Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

Citation:

Meinrad Sidler, Patrick Rauter, Romain Blanchard, Pauline Metivier, Tobias S. Mansuripur, Christine Wang, Yong Huang, Jae-Hyun Ryou, Russell D. Dupuis, Jerome Faist, and Federico Capasso. 2014. “Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity.” APPLIED PHYSICS LETTERS, 104, 5, Pp. 051102. Publisher's Version

Abstract:

We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position. (C) 2014 AIP Publishing LLC.
Last updated on 05/24/2020