Achromatic Metasurface Lens at Telecommunication Wavelengths

Citation:

Mohammadreza Khorasaninejad, Francesco Aieta, Pritpal Kanhaiya, Mikhail A. Kats, Patrice Genevet, David Rousso, and Federico Capasso. 2015. “Achromatic Metasurface Lens at Telecommunication Wavelengths.” NANO LETTERS, 15, 8, Pp. 5358-5362. Publisher's Version
acs_nanolett_5b01727.pdf5.77 MB

Abstract:

Nanoscale optical resonators enable a new class of flat optical components called metasurfaces. This approach has been used to demonstrate functionalities such as focusing free of monochromatic aberrations (i.e., spherical and coma), anomalous reflection, and large circular dichroism. Recently, dielectric metasurfaces that compensate the phase dispersion responsible for chromatic aberrations have been demonstrated. Here, we utilize an aperiodic array of coupled dielectric nanoresonators to demonstrate a multiwavelength achromatic lens. The focal length remains unchanged for three wavelengths in the near-infrared region (1300, 1550, and 1800 nm). Experimental results are in agreement with full-wave simulations. Our findings are an essential step toward a realization of broadband flat optical elements.
Last updated on 05/26/2020