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Abstract—We report the observation of stable pulse emission
and enhancement of intracavity second-harmonic generation
(SHG) in self-mode-locked quantum cascade (QC) lasers.
Down-conversion of the detector signal by heterodyning with
an RF signal allows the direct observation of the pulsed laser
emission in the time domain and reveals a stable train of pulses
characteristic of mode-locked lasers. The onset of self-mode
locking in QC lasers with built-in optical nonlinearity results in a
significant increase of the SHG signal. A pulse duration of 12 ps
is estimated from the measured increase of the SHG signal in
pulsed emission compared to the power expected for the SHG
signal in CW emission. This value is in good agreement with the
pulse duration deduced from the optical spectral width.

Index Terms—Mode-locked lasers, nonlinear optics, pulsed
laser, pulse generation, semiconductor lasers, ultrafast optics.

I. INTRODUCTION

QUANTUM CASCADE (QC) lasers are semiconductor
lasers based on intersubband transitions emitting in
the mid-infrared (IR) wavelength range [1]–[3]. This

spectral region is technologically and scientifically important
for chemical and biological sensing [4] since many molecules
have characteristic absorption features in the mid-IR. Recent
progress in QC lasers includes the demonstration of broadband
QC lasers, [6] room-temperature CW operation of the QC
lasers, and terahertz QC lasers [7] and expands the potential
area of applications and opens new directions of research.

One of the advantageous features of the QC laser is ultra-
short pulse generation in the mid-IR. Active and passive mode-
locking of QC lasers have recently been observed [8], [9]. The
origin of passive mode-locking was interpreted as due to a new
kind of Kerr lensing mechanism, in which the refractive index
nonlinearity arises from the giant optical Kerr effect of the inter-
subband transition [10], [11] rather than from the nonlinearity of
the host medium. However, many properties of mode-locked QC
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lasers, such as pulse width and shape, have not been measured.
Second-order autocorrelation measurements, which are the ulti-
mate test of pulse formation and provide a reliable measurement
of the pulse width, have not been carried out yet due to the lim-
ited conversion efficiency of nonlinear crystals in the mid-IR
and the relatively limited power of QC lasers. Also, no direct
measurements in the time domain have been performed, due to
the very high repetition rates ( 10–20 GHz) of mode-locked
QC lasers.

In this study, we discuss the properties of self-mode-locking
in QC lasers such as the stability of the pulsed emission and
the increase of the second-harmonic generation (SHG) peak op-
tical intensity above the transition from CW emission to mode-
locking. We first report the stability of the pulsed emission of
mode-locked QC lasers over a wide current range. We use an
RF downconversion method that enables the direct observation
of pulsed laser emission in the time domain. The oscilloscope
traces show a stable train of pulses at the cavity round-trip fre-
quency that is characteristic of mode-locked lasers. The pulse
train is stable over a time scale of tens of nanoseconds.

Second, we observed a significant increase of the intracavity
SHG above the onset of the mode-locking. The observed en-
hancement of SHG is a direct evidence of the increase in peak
optical intensity and confirms a transition of the laser output ra-
diation from CW to pulsed emission. The increase of the SHG
power allows us to estimate the pulse duration ( 10 ps) in agree-
ment with that calculated from the optical spectral width.

This paper is organized as follows. Section II describes the
downconversion method for the time-domain measurements and
the observed stability of mode-locked QC lasers. In Section III,
we report the increase of the intracavity SHG in mode-locked
QC lasers and estimate the pulse duration.

