Radiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transition

Citation:

David M. Bierman, Andrej Lenert, Mikhail A. Kats, You Zhou, Shuyan Zhang, Matthew De La Ossa, Shriram Ramanathan, Federico Capasso, and Evelyn N. Wang. 2018. “Radiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transition.” PHYSICAL REVIEW APPLIED, 10, 2.
physrevapplied2018.pdf0 bytes

Abstract:

Thermal runaway occurs when a rise in system temperature results in heat-generation rates exceeding dissipation rates. Here, we demonstrate that thermal runaway occurs in radiative (photon) systems given a sufficient level of negative-differential thermal emission. By exploiting the insulator-to-metal phase transition of vanadium dioxide, we show that a small increase in heat generation (e.g., 10 nW/mm(2)) results in a large change in surface temperature (e.g., similar to 35 K), as the thermal emitter switches from high emittance to low emittance. While thermal runaway is typically associated with catastrophic failure mechanisms, detailed understanding and control of this phenomenon may give rise to new opportunities in infrared sensing, camouflage, and rectification.
Last updated on 05/26/2020