DFB Quantum Cascade Laser Arrays

Citation:

Benjamin G. Lee, Mikhail A. Belkin, Christian Pfluegl, Laurent Diehl, Haifei A. Zhang, Ross M. Audet, Jim MacArthur, David P. Bour, Scott W. Corzine, Gloria E. Hoefler, and Federico Capasso. 2009. “DFB Quantum Cascade Laser Arrays.” IEEE JOURNAL OF QUANTUM ELECTRONICS, 45, 5-6, Pp. 554-565.
2009_Lee_et_al_IEEE_JQE1.91 MB

Abstract:

DFB quantum cascade laser (DFB-QCL) arrays operating between 8.7 and 9.4 mu m are investigated for their performance characteristics-single-mode selection of the DFB grating, and variability in threshold, slope efficiency, and output power of different lasers in the array. Single-mode selection refers to the ability to choose a desired mode/frequency of laser emission with a DFB grating. We apply a theoretical framework developed for general DFB gratings to analyze DFB-QCL arrays. We calculate how the performance characteristics of DFB-QCLs are affected by the coupling strength kappa L of the grating, and the relative position of the mirror facets at the ends of the laser cavity with respect to the grating. We discuss how single-mode selection can be improved by design. Several DFB-QCL arrays are fabricated and their performance examined. We achieve desired improvements in single-mode selection, and we observe the predicted variability in the threshold, slope efficiency, and output power of the DFB-QCLs. As a demonstration of potential applications, the DFB-QCL arrays are used to perform infrared absorption spectroscopy with fluids.
Last updated on 05/23/2020