Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors

Citation:

Ertugrul Cubukcu, Fatih Degirmenci, Coskun Kocabas, Mariano A. Zimmler, John A. Rogers, and Federico Capasso. 2009. “Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors.” PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 106, 8, Pp. 2495-2499.

Abstract:

Near-field scanning optical microscopes are widely used in imaging of subwavelength features in various material systems and nanostructures. For a variety of applications, polarization-sensitive near-field probes can provide valuable information on the nature and symmetry of the imaged nanoparticles and emitters. Conventional near-field optical microscopy lacks in-plane polarization sensitivity. Here, we use aligned single-wall carbon nanotubes as polarization-sensitive molecular scale probes to image the transverse near-field components of an optical Hertzian dipole antenna. Because of the Raman ``antenna effect'' in carbon nanotubes, only the near-field components along the nanotube axis are detected. These findings demonstrate that aligned carbon nanotubes can be used as polarization-sensitive near-field detectors.
Last updated on 05/23/2020