External ring-cavity quantum cascade lasers

Citation:

Pietro Malara, Romain Blanchard, Tobias S. Mansuripur, Aleksander K. Wojcik, Alexey Belyanin, Kazuue Fujita, Tadataka Edamura, Shinichi Furuta, Masamichi Yamanishi, Paolo de Natale, and Federico Capasso. 2013. “External ring-cavity quantum cascade lasers.” APPLIED PHYSICS LETTERS, 102, 14.
1.4800073.pdf1.21 MB

Abstract:

An external ring-cavity quantum cascade laser (QCL) is demonstrated. Gain competition between the clockwise and anticlockwise ring-cavity modes results in a transition from bidirectional to directional emission as current is increased. In the directional regime, spatial hole burning (SHB) is suppressed, and the spectrum evolves to a single longitudinal mode, in contrast with the multimode spectrum of a comparable Fabry-Perot QCL. The absence of SHB and the long path-length of the external cavity make this laser an excellent candidate for active mode-locking and high-sensitivity spectroscopic applications in the mid-infrared. A proof-of-principle intracavity absorption spectroscopic detection of water vapor is demonstrated. (C) 2013 American Institute of Physics.
Last updated on 05/29/2020