GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K

Citation:

Robert W. Adams, Karun Vijayraghavan, Qijie Wang, Jonathan Fan, Federico Capasso, Suraj P. Khanna, A. Giles Davies, Edmund H. Linfield, and Mikhail A. Belkin. 2010. “GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 K.” APPLIED PHYSICS LETTERS, 97, 13.
1.3496035.pdf534 KB

Abstract:

We report the design and performance of GaAs/Al0.15Ga0.85As terahertz quantum cascade lasers with double-phonon resonant depopulation and a vertical lasing transition. Devices were processed into gold-clad double-metal waveguides. Lasing at 3 THz was observed up to a heat-sink temperature of 172 K, which compares favorably with the performance of single-phonon resonant depopulation devices based on vertical lasing transitions. These results demonstrate that terahertz quantum cascade lasers based on double-phonon depopulation designs may be a viable alternative to single-phonon depopulation designs for achieving high-temperature operation. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496035]
Last updated on 05/23/2020