II. TIME-DOMAIN MEASUREMENTS AND STABILITY OF

SELF-MODE-LOCKED QC LASERS

Self-mode-locking of QC lasers has been described exten-
sively in [9]. Here we use one of the wafers (D2396) used in
that work, [9], the structure and performance of which are de-
scribed in detail elsewhere [12]. Briefly, the active regions at

m were chosen to be of the so-called “three-well
vertical transition” type [13] (see Fig. 1). Radiation is gener-
ated by electrons undergoing intersubband transitions between
levels 3 and 2. The lasers were processed as deep etched ridges
about 10–14- m wide and were cleaved to lengths of 3.75 mm.
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Fig. 1. Conduction band diagram and moduli squared of the wave
functions of the QC laser active region designed for emission at
� = 8:1 �m, sandwiched between two injectors. The layer thickness
for one stage of injector and active region in nanometers from
right to left starting from the barrier indicated by an arrow are:
2:3=4:0=1:1=3:6=1:2=3:2=1:2=3:0=1:6=3:0=3:8=2:1=1:2=6:5=1:2=5:3.
AlInAs layers are in bold. The moduli squared of the wavefunctions involved
in the laser emission are indicated by thick lines and are labeled 1, 2, 3.

Fig. 2. Laser spectra of one device from wafer D2396 operating in CW at
T = 15 K at different bias currents as indicated.

The optical confinement was optimized by a so-called “plasmon
enhanced” waveguide [14]. The lasers were mounted inside a
helium flow cryostat and all measurements were performed at
cryogenic temperature ( K) and under an applied dc bias.
The optical spectra were measured with a Nicolet fast Fourier
transform (FFT) IR spectrometer and a deuterated triglycine sul-
fate (DTGS) detector. The time dependence of the integrated
optical signal was measured with a fast quantum-well IR pho-
todetector (QWIP) with a 40-GHz cutoff frequency [15].

Fig. 2 shows optical spectra of a 3.75-mm-long QC laser op-
erating under applied dc bias at K. From a current
slightly above threshold ( A) and over a wide range
of the dc bias, the laser emits a broad spectrum, consisting of a
large number of Fabry–Perot modes, and with a characteristic
oscillatory envelope indicative of pulsed emission undergoing
strong self-phase modulation [9]. The photocurrent spectrum,
measured with a QWIP and an electronic spectrum analyzer,
exhibits a strong, stable peak at the cavity round-trip frequency,

Fig. 3. Photocurrent spectrum of the QWIP at a laser bias current of I =

1:0 A.

Fig. 4. Schematic of the experimental setup for the time-resolved study of
pulse emission in QC lasers. The high-frequency photocurrent signal of the
QWIP is downconverted to frequencies around 1 GHz by mixing the former with
the signal from an RF generator. The time dependence of the pulsed emission is
then measured with a high-speed oscilloscope.

as shown in Fig. 3. These observations represent direct evidence
of self-mode-locking [9].

Fig. 4 shows a schematic of the experimental setup employed
for the observation of pulsed emission in the time domain. The
measurement method is a conventional heterodyne setup, in
which the high-frequency sample signal is downconverted to a
lower frequency by mixing with an external reference signal.
Here, the high-frequency photocurrent signal from the QWIP
is mixed with a reference signal from an RF generator in a
MITEQ double-balanced mixer. The results of the mixing are
shown in Fig. 5 where the photocurrent signal at a frequency

GHz (Fig. 3) is downconverted to a frequency
GHz. Fig. 5 shows the downconverted photocurrent spectra

for three different frequencies of the reference signal. As can
be seen, the increase of the reference frequency shifts the
photocurrent peak to lower frequencies.

Oscilloscope traces of the downconverted QWIP photocur-
rent are measured with a Tektronix CSA 803 sampling scope as
shown in Fig. 4. The photocurrent signal after downconversion
to a frequency around 1 GHz is filtered using a bandpass filter
with a bandwidth of 0.4 GHz and split between the trigger and
sampling inputs of oscilloscope. A delay line of 67 ns is inserted
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Fig. 5. Downconverted photocurrent spectrum of the QWIP at a laser bias
current of I = 1:0 A for different mixing frequencies of the RF generator as
indicated.

