Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes

Citation:

Pui-Chuen Hui, David Woolf, Eiji Iwase, Young-Ik Sohn, Daniel Ramos, Mughees Khan, Alejandro W. Rodriguez, Steven G. Johnson, Federico Capasso, and Marko Loncar. 2013. “Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes.” APPLIED PHYSICS LETTERS, 103, 2.
1.4813121.pdf2.12 MB

Abstract:

We demonstrate actuation of a silicon photonic crystal membrane with a repulsive optical gradient force. The extent of the static actuation is extracted by examining the optical bistability as a combination of the optomechanical, thermo-optic, and photo-thermo-mechanical effects using coupled-mode theory. Device behavior is dominated by a repulsive optical force which results in displacements of approximate to 1 nm/mW. By employing an extended guided resonance which effectively eliminates multi-photon thermal and electronic nonlinearities, our silicon-based device provides a simple, non-intrusive solution to extending the actuation range of micro-electromechanical devices. (C) 2013 AIP Publishing LLC.
Last updated on 06/09/2020