustain as stationary solution, compatibly with its spatial 

xtension), may coexist for certain ranges of a system parameter. 

ince the power associated to a LS n grows with the peak number 

 , a plot of the LS n power versus the control parameter, will ap-

ear an ascending sequence of branches, one for each stable LS n of 

he system (see e.g. Fig. 3 in [33] ). 

An analytical search for the bifurcations giving birth to the LS n 
olution branches in this model is beyond the scope of our paper, 

ut it is interesting that a thorough analysis of such solutions for 

he Swift-Hohenberg equation [33] or for Kerr and saturable pas- 

ive optical systems [34] showed that the sequence of stable and 

nstable LSs are connected to the subcritically bifurcated pattern at 

he MI threshold and they form a winding manifold of modulated 

olutions (again, see Fig. 3 in [33] ). When non-local effects are 

aken into account, the LS n stability range is not limited within the 

ame span of the control parameter and sweeping the latter can 

ause the system to realise a sequence of LS with ascending index 

 [35,36] . Due to the particular winding of the LS n branches, this 

henomenon has been commonly dubbed ’homoclinic snaking’. 
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Fig. 4. Y = 6 . 62 A pulse with w = 24 d CS is injected at t = 400 until t = 1400 . (a) at 

regime we obtain a LS with nine peaks (LS 9 ); (b) the intensity profile of the LS 9 . 
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Fig. 5. The snaking ladder showing the various stable LS n for each input inten- 

sity. The lower values correspond to the single CS, the line above them, labeled LS 1 
corresponds to the structures shown in Fig. 3 and the following lines to LS of in- 

creasing index n up to 11 and 12 (labels in the upper part of the figure). The lines 

connecting LS of equal index at different Y are a guide for the eye. 
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In the case of semiconductor devices, snaking was observed ex- 

erimentally in different set-ups, e.g. a semiconductor amplifier 

37] and in two coupled, bidimensional, broad-area VCSELs [38] . 

In a fast, miniaturised laser, one can easily envisage that, by us- 

ng the injected field as the control parameter, it could be possi- 

le to excite a sequence of LS n structures which will modify the 

ulse sequence emitted by the laser, with obvious implications on 

he information encoding capability. Moreover, structures with dif- 

erent number of peaks will correspond to spectra with different 

armonics. Spectra might then be tailored according to how many 

S n are encoded in the laser cavity and how many peaks each LS 

ill have (and in which sequence). Also, CS can be interspersed in 

he field profile, together with LS n of different indices, encoded in 

rbitrary sequences. 

We chose the same parameter set of Section 2 , since previ- 

us investigation warranted an excellent knowledge of the pat- 

er dynamics and scenery we could meet. We searched for a LS 

adder by injecting pulses with the same technique used in sub- 

ection ‘Switching’ of [29] . We started by exciting the usual CS 

s described above, but we gradually increased the width of the 

ddressing pulse w to try and excite a structure comprising two 

eaks at regime, after pulse extinction. In the following, as a refer- 

nce unit for the pulse width w , we will consider d CS , the FWHM

f the CS. 

We found (as hinted in subsection ‘Switching’ of [29] ) that 

herever the homogeneous solution is stable ( Y > 6 . 7 ), a pulse sig-

ificantly broader than the single CS will cause the transition to 

he roll pattern ( Fig. 2 a). This led us to search the snaking in a

egion where the background profile is unstable. 

For Y ≤ 6 . 5 , no matter how broad the pulse, the formed struc-

ure after pulse extinction will invariably decay to a single CS 

 Fig. 2 b). Successful excitation of structures corresponding to a por- 

ion of roll pattern exhibiting multiple peaks was instead achieved 

n the range 6 . 6 ≤ Y ≤ 6 . 75 , i.e. for an input field range of about

.2%, comparable to the extensions reported on Figs. 2 and 3 in 

36] and on Fig. 2 in [37] , although significantly narrower than that 

eported on Fig. 3 in [33] . 

For suitable values of Y , several coexisting LS n could be ex- 

ited up to n = 12 , by increasing the value of the pulse width w .

ig. 4 shows an example of LS . As it turns out, the order n of the
9 

5 
oexisting LS n is strongly dependent on Y , increasing from 1 for 

 < 6 . 55 up to 12 at Y = 6 . 62 and decreasing again to 1 for Y = 6 . 7

Consistently with existing literature we characterised the LS n by 

ntroducing a quantifier linked to the profile power. In this case, 

hough, one must be careful because the background changes ir- 

egularly in space and time, so that a mere intensity integral on 

he cavity profile is not a reliable indicator. We introduced a power 

ndicator P in which the profile integral included a watermark filter 

n the intensity, in order to remove most of the fluctuations, and 

as then averaged over a suitable number of independent simula- 

ions. Fig. 5 shows the ladder of LS n versus the homogeneous input 

eld Y . Since our system does not encompass non-local effects, it 

s not a surprise that the ladder is not tilted [35] . Unluckily this 

eans that a simple sweep of the input field intensity will not be 

ble to control an ascending or descending ramp of the number 

f peaks in the LSs, but it will be necessary to introduce pulses 

aving controlled widths. 

. Conclusions 

We provide a new formal approach to the modelling of an ex- 

ernally driven QCL showing that, in the limit of fast medium vari- 

bles, an adiabatic elimination of carrier population and polarisa- 

ion can be performed, retaining the descriptive capability of the 

omplete model while remarkably reducing the computational re- 

uirements. In addition, the model we cast can be reduced to the 

LLE under the same limits described in [28] . The formation of 

lobal roll structures and CS is remarkably consistent among the 

odels. In the case of the GLLE, we show that CS are not the 

nly stable localised structures in this laser and describe a set of 

ulti-peaked structures corresponding to localised portions of the 

lobal rolls emerging from the modulational instability. Such evi- 

ence points to new approaches to information encoding and op- 

ical frequency comb tailoring. 
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