Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light

Citation:

STEVEN J. BYRNES, Alan Lenef, Francesco Aieta, and Federico Capasso. 2016. “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light.” OPTICS EXPRESS, 24, 5, Pp. 5110-5124.
2016_byrnes_et_al_1.pdf2.75 MB

Abstract:

A metasurface lens (meta-lens) bends light using nanostructures on a flat surface. Macroscopic meta-lenses (mm- to cm-scale diameter) have been quite difficult to simulate and optimize, due to the large area, the lack of periodicity, and the billions of adjustable parameters. We describe a method for designing a large-area meta-lens that allows not only prediction of the efficiency and far-field, but also optimization of the shape and position of each individual nanostructure, with a computational cost that is almost independent of the lens size. As examples, we design three large NA = 0.94 meta-lenses: One with 79% predicted efficiency for yellow light, one with dichroic properties, and one broadband lens. All have a minimum feature size of 100nm. (C) 2016 Optical Society of America
Last updated on 05/27/2020