Fig. 6. Oscilloscope trace of the laser pulse emission at a bias current of I =

1:0 A (D2396).

before the sampling input of the oscilloscope to compensate for
an instrumental delay between the triggering and the start of the
data acquisition (37 ns in our scope).

Fig. 6 shows an oscilloscope trace of a QWIP photocurrent
signal that has been downconverted from 13.008 to

1.000 GHz using a 12.008-GHz reference signal. The
corresponding photocurrent spectra of both the original and
downconverted signals are shown in Figs. 3 and 5. The oscillo-
scope trace shows the stable oscillations of the laser intensity,
downconverted to a frequency of 1.000 GHz, corresponding
to a cavity round-trip frequency of 13.008 GHz. The narrow
bandwidth of our experimental setup filters out all harmonics
except for the fundamental one.

The amplitude of the observed oscillations is set by the ampli-
tude of the original mode-locked pulses and the response of the
measurement system. Thus, a time dependence of the oscilla-
tion amplitude would reflect a pulse drift (in amplitude or phase)
with time. For all laser bias currents, however, we observe peri-

Fig. 7. Oscilloscope traces of pulsed emission of a laser D2396 at various
laser bias currents plotted on the actual time scale of pulsed emission, which
corresponds to a cavity round-trip frequency of 13.008 GHz.

odic oscillations with constant amplitude (Fig. 7), which inde-
pendently confirms the stable nature of the pulsation and hence
mode-locking. The pulse train remains stable on a time scale of
more than tens of nanoseconds or, equivalently, during emission
of several hundred pulses.

III. ENHANCEMENT OF SHG IN MODE-LOCKED QC LASERS

Intracavity sum-frequency generation and SHG in QC lasers
have recently been demonstrated [16]. The nonlinearity arises
from intersubband transition in asymmetric coupled QW struc-
tures [11]. The optical nonlinearity can be incorporated within
the active regions of the QC laser by suitable design of the
electronic states or by adding separate multiple QWs. Here we
demonstrate SHG in structures of the former type, which have
active regions similar to those of self-mode-locked QC lasers
[9].

The power of the SHG signal is proportional to the square of
the fundamental power. The transition to mode-locking results
in a significant increase of the intracavity peak power at the
fundamental wavelength, which in turn should also lead to a
pronounced increase in the second-harmonic power.

The QC lasers used in this experiment are also based on the
“three-well vertical” transition design of the active region. [16]
Fig. 8 shows part of the conduction band diagram structure of
this laser with energy levels and the moduli of the wavefunctions
squared. The laser light is emitted by electrons undergoing tran-
sitions between levels 3 and 2. Two sets of resonant transitions
for SHG exist in this structure—one for the level triplet 3-4-5
and another for triplet 2-3-4.

The laser processing, mounting, and measurements of the
fundamental emission are analogous to the ones described in
Section II. The optical spectra of the SHG signal were mea-
sured with a Nicolet FFT IR spectrometer in a fast scan mode
equipped with a liquid-nitrogen-cooled calibrated InSb detector.
A quartz filter was placed before the InSb detector to block the
fundamental laser signal. The integrated laser output power was
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Fig. 8. Conduction band diagram of one active region sandwiched between
two injectors of wafer D2882. The laser transition is between levels 3 and
2 and is shown by the wavy arrow. A resonant nonlinearity for intracavity
SHG results from two cascades of intersubband transitions 2-3-4 and
3-4-5. The layer thickness in nanometers of one injector and active region
are from right to left starting from the barrier indicated by the arrow:
2:6=3:5=2:0=2:9=1:8=3:0=1:8=3:2=2:3=3:1=4:5=1:5=1:5=6:7=1:4=5:3.
AlInAs layers are in bold. The moduli square of the essential wavefunctions
are also shown and labeled 1–5.

