Solid-immersion metalenses for infrared focal plane arrays

Citation:

Shuyan Zhang, Alexander Soibel, Sam A. Keo, Daniel Wilson, Sir. B. Rafol, David Z. Ting, Alan She, Sarath D. Gunapala, and Federico Capasso. 2018. “Solid-immersion metalenses for infrared focal plane arrays.” APPLIED PHYSICS LETTERS, 113, 11.
1.5040395.pdf2.58 MB

Abstract:

Optical components based on metasurfaces (metalenses) offer an alternative methodology for microlens arrays. In particular, metalens arrays have the potential of being monolithically integrated with infrared focal plane arrays (IR FPAs) to increase the operating temperature and sensitivity of the latter. In this work, we demonstrate a type of transmissive metalens that focuses the incident light (lambda = 3-5 mu m) on the detector plane after propagating through the substrate, i.e., solid-immersion type of focusing. The metalens is fabricated by etching the backside of the detector substrate material (GaSb here), making this approach compatible with the architecture of back-illuminated FPAs. In addition, our designs work for all incident polarizations. We fabricate a 10 x 10 metalens array that proves the scalability of this approach for FPAs. In the future, these solid-immersion metalenses arrays will be monolithically integrated with IR FPAs. Published by AIP Publishing.
Last updated on 05/26/2020