Fig. 9. Laser spectra of one device of D2882 operating in CW at T � 20 K
and at different bias currents. Inset: photocurrent spectrum of the QWIP at a
laser bias current of I = 2:0 A.

measured with a calibrated thermal detector and the SHG power
was calculated from the corresponding spectra.1

Fig. 9 shows a few optical spectra of a 4.5-mm-long laser at
different dc bias currents. At low bias the laser is single mode; an
increase of the current results in the appearance of several modes
at A, and a pronounced change of the spectra occurs at

A with the simultaneous appearance of many modes,
an oscillatory envelope, and a pronounced redshift. The latter
change in the emission spectra is accompanied by a transition
from CW emission to pulsed emission. In fact, the analysis of
the laser output with the QWIP and a spectrum analyzer reveals
a strong stable resonance at a cavity round-trip frequency of

9.557 GHz (inset in Fig. 9). The oscilloscope traces of the

1In order to test the precision of this approach, we compared the power of the
fundamental laser emission measured with a calibrated detector with the power
calculated from the optical spectra measured with the FTIR. Both measurements
were in very good agreement.

photocurrent after downconversion demonstrate a stable pulse
train.

The transition to pulsed emission is triggered by the onset
of self-mode-locking at high optical intensities inside the laser
cavity. Self-mode-locking in these QC lasers is based on self-fo-
cusing and arises from an intensity-dependent refractive index
[9]. The nonlinearity of the refractive index is provided by the
resonant intersubband transition and it changes sign across the
center frequency. Self-mode-locking can only occur when the
optical spectra shift to longer wavelengths where the nonlinear
refractive index is positive. Indeed, the center of mass of the
laser spectra in Fig. 9 shifts to longer wavelengths by

m ( THz) at the onset of mode-locking. The
expected value of wavelength shift can be estimated from
the width of the intersubband transition [9], [17]. The non-
linear refractive index of the intersubband transition is given
by the following expression [9]:2

(1)

where is the dipole matrix element of the lasing transi-
tion, is the population inversion per unit volume, is
the linear refractive index, and are the center frequency
and FWHM of the gain curve, is the saturation intensity at

, and , and are the unit charge, the vacuum permit-
tivity, and Plank’s constant, respectively. The laser will tend to
mode-lock at optical frequencies near the positive maximum of
the nonlinear refractive index. Thus we can estimate the redshift

from the maximum of (1), namely by setting ,
which gives THz for a typical
width of the transition of THz. These estimates are
in good agreement with the observed shift of THz,
taking into account the uncertainty of and the approxima-
tions used in the above expression for .

Fig. 10 shows optical spectra of the SHG signal at various
laser bias currents. The SHG is a sharp feature superimposed
on a smooth background of spontaneous emission from elec-
trons excited into high energy levels and the continuum above
the barriers [16].3 The spectrum of the SHG signal follows
that of the laser and changes near the mode-locking transition
from single-mode to broad spectral emission shifted to longer
wavelength.

Fig. 11 shows high-resolution spectra of the laser and
nonlinear optical signals where the latter actually consists
of second-harmonic and sum-frequency generation of the
individual longitudinal modes of the laser. As a result, the
number of resolved modes in the nonlinear optical spectrum

2This expression is based on a two-level approximation. In current devices,
the refractive index nonlinearity arises from the intersubband transitions be-
tween levels 3-2 and 3-4 and the expression for n is more complicated. Still,
the contributions from both transitions are compatible so this expression pro-
vides a good estimate of n .

3The SHG signal is small in these structures because the nonlinear optical el-
ement is not optimized and there is no phase matching between the fundamental
and nonlinear light modes. Recent work on SHG generation in QC lasers im-
proved the conversion efficiency of the nonlinear optical element and achieved
phase matching that enhanced the SHG signal significantly. These optimized
lasers, however, cannot be used in our study since they do not emit in CW mode
due to higher threshold currents [18].
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Fig. 10. Short-wavelength spectra of a device of D2882 measured at
various laser bias currents. The second-harmonic signal is the sharp feature
superimposed on a smooth background of spontaneous emission.

Fig. 11. High-resolution spectra of fundamental (bottom) and second
harmonic (top) signals measured at a bias current of I = 1:9 A.

is twice the number of modes of the laser spectrum. As the
strength of the optical nonlinearity varies only weakly across
the laser spectrum all laser modes are expected to interact with
each other as long as they overlap spatially and temporally.
A laser spectrum with a two-peaked envelop and complete
spatial and temporal overlap of all modes would thus lead to
a three-peaked envelope in the nonlinear signal, with the third
central peak arising from sum-frequency generation of the
other two peaks. In the case of laser emission of short pulses
undergoing self-phase modulation (SPM), however, the spectral
envelope is equally two-peaked, as previously mentioned and
discussed in detail elsewhere [9], [19], yet the temporal overlap
of the laser modes is reduced. In particular, the two peaks of
the spectral envelope are emitted separately in time from the
leading and trailing edges of the pulse and thus do not lead to
significant sum-frequency generation. This explains the two-
rather than three-peaked envelope of the nonlinear spectrum
shown in Fig. 11(b) and serves as another strong indication of
short-pulse generation in our lasers.

Fig. 12. Power of the SHG signal versus laser power. The solid line is a
quadratic least-squares fit to the data at low laser power (data points up to
0.04 W laser power are included in the fit). Inset: power of the second-harmonic
signal versus laser power shown on a logarithmic scale.

The power of the SHG signal is plotted versus laser power
on linear and logarithmic scales in Fig. 12. When the laser is
single mode at low currents (low powers), the SHG signal fol-
lows a square dependence on the fundamental power, as shown
by the straight line in the inset of Fig. 12. The SHG power
starts to deviate from the square dependence at the transition
of the laser from CW operation to pulsed behavior at A
( mW) and becomes much higher when the laser emits a
stable train of pulses at A ( mW). The power of
the SHG signal in the mode-locking regime exceeds by almost
a factor of six the power expected for CW emission, as calcu-
lated from the difference between the measured value and the
extrapolated square dependence at low power (Fig. 12).

The change of the SHG power can be used for an estimate
of the QC laser pulse duration. Assuming a Gaussian pulse of
width (FWHM), the change of the average SHG power is equal
to4

(2)

where is the ratio between the SHG signal measured under
pulsed conditions and the SHG CW power extrapolated at the
same value of the laser power, and is the cavity round-trip
time. Thus, the pulse duration calculated from the enhancement
of the SHG is ps for a cavity round-trip frequency of

GHz ( ps). The pulsed emission with repetition
frequency of GHz, duration of pS, and average
power mW results in a peak power 0.6 W.

An independent estimate of the pulse duration can be ob-
tained from the time–bandwidth product of optical spectra of the
laser. In the presence of SPM, the pulse duration of a Gaussian

4At the transition from CW to mode-locking, the pulse peak power is P �=
P � (T=�), where P is the average laser power (or CW laser power), and
T and � are the cavity round-trip time and the pulse duration, respectively. The
SHG pulse peak power is P �= P � (T=�) , where P is the SHG CW
power at the same value of the laser power. We measure the average SHG power,
which is given by ~P �= P � (T=�) �= P � (T=�).
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pulse and the rms spectral width are related by the
following expression [19]:

(3)

where is the nonlinear phase shift corresponding to the
pulse peak power. The shape of laser spectra at pulsed emission
has two humps with a pronounced dip in the center (see Fig. 9)
that is characteristic [19] of a phase shift . The
largest measured rms width of the spectrum is
GHz, resulting in ps, in good agreement with the pre-
vious estimate.

In conclusion, we have demonstrated the stability of pulsed
emission in self-mode-locked QC lasers. We also observed an
enhancement of the intracavity SHG at the transition to self-
mode-locking, which results from the high peak power.
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